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Protein homeostasis in the thylakoid membranes is dependent on protein quality control
mechanisms, which are necessary to remove photodamaged and misfolded proteins.
An ATP-dependent zinc metalloprotease, FtsH, is the major thylakoid membrane
protease. FtsH proteases in the thylakoid membranes of Arabidopsis thaliana form a
hetero-hexameric complex consisting of four FtsH subunits, which are divided into two
types: type A (FtsH1 and FtsH5) and type B (FtsH2 and FtsH8). An increasing number of
studies have identified the critical roles of FtsH in the biogenesis of thylakoid membranes
and quality control in the photosystem II repair cycle. Furthermore, the involvement of
FtsH proteolysis in a singlet oxygen- and EXECUTER1-dependent retrograde signaling
mechanism has been suggested recently. FtsH is also involved in the degradation
and assembly of several protein complexes in the photosynthetic electron-transport
pathways. In this minireview, we provide an update on the functions of FtsH in thylakoid
biogenesis and describe our current understanding of the D1 degradation processes
in the photosystem II repair cycle. We also discuss the regulation mechanisms of FtsH
protease activity, which suggest the flexible oligomerization capability of FtsH in the
chloroplasts of seed plants.

Keywords: chloroplast development, FtsH protease, photosystem II repair, photosynthesis, post-translational
modification (PTM), reactive oxygen species (ROS)

INTRODUCTION

Chloroplasts are the essential organelles of seed plants in which photosynthesis takes place. The
biogenesis and functions of chloroplasts are dependent on protein homeostasis; therefore, protein
quality control, which is orchestrated by the protein synthesis and degradation machinery, is
an important process. Chloroplasts originated from a cyanobacterium through endosymbiosis.
Thus, the prokaryotic machineries derived from the ancestral cyanobacterium appear to dominate
most of the proteolysis mechanisms in chloroplasts. More than 18 kinds of chloroplast proteases
have been identified (reviewed by van Wijk, 2015; Nishimura et al., 2016, 2017). Of these,
two ATP-dependent proteases, Clp and FtsH, are considered to have major roles in chloroplast
protein homeostasis on the basis of their physiological functions. Clp functions in the stroma
as housekeeping machinery (reviewed by Clarke, 2012; Nishimura and van Wijk, 2015). In
contrast, FtsH protease plays critical roles in the biogenesis of thylakoid membranes and the
quality control of thylakoid membrane proteins (Figure 1). In this mini review, we describe
the functions of FtsH in the quality control of thylakoid membrane proteins and recent
findings pertaining to the functions and regulation of FtsH during photooxidative stress.
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OVERVIEW OF FtsH PROTEASES IN
CHLOROPLASTS

FtsH is an ATP-dependent zinc metalloprotease complex that
belongs to the AAA (ATPase associated with diverse cellular
activities) protease subfamily and is unique because it is
membrane anchored (Ito and Akiyama, 2005). The ATPase
domain of FtsH functions as an unfoldase and translocates
substrates into the degradation chamber through a narrow
pore (Krzywda et al., 2002; Niwa et al., 2002). Through this
mode of action, FtsH pulls integral membrane proteins out
of the membrane and degrades them. According to studies
in Escherichia coli, more than 20 amino acid residues from
either the N- or C-terminal end are required for substrate
recognition (Chiba et al., 2000, 2002). Arabidopsis thaliana has
12 FtsH-encoding genes. Nine of the corresponding proteins are
targeted to chloroplasts and three are localized to mitochondria
(Sakamoto et al., 2003). Thylakoid-localized FtsHs possess an
N-terminal transmembrane domain and a C-terminal region that
extends into the stroma and contains the ATPase and protease
domain (Lindahl et al., 1996). FtsHs in the thylakoid membrane
form a hetero-hexameric complex consisting of two types of FtsH
subunits (type A, FtsH1 and FtsH5; type B, FtsH2 and FtsH8);
FtsH2 is the most abundant, followed by FtsH5, FtsH8, and
FtsH1 (Sakamoto et al., 2003; Yu et al., 2004, 2005). Mutants
lacking the more abundant subunits (i.e., FtsH2 and FtsH5)
tend to show stronger phenotypes (e.g., leaf variegation and
photosensitivity; see below). Although there is high sequence
similarity between the type A and type B subunits, they are
integrated into the thylakoid membranes via different pathways;
the Sec (secretion) pathway integrates type A subunit FtsH5,
whereas the Tat (twin-Arg translocation) pathway integrates type
B subunit FtsH2 (Rodrigues et al., 2011). Mutants lacking FtsH2
are known as yellow variegated2 (var2) and show severe leaf
variegation (Chen et al., 2000; Takechi et al., 2000). Mutants
lacking FtsH5 (var1) show weak leaf variegation (Sakamoto et al.,
2002), but leaf-variegation phenotypes are not observed in ftsh8
and ftsh1 mutants. Meanwhile, the double mutants ftsh1 ftsh5 and

