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Although kernel weight (KW) is a major component of grain yield, its contribution to yield
genetic gain during breeding history has been minimal. This highlights an untapped
potential for further increases in yield via improving KW. We investigated variation and
genetics of KW and kernel length (KL) via genome-wide association studies (GWAS)
using a historical and contemporary soft red winter wheat population representing 200
years of selection and breeding history in the United States. The observed changes
of KW and KL over time did not show any conclusive trend. The population showed
a structure, which was mainly explained by the time and location of germplasm
development. Cluster sharing by germplasm from more than one breeding population
was suggestive of episodes of germplasm exchange. Using 2 years of field-based
phenotyping, we detected 26 quantitative trait loci (QTL) for KW and 27 QTL for KL with
–log10(p) > 3.5. The search for candidate genes near the QTL on the wheat genome
version IWGSCv1.0 has resulted in over 500 genes. The predicted functions of several
of these genes are related to kernel development, photosynthesis, sucrose and starch
synthesis, and assimilate remobilization and transport. We also evaluated the effect of
allelic polymorphism of genes previously reported for KW and KL by using Kompetitive
Allele Specific PCR (KASP) markers. Only TaGW2 showed significant association with
KW. Two genes, i.e., TaSus2-2B and TaGS-D1 showed significant association with KL.
Further physiological studies are needed to decipher the involvement of these genes in
KW and KL development.

Keywords: kernel weight, kernel length, QTL, GWAS, candidate gene, historical germplasm

INTRODUCTION

Yield genetic gains in wheat slowed down over the last two decades (Brisson et al., 2010; Lin
and Huybers, 2012; Ray et al., 2012), threatening world food security. Simmonds et al. (2014)
highlighted that grain number (GN) per unit area and kernel weight (KW) are main determinants
of grain yield (GY). These two traits, i.e., GN and KW together represent total sink-strength in
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wheat. Over the course of the breeding history of cereals, the
per unit area GN has considerably increased, while KW showed
no significant increase or even decreased slightly (Brancourt-
Hulmel et al., 2003; Carver, 2009). KW is determined by kernel
size, which is a function of kernel width, length, and thickness,
and degree of grain filling (Simmonds et al., 2014; Su et al.,
2016). Though complex, KW is the most heritable trait among
yield components (Su et al., 2016), with heritability reaching
as high as 0.87 (Bergman et al., 2000; Wiersma et al., 2001).
Kernel development in wheat involves cell division, water uptake,
accumulation of starch and protein, maturation, and desiccation
(Altenbach and Kothari, 2004). While grain expansion enforced
by endosperm cell division and water uptake are components of
sink-strength, assimilate (e.g., starch) supply (Emes et al., 2003)
through current photosynthesis or remobilization of reserves
from vegetative tissues (Bidinger et al., 1977; Schnyder, 1993;
Gebbing and Schnyder, 1999) are components of source-strength.

Several QTL for KW and kernel dimension traits have been
localized across the 21 wheat chromosomes (Zhang et al.,
2012; Jaiswal et al., 2015; Chen et al., 2016). Only a few
loci were functionally validated in wheat, compared to other
cereals such as rice for KW and dimension traits, due to
the lack of reference genome sequence and ploidy complexity
(allohexaploid, 2n = 6X = 42) of the wheat (Simmonds et al.,
2014; Su et al., 2016). To this end, several genes identified
in other cereals were postulated to be involved in kernel trait
determination in wheat. Sucrose transporter TaSUT was shown
to regulate the translocation of assimilates from source to sink
tissues (Aoki et al., 2004; Deol et al., 2013). Sucrose synthase
TaSus catalyzes the first step in the conversion of sucrose to
starch, particularly the conversion of sucrose to fructose and
UDP-glucose (Jiang et al., 2011; Hou et al., 2014). Cytokinin
oxidase TaCKX which inactivates cytokinin reversibly was shown
to have an effect on KW (Zhang et al., 2010; Lu et al., 2015;
Chang et al., 2016). Cytokinin oxidase such as TaCKX1 highly
expressed during early seed development (Song et al., 2012).
Cell wall invertase TaCWI exerts a role in kernel size control
by sink tissue development and carbon partitioning (Ma et al.,
2012). Several other grain size related genes include TaGS-D1
which codes for Glutamine synthase with effect on KW and kernel
length (KL) (Zhang et al., 2014); TaGW6, which encodes for
indole-3-acetic acid (IAA)-glucose hydrolase (Hu et al., 2016); and
TaGW2 (Pflieger et al., 2001; Su et al., 2011; Bednarek et al.,
2012) encodes for a RING-type protein with E3 ubiquitin ligase
activity that controls KW and interestingly, positively regulates
grain size as opposed to the rice GW2 gene which has negative
effect on grain size (Bednarek et al., 2012). Deployment and
transferability of these genes in populations and environments
beyond the discovery populations and environments is a valuable
applied research question.

Genome-wide association studies (GWAS) that dissect the
genetic basis of traits and propose candidate genes (Pflieger
et al., 2001), could be an important step for trait improvement.
The scope of genes and alleles that are identified in GWAS
pipelines depends, to a large extent, on the variation that
is in the germplasm. In most cases, discovery panels consist
of elite lines from multiple breeding programs (Mohammadi

et al., 2015), which usually demonstrate high familial relatedness;
or GenBank accessions (Zhao et al., 2011), which are often
genetically structured by the geography of origin. The third type
of diversity panel could be accessions sampled from adapted
breeding materials in a spectrum of time, i.e., from the past to
present time, which can identify alleles that became extinct or
are recently introduced. Analyses of genetic gain in wheat have
not postulated significant improvement in KW parallel to what
observed in GN. The quest for increases in KW parallel to GN
will depend on the genetic nature of KW that may be gained
from a past-to-present perspective of an allelic composition of
wheat accessions. Crossing schemes and selections from among
segregating progeny, which is a landmark of the breeding process,
can be thought as accelerated evolutionary forces that either
rapidly fix or purge alleles. Therefore, current elite germplasm
is likely unable to depict alleles that contributed in the past or
are now fixed. Mapping using in-time diversity panels allows
understanding of the realized trends and gain or loss of beneficial
alleles, both very important factors for strategizing breeding
programs.