ftsh2 ftsh8 show an albino-like phenotype, suggesting that both
types of subunits are required for active complex formation (Yu
et al., 2004, 2005; Zaltsman et al., 2005b). For the Arabidopsis
FtsH complex, the stoichiometry of type A:type B subunits was
estimated to be 1:2 using a mass spectrometry-based approach
(Moldavski et al., 2012). The stoichiometry of subunit types in
the FtsH complex in cyanobacteria was shown to be 1:1 (Boehm
et al., 2012).

FUNCTIONS OF FtsH IN CHLOROPLAST
BIOGENESIS

Characterization of var2 mutants has shown that their variegated
leaves are composed of green sectors with normal-looking
chloroplasts and white sectors with abnormal plastids (Chen
et al., 1999; Kato et al., 2007). Accumulation of abnormal plastids
in the white sectors is due to arrest in the early stage of
plastid differentiation. Notably, normal-looking chloroplasts in
the green sectors developed more slowly (Sakamoto et al., 2009).
These observations suggest that FtsH is involved in the formation
of thylakoid membranes during early chloroplast development.
In addition, RNA interference of chloroplast FtsHs in Nicotiana
tabacum showed a collapse of thylakoid membranes during the
late stages of leaf development, suggesting that FtsH also plays
a crucial role in the maintenance of thylakoid membranes (Kato
et al., 2012a). Based on the correlation between the level of the
FtsH complex and the degree of leaf variegation, a threshold
model in which total FtsH levels define the fate of plastids during
leaf development has been proposed (Chen et al., 2000; Yu et al.,
2004; Zaltsman et al., 2005a; Miura et al., 2007). Furthermore,
complementation of var2 by site-directed mutagenesis of FtsH2
demonstrated that not all catalytic sites are required for the
adequate development of thylakoid membranes (Zhang et al.,
2010). Although the exact role of FtsH in thylakoid development
remains to be elucidated, it has also been suggested that FtsH
acts as a scaffold protein during thylakoid development. On the
other hand, multiple lines of evidence demonstrate that reduction

FIGURE 1 | Schematic representation of FtsH protease complex in chloroplasts. Thylakoid FtsH forms a hetero-hexameric structure integrated into the thylakoid
membrane. Increasing evidence shows the importance of FtsH in protein quality control in the thylakoid membrane.
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in protein biosynthesis in plastids suppresses leaf variegation
(Miura et al., 2007; Yu et al., 2008; see details. Putarjunan et al.,
2013 for a review). The balance between protein biosynthesis and
FtsH function during leaf development seems to be crucial for
chloroplast differentiation.

PROTEIN QUALITY CONTROL IN THE
PHOTOSYSTEM II REPAIR CYCLE

The main function of FtsH in chloroplasts is protein quality
control during photosynthesis. Light energy is required for
the initial step of photosynthesis but it simultaneously causes
unavoidable damage to the photosystem II (PSII) protein
complex, in particular to the reaction center protein D1 (Murata
et al., 2007). Photodamaged D1 needs to be removed specifically
by proteolysis and replaced by newly synthesized D1 to maintain
photosynthetic activity. This sophisticated repair system that
photosynthetic organisms have developed is called the “PSII
repair cycle,” and it consists of a sequential process of (i) light-
induced damage to the reaction center protein D1, (ii) partial
disassembly of the PSII complex to expose damaged D1, (iii)
proteolysis of damaged D1, and (iv) de novo synthesis of D1
and reassembly of functional PSII (Figure 2). FtsH is involved
in the proteolysis of damaged D1 in the PSII repair cycle
(Nixon et al., 2010). This fundamental process is conserved in
various photosynthetic organisms and is crucial for avoiding
photoinhibition caused by the accumulation of photodamaged
PSII. Indeed, Arabidopsis mutants lacking FtsH show increased
sensitivity to high-light stress, which is indicative of accelerated
photoinhibition (Bailey et al., 2002; Sakamoto et al., 2002, 2004).