Development of molecular markers for KW will greatly
facilitate the selection process. In this study, we utilize a unique
wheat population composed of historical and contemporary
germplasm, representing breeding history and selection of over
200 years in the United States wheat industry. The panel has a
considerable variation for several traits including KW, allowing a
high power of QTL detection. The objectives of this study include,
(1) to identify quantitative trait loci (QTL) for KW and KL in a
historical and contemporary set of soft red winter wheat (SRWW)
in the United States, (2) to search the recently published wheat
reference genome IWGSC RefSeq v1.0 annotation v1.0 to mine
candidate genes that are putatively responsible for determination
of KW and KL in wheat.

MATERIALS AND METHODS

Plant Materials and Field Trials
Historical and contemporary SRWW cultivars and breeding
lines, representing 200 years (1814–2015) of selection and
breeding history in diverse geographical regions in the
United States were phenotyped. The seed for most of the
entries was provided by the National Small Grains Collection
(NSGC), United States Department of Agriculture (USDA) in
Aberdeen, Idaho. Accessions were field grown to maturity at the
Agronomy Center for Research and Education (ACRE), Purdue
University, West Lafayette in the cropping seasons of 2015–2016
and 2016–2017. We grow each entry in a 1-m long single row
plot with 25 cm row spacing. The crop received 106 kg N ha−1

in both years just after the winter dormancy break. As old
accessions with no height reducing (Rht) genes were at the risk
of lodging and disruption of grain filling process, we assembled
guards and ropes around row plots to prevent lodging.

Phenotyping
Each single-row was hand harvested and processed at ACRE.
Two kernel characteristics were measured, i.e.; KW and KL. We
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hand-harvested multiple heads from each entry, oven-dried, and
measured the weight of two replicates of 100 kernels. The average
KW was then expressed in milligram (mg). The experiments
in 2015–2016 and 2016–2017 seasons did not include the
same number of entries. In the 2015–2016 season, 265 entries
were phenotyped. In the 2016–2017 season, 214 entries were
phenotyped. Only 160 entries were in common between 2015–
2016 and 2016–2017. Altogether, in both years KW from 325
entries were measured. The KW data of 2015–2016 and 2016–
2017 are referred to as KW16 and KW17. The Best Unbiased
Linear Predictor (BLUP) of KW across both years with 325 entries
is referred to as KW1617. For KL, 265 entries were measured in
2015–2016 and 217 entries were measured in 2016–2017. The
common entries between both years were 160. Altogether, in
both years KL from 323 entries were measured. For measuring
KL, we aligned 10 kernels to the side of a ruler. The resulting
measurements were divided by 10 and expressed in millimeter
(mm) for a single kernel. Similar to KW, KL data are referred to
as KL16, KL17, and KL1617 for 2016, 2017, and combined BLUP
estimates, respectively.

Analysis of Traits and Trends
The relationship between the datasets generated in different
environments was used as a measure of repeatability of
the phenotypic measurements. Correlations among the
different datasets can be indicative of technical heritability
and repeatability of KW and KL in diverse environments.
We also estimated the broad-sense heritability values for both
traits using the variance components. The trend of traits over
time was visualized by using boxplots of KW1617 and KL1617
datasets of the four year-groups (YG ≤ 1920, 1920 < YG ≤ 1960,
1960 < YG < 2000, and YG ≥ 2000). The total number of entries
in each YG and the number of entries phenotyped for KW and
KL in the 2 years are shown in Table 1.

Genotyping
For genotyping, we extracted DNA from 15-day-old leaf
samples and followed a sequencing-based genotyping procedure
explained by Poland et al. (2012). The genomic libraries were
created using Pst1-Msp1 restriction enzyme combinations. The
samples were pooled together in 96-plex to create libraries
and each library was sequenced on a single lane of Illumina
Hi-Seq 2500. SNP calling was performed using the TASSEL5
GBSv2 pipeline1 using 64 base kmer length and minimum
kmer count of 5. Reads were aligned to the wheat reference
“IWGSC_WGAv1.0”2 using aln method of Burrows–Wheeler
Aligner (BWA) version 0.7.10 (Li and Durbin, 2009). We
used the default parameters of BWA. This resulted in 309,711
unfiltered SNP loci. The SNPs not assigned to any chromosome
were removed. The remaining markers were filtered for minor
allele frequency (MAF) ≥5% and missing values ≤30%, which
resulted in 60,132 SNP. Missing data were imputed using
the Linkage Disequilibrium K-number neighbor imputation
(LDKNNi) (Money et al., 2015) algorithm implemented in Tassel

1https://bitbucket.org/tasseladmin/tassel-5-source/wiki/Tassel5GBSv2Pipeline
2https://wheat-urgi.versailles.inra.fr/Seq-Repository/Assemblies

TABLE 1 | Distribution of the lines in each of the four year-groups and years.

Year-group Total over 2016 and 2017 Phenotyped

2016 2017

Before 1920 35 33 15

1920–1960 64 57 28

1960–2000 168 152 121

After 2000 57 23 50

5.0 (Bradbury et al., 2007). We also estimated the error rates of
LDKNNi imputation for the different level of masking and the
results are given in Supplementary Table S1.

Population Structure
Population structure was evaluated using principal component
analysis (PCA) of 60,132 SNP markers, implemented in
TASSEL5.0 (Bradbury et al., 2007). Population structure was
then visualized using a three-dimensional plot of the first three
principal components (PCs) using the R package “Scatterplot3d”
(Ligges and Maechler, 2003). We also conducted model-based
Bayesian clustering analysis using Structure 2.3.4 (Pritchard et al.,
2000). Total of 16,313 tag SNPs were used for this analysis, which
were selected using tagger function in Haploview (Barrett et al.,
2005). The parameters in the tagger function set to “pairwise
tagging only” with R2 = 0.8. To infer population structure for
325 wheat genotypes, we ran structure analysis for K-values from
2 to 10. Both the length of burn-in period and the number of
iterations were set at 10,000. The K-value reached a plateau when
the minimal number of groups that best described the population
sub-structure has been attained (Pritchard et al., 2000). The
average K-values were plotted against their respective logarithm
of the probability of likelihood, i.e., LnP(D). The rate of change in
the log probability of data between successive K-values (Evanno
et al., 2005) was used to predict the most appropriate number of
subpopulations. We described the differentiation among the four
clusters using fixation index (FST) method (Wright, 1951, 1978).

Genome-Wide Association Studies
Association mapping was performed for the two kernel traits
using the 60,132 SNP markers in GAPIT package (Lipka et al.,
2012). We used mixed linear model (MLM), applying P3D
(Population Parameters Previously Determined) described as
Mixed-Model Association on eXpedited (EMMAX) algorithm
(Kang et al., 2010). Our model included markers and the
first three PCs of the population structure as fixed effects.
Kinship as familial relatedness matrix and residual terms were
considered as random effects. Manhattan plots were produced
using the negative logarithm at base 10 of the p-values, shortened
as −log10(p) using “qqman” package of R (Turner, 2014)
across the physical map. The markers with −log10(p) > 3.5
were identified for further characterization. We constructed LD
block for significant SNP markers within a chromosome using
HAPLOVIEW v4.2 (Barrett et al., 2005) to assign markers to
short blocks. Changes in favorable alleles over time was evaluated
using the same four year-groups that were used for trend analysis.
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FIGURE 1 | Distribution of 2-year BLUP values kernel weight (A) and kernel length (B), and correlations, as evidence of technical repeatability, observed between
2016 and 2017 data for kernel weight (C) and kernel length (D).

The cumulative effect of identified favorable alleles on the kernel
traits was also evaluated.

Effect of Known Loci/Genes on Kernel
Traits
Allelic composition of previously reported loci/genes implicated
in kernel traits, i.e., TaSus2-2B, TaCWI-4A, TaCWI-5D, TGW6,
TaTGW6-A1, TaGS-D1, TaGW2, Rht-1B, and Rht-1D were
evaluated using KASP markers described in Rasheed et al.
(2016). These polymorphisms were used in a Student’s t-test to
statistically assess the effect of each known locus/gene on the
variation of kernel traits.

Candidate Gene Identification
We retrieved high confidence wheat genes surrounding
(within ±250 kb) representative SNPs for the genomic
regions identified both for KW and KL. For gene search

purpose, we used IWGSC RefSeq v1.0 annotation v1.0,
iwgsc_refseqv1.0_HighConf_2017Mar13.gff3.zip3.

RESULTS

Phenotypic Variation
We evaluated the variation of KW and KL in a historical and
contemporary collection of cultivars and experimental breeding
lines, representing 200 years of breeding and selection history.
Across the 2 years of study, the Best Linear Unbiased Estimate
(BLUE) values (i.e., KW1617) showed a mean of 35.6 mg with
a range from 23.5 to 50.6 mg (Figure 1A). The 20 greatest KW
entries showed an average of 44.8 ± 2.5 mg and the 20 smallest
KW entries showed an average of 27.7 ± 1.4 mg. The mean

3https://urgi.versailles.inra.fr/download/iwgsc/IWGSC_RefSeq_Annotations/
v1.0/
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phenotype value for KW16 and KW17 were 35.2 mg (with a
range of 23.3–50.7 mg) and 35.2 mg (with a range of 25.5 –
49.8 mg), respectively (Supplementary Figure S1). The mean
of KL1617 BLUE values was 6.3 mm, with a range of 5.3–
7.4 mm (Figure 1B). The 20 longest kernel entries showed an
average of 7.0 ± 0.15 mm and the 20 shortest kernel entries
showed an average of 5.6 ± 0.07 mm. The mean phenotype
value for KL16 and KL17 were 6.3 mm (with a range of 4.6–
7.5 mm) and 6.2 mm (with a range of 5.1–7.1 mm), respectively
(Supplementary Figure S1).

The correlation of traits among the different environments
can be used as a measure of repeatability. Using the common
entries between the 2 years, a moderate correlation (r = 0.44,
p-value < 0.01) was observed for KW between the 2 years
(Figure 1C). Similarly, we observed moderate correlation
(r = 0.45, p-value < 0.01) between KL measurements from the
2 years (Figure 1D). The broad-sense heritability for both KW
and KL, based on measurements in the 2 years, turned out to be
0.61 and 0.55, respectively. The correlation of data between the
2 years and measures of heritability suggests that both KW and
KL are reasonably stable traits across years. The correlation of
KW and KL BLUP values across 323 lines over 2 years was r = 0.20
(Supplementary Figure S2).

One of the claims about GY and KW in wheat breeding and
selection history is that KW showed no significant increase or
even decreased slightly while GY increased (Brancourt-Hulmel
et al., 2003; Carver, 2009). Thus, one of our objectives was
to investigate whether selection and breeding have increased
or decreased kernel traits over the course of breeding history.
Overall, the trend for KW was not consistent for the years across
the four year-groups (Supplementary Figure S3). Though non-
significant, for example, KW16 showed a slightly decreasing
trend, with a mean of 36.1 mg across the entries developed
before 1920 while 34.6 mg for entries developed after 2000. On
the contrary, KW17 showed an increasing trend, with a mean
of 33.4 mg before 1920 and a mean of 38.0 mg after 2000.
The discrepancy of the trend between 2016 and 2017 could be
due to an overrepresentation of Purdue-bred lines in the 2017
trial. The added Purdue lines (N = 35) exhibited greater KW
(mean of 40.5 g), causing an increasing trend. KL16 remained
unchanged over time while KL17 increased until 1960 then
dropped afterward (Supplementary Figure S3).

Population Structure
We used all the 60,132 SNP markers in the analysis of population
structure using PCA. The A, B, and D sub-genomes were
represented by 35%, 44%, and 21% of SNPs, respectively. The
first three PCs of marker data, altogether, explained 15.0% of the
total variation and were used to draw a 3D-plot of the population
structure. PC1 clearly grouped the germplasm based on the era of
development, i.e., after or before 2000 (Figure 2). We also make
the grouping for 3D-plot based on 2B.2G translocation form
T. timopheevii represented by TaSus2-2B (Figure 2). The result
revealed that the panel of 324 genotypes was clustered clearly
into two groups, i.e., possessing or not possessing the 2B.2G
translocation. The variation in this translocation is also reflected
in the values of the PC1.

We performed model-based clustering using 16,313 tag SNPs,
selected using the tagger function of Haploview (Barrett et al.,
2005) with the parameters of “pairwise tagging only” and
R2 = 0.8. The result from this analysis revealed four sub-
populations (Figure 3). The number of the entries assigned to
each cluster ranged from 28 in Cluster3 to 177 in Cluster2.
The detail descriptions of cluster membership is given in
Supplementary Table S2. In total, 42.9% of the entries were
developed by the Purdue Small Grains Breeding Program and
therefore, membership of Purdue lines in all clusters is expected.
Year of release and geographical region explained group
membership partially. For example, Cluster1 was predominantly
represented by germplasm developed before 1960 (91.4%)
and Cluster2 was predominantly represented by germplasm
developed before 2000 (93.8%). A majority (82.1%) of the
entries in Cluster3 were developed after 2000. Cluster4 was
mainly comprised of genotypes developed between 1920 and
2000. Cluster-sharing among entries originated in the different
breeding programs could be an evidence of historical and recent
germplasm exchange among breeding programs.

The differentiation among the four clusters and the four year-
groups was assessed using the FST . The FST estimates for pairwise
clusters revealed varied levels of allelic differentiation among
the four clusters (Supplementary Figure S4). The Cluster3 was
differentiated more from the other three clusters, with several
of the SNP loci showing FST > 0.15 (Wright, 1978). Among
the four clusters generated by the model-based analysis, a total
of 457 SNP loci out of 60,132 showed significant FST (>0.15),
indicating allelic differentiation. The majority of significant
differentiations were observed between Cluster3 and Cluster4
(224 SNPs), followed by the comparison between Cluster1 and
Cluster3, which yielded 215 significant (FST > 0.15) SNPs.
The comparison between Cluster2 and Cluster3 yielded 102
significant SNPs. The least differentiated clusters were Cluster1
and Cluster2 with all the SNP loci showing a FST below
0.15.

GWAS and Allele Frequency Changes
Over Time for KW
Any QTL in an individual year or combined 2-year analysis with
–log10(p) > 3.5 was considered for further discussion. GWAS
has resulted in 77 QTL for KW (Figure 4B, Supplementary
Figure S5, and Supplementary Table S3), of which, 30 QTL
were stacked in seemingly one genomic location on chromosome
3B. A pair-wise LD criterion of R2

≥ 0.75 resolved all 30
QTL on 3B clustered into six LD block regions, with a
minimum of one SNP to a maximum of 12 SNP markers
per LD block (Figure 4C). A similar short-range LD block
characterization for all the chromosomes, following R2

≥ 0.75,
enabled us to assign the 67 QTL to 26 genomic regions
(Supplementary Table S4) distributed on chromosomes 1B,
2A, 2B, 3B, 4A, 4B, 5A, 6B, 7A, and 7B. Each of these
regions was represented with a single SNP with the highest
−log10(p).

The highest –log10(p) value for KW was for a marker on
chromosome 7B, designated as QKWpur-7B.1 with –log10(p) of
5.4 and 4.5 in KW16 and KW1617, respectively. This marker
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FIGURE 2 | Visualization of population stratification using three-dimensional scatter plot of the first three PCs estimated from 60,134 SNP markers. Top panel shows
PC1, PC2, and PC3 in x-, y-, and z-axis configuration. Bottom panel shows PC1, PC3, and PC2 in x-, y-, and z-axis configuration. This allows a more-informed
visualization. The left panel shows grouping by year-group and the right panel shows grouping by TaSus2-2B representing 2B.2G translocation from T. timopheevii.

FIGURE 3 | Model-based cluster analysis using 16,313 tag SNPs selected by Haploview software.

explained 8.3% of phenotypic variation in 2016 with a marker
effect of 0.9 mg. Out of 26 QTL identified for KW, 13 represented
signals detected in 2016 (four of them also detected in the

combined 2-year analysis). These 13 QTL detected for KW16
individually explained a low of 5.1% to a high of 8.3% of the
variation in KW16. For KW17, eight genomic regions were
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FIGURE 4 | Manhattan plots showing negative log p-values of SNPs tested across the 21 chromosomes (i.e., 1 = 1A, 2 = 1B, 3 = 1D, . . ., 20 = 7B, and 21 = 7D)
obtained from GWAS by using 2-year BLUP values for kernel length (A) and kernel weight (B). The haplotype blocks estimated for the 30 SNP markers located on
the region significantly associated with kernel weight on chromosome 3B is shown in (C).

identified (one of them also detected in the combined 2-year
analysis). Individually, these eight QTL explained from a low of
5.5% to a high of 9.0% of the variation in KW17. Combined 2-
year analysis revealed five unique QTL in addition to the four
overlapping QTL of KW16 and one overlapping QTL of KW17.
These 10 QTL for the combined 2-year data accounted for a low
of 3.7% to a high of 5.0% to the phenotypic variation in KW1617.

We were interested in evaluating the frequency of favorable
alleles in the identified loci. Out of 26 loci, 13 showed lower than
50% and 13 showed higher than 50% frequency for the favorable
alleles. The trend of these allele frequency changes was given
only for a subset of loci across year-groups in Supplementary
Figure S6. When evaluated over the four year-groups, the
frequency of favorable alleles decreased in 18 out of 26 of
identified loci. The frequency of favorable alleles increased in four
loci. For the remaining loci, it did not show a clear trend.

GWAS and Allele Frequency Changes
Over Time for KL
We considered any QTL in an individual year or combined 2-
year analysis with –log10(p) > 3.5 as significant and discussed
further. GWAS has resulted in 45 QTL for KL (Figure 4A,
Supplementary Figure S5, and Supplementary Table S5). With
short-range LD block characterization for all the chromosomes,
with criteria of considering SNPs with R2

≥ 0.75 in one LD block,
we assigned the 45 QTL to 27 genomic regions (Supplementary
Table S6) distributed on chromosomes 1A, 1B, 2A, 2B, 2D, 3A,
3B, 4D, 6A, 6B, 7A, 7B, and 7D. Each genomic region was
represented with a single SNP with the highest −log10(p). The
highest –log10(p) value for KL was for a marker on chromosome
7B, designated as QKLpur-7B.3 with –log10(p) of 4.5 in KL1617.
This genomic region explained 4.8% of phenotypic variation in
KL1617 with a marker effect of 0.05 mm. Eleven of the genomic
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FIGURE 5 | The frequency distribution of combinations of favorable alleles with their cumulative effects on determination of kernel weight (Left) and kernel length
(Right). The data used to produce these graphs are based on 2-year BLUP values. The left y-axis of each graph represents the frequency of lines and the right
y-axis of graphs represent kernel weight in mg (Left) and kernel length in mm (Right).

TABLE 2 | Effects of allelic variation of previously reported agronomic loci/genes on kernel weight and kernel length in the current mapping panel.

KASP assay Frequency (variant) Kernel weight Kernel length

Mean AA Mean BB p-value Mean AA Mean BB p-value

Rht-B1 231 (Rht-B1a)/88 (Rht-B1b) 35.36 36.38 0.1015 6.28 6.19 0.0364

Rht_B1a_160IND 205 (Rht-B1a)/116 (Rht-B1a+160) 35.59 35.56 0.9421 6.24 6.28 0.3506

Rht_B1_197IND 315 (Rht-B1a)/8 (Rht-B1a+197) 35.66 34.36 0.3451 6.25 6.46 0.1101

Rht-D1 276 (Rht-D1a)/45 (Rht-D1b) 35.80 34.79 0.1211 6.26 6.25 0.9481

Ppd-A1 256 (Ppd-A1a)/53 (Ppd-A1a.1_insens) 35.42 36.18 0.2588 6.26 6.27 0.8326

Ppd-D1-Ciano67 271 (Ppd-D1a)/37 (Ppd-D1a_Ciano67_insens) 35.51 36.02 0.5506 6.27 6.26 0.9127

Ppd-D1-Mercia 269 (Ppd-D1a)/47 (Mercia_type_insertion) 35.75 34.38 0.0188 6.25 6.29 0.4281

Ppd-D1-Norstar 130 (Ppd-D1a)/189 (Norstar_type_deletion) 35.99 35.40 0.2437 6.24 6.27 0.5413

TaSus2-2B 85 (TaSus2-2B)/226 (no TaSus2-2B) 35.32 35.66 0.5634 6.15 6.31 0.0003

TaCWI-4A 221 (Hap-4A-C)/88 (Hap-4A-T) 35.49 35.80 0.5750 6.25 6.30 0.2532

TaTGW6-A1 171 (TaTGW6-A1b)/143 (TaTGW6-A1b) 35.52 35.56 0.9400 6.25 6.27 0.5466

TaGS-D1 108 (TaGS-D1a)/199 (TaGS-D1b) 35.43 35.41 0.9661 6.33 6.23 0.0200

TaGW2 305 (TaGW2)/16 (TaGW2_SS-MPV57) 35.78 32.14 0.0006 6.25 6.37 0.3133

regions were detected in 2016, with three of them also detected
in the combined 2-year analysis. These 11 QTL detected for KL16
individually explained from a low of 4.7% to a high of 6.1% of
the variation in KL16. For KL17, eight genomic regions were
identified, with individual QTL explaining a low of 5.5% to a high
of 6.1% of the variation in KW17. The combined analysis revealed
eight unique QTL in addition to the three overlapping QTL of
KL16. These 11 genomic regions identified for KL1617 accounted
from a low of 3.6% to a high of 4.8% to the phenotypic variation
in KW1617.

The trend of these allele frequency changes was given only for
a subset of loci across the YG in Supplementary Figure S7. Of the
27 loci, seven were higher than 50% in favorable allele frequency
while the remaining loci were lower than 50% for favorable allele
frequency (data not shown). Fourteen loci showed a decrease in
frequency of favorable alleles across the four year-groups. Six loci

exhibited an increasing trend of favorable allele across the four
year-groups. The remaining seven loci did not show a clear trend
across the four year-groups.

Cumulative Effect of Identified Loci
on KW
We were also interested to see up to how many favorable
alleles are naturally present in a given germplasm. To do this,
we counted the number of germplasm that accumulated from
the lowest to the highest number of favorable alleles in the
association panel. The frequency distribution of number of
favorable alleles identified for KW in the germplasm followed
a normal distribution (Figure 5). For the 26 identified loci for
KW, we found lines with a minimum of two favorable alleles
and lines with a maximum of 20 favorable alleles. Majority of
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TABLE 3 | Candidate genes within the identified regions controlling kernel weight and their putative physiological roles.

QTL loci Gene Protein Function Reference

QKWpur-2B.1 TraesCS2B01G034100 Glycosyltransferase Role in the biosynthesis of
oligosaccharides, polysaccharides, and
glycoconjugates

Breton et al., 2006; Lairson
et al., 2008

QKWpur-2D.1 TraesCS2D01G020800 Photosystem II reaction center protein
K

Photosynthesis Vinyard et al., 2013; Caffarri
et al., 2014

QKWpur-2D.1 TraesCS2D01G020900 Photosystem II reaction center protein I Photosynthesis Vinyard et al., 2013; Caffarri
et al., 2014

QKWpur-2D.1 TraesCS2D01G021000 Photosystem II D2 protein Photosynthesis Vinyard et al., 2013; Caffarri
et al., 2014

QKWpur-2D.1 TraesCS2D01G020200 Apyrase Role in regulating growth and
development

Riewe et al., 2008

QKWpur-2D.2 TraesCS2D01G141100 E3 Ubiquitin ligase family protein Role in ubiquitin pathway Li and Li, 2014

QKWpur-3B.1 TraesCS3B01G582000 Histone-lysine N-methyltransferase Epigenetic regulation of expression
(changes in DNA methylation or histone
modification states)

Pontvianne et al., 2010

QKWpur-3B.4 TraesCS3B01G598100 Pectinesterase Cellular adhesion and stem elongation Micheli, 2001

QKWpur-3B.4 TraesCS3B01G597100 Phosphoenolpyruvate carboxykinase
(ATP)

photosynthetic CO2-concentrating
mechanisms of C4 photosynthesis [9]
and crassulacean acid metabolism

Leegood and Walker, 2003

QKWpur-3B.4 TraesCS3B01G598200 Glycosyltransferase Role in the biosynthesis of
oligosaccharides, polysaccharides, and
glycoconjugates

Breton et al., 2006; Lairson
et al., 2008

QKWpur-3B.4 TraesCS3B01G595200 RING/U-box superfamily protein Role in ubiquitin pathway Yee and Goring, 2009

QKWpur-3B.4 TraesCS3B01G595400 Embryogenesis transmembrane
protein-like

Involve in hormone transport system
active during embryogenesis

Jahrmann et al., 2005

QKWpur-4A.2 TraesCS4A01G028000 Pectinesterase Cellular adhesion and stem elongation Micheli, 2001

QKWpur-4A.3 TraesCS4A01G440500 Protein nrt1 ptr family 1.2 Nitrate transporters in plants: structure,
function and regulation

Forde, 2000

QKWpur-4A.3 TraesCS4A01G440600 Protein nrt1 ptr family 1.2 Nitrate transporters in plants: structure,
function and regulation

Forde, 2000

QKWpur-4A.3 TraesCS4A01G440700 Protein nrt1 ptr family 1.2 Nitrate transporters in plants: structure,
function and regulation

Forde, 2000

QKWpur-4B TraesCS4B01G193000 6-phosphofructo-2-kinase/fructose-2,
6-bisphosphatase

Sucrose biosynthesis Lunn, 2016

QKWpur-5A TraesCS5A01G024700 Protein FANTASTIC FOUR 3 Potential to regulate shoot meristem
size

Wahl et al., 2010

QKWpur-7A.1 TraesCS7A01G468200 SAUR-like auxin-responsive protein
family

Role in auxin-mediated cell elongation Jain et al., 2006

QKWpur-7B.1 TraesCS7B01G082500 O-fucosyltransferase family protein Role in cell-to-cell adhesion Verger et al., 2016

entries (91.0%) possessed 6–16 favorable alleles. KW increased
clearly with the increase in the number of favorable alleles. Using
KW1617 BLUP values, the mean KW of entries with up to five
favorable alleles combined (n = 12) was 32.3 g while the mean
KW1617 for entries with ≥16 favorable alleles combined (n = 27)
was 37.8 g, a difference of about 5.5 mg.

Commutative Effect of Identified Loci
on KL
Similar to the procedure performed for KW, considering the
27 identified loci for KL, we found lines with a minimum of
two favorable alleles combined to lines with a maximum of
17 favorable alleles combined. The majority of entries (94.4%)
possessed 4–13 favorable alleles combined. Increases in the
number of the combinations of favorable alleles clearly increased
KL (Figure 5). Using KL1617 BLUP values, the mean KL of

entries with up to five favorable alleles combined (n = 59) was
6.17 mm while the mean KL for entries with ≥12 favorable alleles
combined (n = 42) was 6.41 mm, a difference of about 0.23 mm.

Effect of Previously Known Loci/Genes
The t-test results of comparing KW and KL of lines homozygous
for alternate alleles of KASP markers is shown in Table 2. Most
of loci/genes tested did not show a significant effect on KW and
KL of this specific population. Of the six grain-related KASP
markers tested, TaGW2 has shown to be significantly associated
with KW (p-value < 0.001) while TaSus2-2B and TaGS-D1
were significantly associated with KL, with p-values < 0.001
and 0.02, respectively. The plant height loci Rht-B1 was
significant (p-value < 0.05) for KL, where the wild-type tall
allele was associated with longer KL. The Mercia allele at the
Ppd-D1 locus has been shown to be significant for KW (p-
value < 0.05).
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TABLE 4 | Candidate genes within the identified regions controlling kernel length and their putative physiological roles.

QTL loci SNP Gene Protein Function Reference

QKLpur-1D S1D_445262848 TraesCS1D01G363700 Beta-galactosidase Regulate cytokinins Song et al., 2010

QKLpur-2A.2 S2A_719213280 TraesCS2A01G483000 Glycosyltransferase Role in the biosynthesis of
oligosaccharides,
polysaccharides, and
glycoconjugates

Breton et al., 2006; Lairson
et al., 2008

QKLpur-3A.1 S3A_593313534 TraesCS3A01G343800 Photosystem I reaction center
subunit VIII

Photosynthesis Vinyard et al., 2013; Caffarri
et al., 2014

QKLpur-3A.2 S3A_700575251 TraesCS3A01G467300 E3 ubiquitin-protein ligase
BRE1-like 2

Role in ubiquitin pathway Li and Li, 2014

QKLpur-3A.2 S3A_700575251 TraesCS3A01G467000 Late embryogenesis abundant
(LEA) protein

Role in desiccation tolerance

QKLpur-3A.3 S3A_700575251 TraesCS3A01G469200 Late embryogenesis abundant
(LEA) protein

Role in desiccation tolerance

QKLpur-6A S6A_131449965 TraesCS6A01G149200 Ubiquitin-conjugating enzyme Role in ubiquitin pathway Li and Li, 2014

QKLpur-6D S6D_436639209 TraesCS6D01G334300 Protein pelota homolog Role in meiotic cell division Eberhart and Wasserman,
1995; Caryl et al., 2000

QKLpur-7A.3 S7A_691163936 TraesCS7A01G501600 RING/U-box superfamily
protein

Role in ubiquitin pathway Yee and Goring, 2009

Candidate Gene Identification
The annotated wheat reference genome was used to pull out
high confidence protein-coding genes that are in the vicinity
(±250 kb) of the polymorphic sites. This gene search has resulted
in a total of 258 genes for KW (Supplementary Table S7) and 235
genes for KL (Supplementary Table S8). A short list of identified
genes is categorized into functional groups of (1) cell cycle related
genes, (2) carbohydrate metabolism and transport, (3) nitrogen
metabolism and transport, (4) cell wall, (5) plant hormones,
(6) post-translation modifications such as ubiquitination, and
(7) seed maturation and biological events that resemble stress
responses (Tables 3, 4).

DISCUSSION

Much of the genetic gains for GY has been attributed to the
increases in GN, while KW generally remained unchanged
if not decreased (Sayre et al., 1997; Brancourt-Hulmel et al.,
2003; Carver, 2009; Hawkesford et al., 2013). We could not
conclude a definitive trend for KW and KL over the breeding
history. Though a long-standing belief that correlation of GN
and KW is negative, Miralles and Slafer (1995) and Acreche
and Slafer (2006) argued that this negativity is not due to
competition between grains. That means, it is possible to develop
progeny with high KW and GN concurrently by carefully
selecting parents, as was evidenced by the work of Bustos et al.
(2013). Therefore, there may exist an untapped potential in
KW to improve GY if given due consideration in the variety
development process. While further increases in GY can be
dependent on maintaining, if not increasing, KW, an alternative
breeding strategy could be to increase KW while maintaining
GN or increasing KW and GN simultaneously. Careful recycling
of high KW accessions including those developed before 1920
could improve kernel traits and ultimately result in gains
in GY.

In this study, we detected 26 regions for KW and 27 regions
for KL on most of the chromosomes, indicating that these
traits are controlled by a complex genetic system. Previously,
a large number of QTL for KW and dimension traits (kernel
length, width, and thickness) have been reported across all 21
chromosomes of wheat (McCartney et al., 2005; Röder et al.,
2008; Jiang et al., 2011; Bednarek et al., 2012; Deol et al., 2013;
Simmonds et al., 2014; Hanif et al., 2015; Jiang et al., 2015; Su
et al., 2016). Our evaluation of some of the previously reported
genes and related functional markers like Kompetitive Allele
Specific PCR (KASP) markers for kernel-related traits revealed
that most of them had no significant effect of KW and KL in
this panel. The exceptions were TaGW2 for KW; and TaSus2-2B
and TaGS-D1 for KL. The non-significant effect for most of the
loci may be that these genes are background dependent, inviting
further evaluation of the effect of these genes in the different
genetic background.

Kernel weight, as one of the main GY determinant (Simmonds
et al., 2014), holds a very high heritability, reaching to h2 = 87%
(Bergman et al., 2000). In the current study, we also reported
high heritability estimates of 61% for KW and 55% for
KL. In allele enrichment schemes, breeders usually work to
increase the frequency of favorable alleles. Our data suggest that
favorable alleles at QKWpur-3B.1, QKWpur-4A.1, QKWpur-4A.2,
and QKWpur-5B.1 having low frequencies (3–9%) in germplasm
released after 2000 and are prospect targets of selection for KW
improvement. Similarly, loci QKLpur-2A.1, QKLpur-2D, QKLr-
3A.2, QKLpur−3A.3, QKLpur-3A.4, QKLpur-4D and QKLpur−6B
could be potential targets for breeding via enriching the favorable
allele frequency in the current breeding populations.

Wheat lags diploid model plants such as rice and Arabidopsis
for the availability of genome-wide resources and tools. Recently,
mutant resources in tetraploid and hexaploid wheat have
become available4. In addition, the wheat reference genome

4http://www.wheat-tilling.com/
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IWGSC RefSeq v1.0 annotation v1.05 (see footnote 2) made it
possible to connect next-generation sequencing-based markers
to candidate gene identification in GWAS studies using a
position-dependent strategy. In our study, we assessed the genes
within 250 kb of the QTL loci and listed potential candidate
genes.

Kernels that have the potential for growth and are well
filled during grain-fill period weigh more (Jenner et al.,
1991; Altenbach and Kothari, 2004). A fine component of
sink-strength is grain enlargement, which is enforced by
endosperm cell division followed by water uptake (Jenner
et al., 1991; Emes et al., 2003; Altenbach and Kothari, 2004).
Source-strength, on the other hand, is an expression of
supply of assimilates, i.e., starch and storage protein through
current photosynthesis or remobilization of reserves from
vegetative tissues (Bidinger et al., 1977; Schnyder, 1993; Gebbing
and Schnyder, 1999). The conceptual framework for grain
development may involve processes such as cell division,
enlargement, and embryogenesis; photosynthesis, carbohydrate
metabolism, and nitrogen metabolism; and post-translational
modifications. Thus, our discussion for candidate genes for KW
and KL concentrate on genes involved in the above-mentioned
processes.

Grain enlargement commences with fertilization, wrapped-
up within about 20 days after fertilization, and it also coincides
with the period of mitotic activity (Jenner et al., 1991), as
was observed in this study. The association with the largest
signal [–log10(p) = 5.4] was QKWpur-7B.1 and this locus was
found within 107 kb from TraesCS7B01G082500, which codes
for O-fucosyltransferase family protein (Table 3). This protein
was reported to have a function in cell-to-cell adhesion during
plant growth and development (Verger et al., 2016). The gene
TraesCS3B01G595400 was in proximity of QKWpur-3B.4 [–
log10(p) = 3.8] and encodes an embryogenesis transmembrane
protein-like (Table 3). Jahrmann et al. (2005) highlighted that
an embryogenesis transmembrane protein involved in hormone
transport during embryogenesis. The TraesCS5A01G024700
encoding for a FANTASTIC FOUR 3 was associated with
QKWpur-5A [–log10(p) = 3.6], is potentially involved in
regulating shoot meristem size (Wahl et al., 2010). A SAUR-
like auxin-responsive protein family (TraesCS7A01G468200)
that we show it to be associated with QKWpur-7A.1 [–
log10(p) = 3.6], may have a role in auxin-mediated cell
elongation (Jain et al., 2006). The QKLpur-6D [–log10(p) = 4.1]
is within ±250 kb of TraesCS6D01G334300, a gene that
encodes for protein pelota homolog (Table 4), previously
reported to have a role in meiotic cell division (Caryl et al.,
2000).

Kernel development is wrapped up by maturation. Tang et al.
(2016) indicated that late embryogenesis abundant (LEA) genes
become abundant during the late stages of seed development and
enable the maturing seeds to acquire the desiccation tolerance.
Temporal differences in expression of these genes may be a
good signal for differences in the arrest of enlargement of the
growing kernels. Two loci responsible for KL, i.e.; QKLpur-3A.2 [–
log10(p) = 3.8] and QKLpur-3A.3 [–log10(p) = 4.1] were linked to
wheat genes TraesCS3A01G467000 and TraesCS3A01G469200,

which are predicted to encode late embryogenesis abundant
protein (Table 4).

The QTL on 2D, QKWpur-2D.1 [–log10(p) = 3.7], was found
to be associated with Apyrase (Table 3). Riewe et al. (2008)
silenced apyrase gene in potato using RNAi that led to less than
10% Apyrase activity. This ultimately changed the phenotypes
in transgenic lines, including a general retardation in growth,
an increase in tuber number per plant, and differences in tuber
morphology.

Three genes TraesCS2D01G020800, TraesCS2D01G020900,
andTraesCS2D01G021000 encoding photosystem reaction center
proteins were found near QKWpur-2D.1 with –log10(p) = 3.7
(Table 3). The photosystem II is the reaction center that uses
light energy to split water into hydrogen and oxygen, and release
electrons that will be transferred to the second photosynthetic
reaction center called photosystem I (Caffarri et al., 2014).
We also identified a gene which encodes for photosystem
I reaction center subunit VIII (TraesCS3A01G343800) and is
within ±250 kb of QKLpur-3A.1, with –log10(p) = 3.6 (Table 4).
As current assimilates filling the developing kernels are direct
products of photosynthesis, the candidacy of these photosystem
reaction proteins seems to be logical and is worth validation
studies.

Starch accumulation accounts for 60–75% of kernel dry matter
and mainly responsible for kernel size and yield (Rahman
et al., 2000; De Gara et al., 2003). Sucrose is the most
common form of carbohydrate transported from source to
sink organs. Thirty-eight kilo base away from QKWpur-4B
[–log10(p) = 4.5], we identified TraesCS4B01G193000 which
encodes a fructose-2,6-bisphosphatase (Table 3) that is involved
in the dephosphorylation step of sucrose synthesis (Lunn,
2016). Transgenic Arabidopsis plants with only 5% fructose-
2,6-bisphosphates expression, as compared to wild-type plants,
demonstrate altered partitioning of carbon between sucrose
and starch (Draborg et al., 2001). McCormick and Kruger
(2015) reported that the T-DNA insertional Arabidopsis mutant
lines for fructose-2,6-bisphosphates showed reduced growth and
seed yields compared with wild-type plants. This enzyme
was also reported to play a role in the partitioning of
photoassimilate in sorghum (Reddy, 1996) and wheat (Reddy,
2000).

A QTL was reported previously that enhances KW and
GY in rice via increases in cell numbers, allowing grains
to reach to higher potential sizes. This QTL, named GW2
in rice, was found to be a RING-type protein E3 ubiquitin
ligase activity, with loss of function mutant (Song et al.,
2007). Our study resulted in identification of two loci,
i.e.; QKWpur-2D.2 [–log10(p) = 3.7] and QKLpur-3A.2 [–
log10(p) = 3.8] that are associated with E3 ubiquitin-protein
ligase via TraesCS2D01G141100 and TraesCS3A01G467300,
respectively (Tables 3, 4).

CONCLUSION

This study utilized genome-based markers and resulted in the
identification of loci and genes important to the determination
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of grain traits. We have also demonstrated that GWAS results
can be utilized to further investigate genomic regions to
drive putative list of candidate genes that can be further
validated. The immediate use of this data could be developing
breeder friendly markers (i.e., KASP) that can be useful in
breeding. Further functional genomic studies are crucial to
validate the effect of the identified candidate genes on KW and
dimension traits. Utilizing mutant resources developed recently
(Krasileva et al., 2017) is one way to functionally validate the
effect of these candidate genes in the determination of KW
and KL.
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FIGURE S1 | Phenotypic distributions of kernel weight (top) and kernel length
(bottom) measured in 2016 (left) and 2017 (right).

FIGURE S2 | Scatterplot showing correlation of BLUP values of KW and KL over
the two years of study.

FIGURE S3 | Changes over the four year-groups (1 = before 1920, 2 = 1920 to
1960, 3 = 1960 to 2000, and 4 = after 2000) observed in kernel weight (top) for
measurements in 2016 (a), 2017 (b), and for the BLUP values across the two
years of study (c); and in kernel length (bottom) for measurements in 2016 (d),
2017 (f), and the BLUP values across the two years of study (f).

FIGURE S4 | Plots of FST statistics for pairs of sub-populations generated using
the model-based clustering procedure.

FIGURE S5 | Manhattan plots showing negative log p-values of SNPs tested
across the 21 chromosomes (i.e., 1 = 1A, 2 = 1B, 3 = 1D, ..., 20 = 7B, and
21 = 7D) for kernel weight (top) and kernel length (bottom) for traits measured in
2016 (left) and 2017 (right).

FIGURE S6 | Frequency of favorable alleles observed in each of the year-group for
a selected number of loci controlling kernel weight.

FIGURE S7 | Frequency of favorable alleles observed in each of the year-group for
a select number of loci controlling kernel length.

TABLE S1 | The accuracy of imputation at different levels of marker masking using
LDKNNi procedure in TASSEL. We used 30 sites for LD estimation. The number of
nearest neighbors of entries was 10.

TABLE S2 | Cluster membership of the 324 genotypes used in model-based
clustering with the year in which the accession was registered at NSGC.

TABLE S3 | The GWAS statistics for each marker-trait association for kernel
weight in 2016, 2017, and combined year data. The table includes variants, minor
allele frequency (MAF), −logP, R2, and allelic effect.

TABLE S4 | The GWAS statistics after categorizing MTAs into QTL regions kernel
weight in 2016, 2017, and combined year data. The table includes variants, minor
allele frequency (MAF), −logP, R2, and allelic effect.

TABLE S5 | The GWAS statistics for each marker-trait association for kernel
length in 2016, 2017, and combined year data. The table includes variants, minor
allele frequency (MAF), −logP, R2, and allelic effect.

TABLE S6 | The GWAS statistics after categorizing MTAs into QTL regions kernel
length in 2016, 2017, and combined year data. The table includes variants, minor
allele frequency (MAF), −logP, R2, and allelic effect.

TABLE S7 | The putative candidate genes found nearby the polymorphic sites for
kernel weight.

TABLE S8 | The putative candidate genes found nearby the polymorphic sites for
kernel length.
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