Thus far, two proteolytic pathways involving FtsH for
removing damaged D1 have been described. The first pathway is
processive D1 degradation, which is carried out predominantly
by FtsH (Lindahl et al., 2000; Bailey et al., 2002; Kato et al.,
2009). D1 has five transmembrane domains and a stroma-
exposed N terminus, at which FtsH might initiate processive
proteolysis. Studies using cyanobacteria mutants and transgenic
tobacco plants with truncations at the N-terminus of D1 showed
that the N-terminus is required for D1 degradation (Komenda
et al., 2007; Michoux et al., 2016). In addition, post-translational
modifications (PTMs) at the N-terminus seem to regulate D1
degradation by FtsH. Earlier studies reported that an N-terminal
threonine residue of D1 is reversibly phosphorylated in a light-
dependent manner (Aro et al., 1992), and its dephosphorylation
is a prerequisite for its degradation (Koivuniemi et al., 1995;
Rintamaki et al., 1996). The fact that phosphorylation of D1
increased more in mutants lacking FtsH in a light-dependent
manner suggests an interaction between D1 phosphorylation
and processive degradation by FtsH (Kato and Sakamoto, 2014).
While more phosphorylation prevents FtsH from degrading D1
efficiently, it appears to accelerate the alternative degradation
pathway mediated by Deg proteases concomitantly (see below).
This coordinated D1 degradation was shown to be compromised
in the mutant lacking STN8 kinase that phosphorylates D1, when
combined with var2. The N-terminus of D1 is also processed
by methionine aminopeptidases, and enzymatic removal of

the N-terminal-initiating methionine seems to be required for
recognition of the N-terminus by FtsH (Adam et al., 2011).

The second D1 degradation pathway consists of the
cooperative action of FtsH and Deg proteases in photoinhibitory
conditions. Deg family members are ATP-independent serine
proteases and are localized to both the stromal and luminal
sides of thylakoid membranes (Schuhmann and Adamska, 2012).
Endopeptidic cleavage of D1 by Deg proteases seems to facilitate
D1 degradation by creating additional recognition sites for FtsH
(Haußühl et al., 2001; Kapri-Pardes et al., 2007; Sun et al., 2007,
2010; Knopf and Adam, 2018). Evidence for this cooperative D1
degradation pathway comes from the increased accumulation
of D1 cleavage fragments in Arabidopsis mutants lacking FtsH
(Kato et al., 2012b). Accumulation of D1 cleavage fragments has
also been observed in Chlamydomonas reinhardtii ftsh mutants
(Malnoë et al., 2014). However, the degradation rate of D1 protein
in a deg triple mutant in the cyanobacteria Synechocystis sp.
PCC 6803 is similar to that in wild-type controls, suggesting
that the contribution of Deg proteases is less important in
cyanobacteria (Barker et al., 2006). A detailed analysis of D1
cleavage fragments in Arabidopsis suggests that fragmentation is
initiated by Deg proteases that cleave the luminal loop connecting
the C and D transmembrane helices of D1. This hypothesis might
be reinforced by the fact that D1 fragmentation is enhanced
by primary damage to the Mn-cluster, which might induce
dissociation of the PSII oxygen-evolving complex and accelerate
the access of Deg proteases to damaged D1 (Kato et al., 2015).
Accelerated D1 degradation through D1 fragmentation appears
to cause a simultaneous increase in reactive oxygen species (ROS)
levels. This relationship could be explained by cytotoxicity of D1
cleavage fragments, which may retain chlorophyll that can still
absorb light energy. Although this energy could not be used for
photosynthesis, it could be transferred to oxygen, resulting in the
generation of ROS. Cooperative D1 degradation is considered to
be an escape pathway that occurs in photoinhibitory conditions
(Kato and Sakamoto, 2014).

OXIDATIVE STRESS AND RETROGRADE
SIGNALING

Mutants lacking FtsH generate high levels of ROS as a result
of the accumulation of damaged PSII in chloroplasts (Kato
et al., 2009). Because ROS have been implicated as second
messengers that transduce retrograde signals from chloroplasts to
the nucleus (Laloi et al., 2006), we were interested in examining
gene expression in mutants lacking FtsH. However, our attempt
to do this via microarray analysis showed that there was no
obvious up-regulation of ROS-related genes in cells suffering
from photooxidative stress (Miura et al., 2010). This unexpected
result suggests that ROS from photodamaged PSII do not act
as second messengers or that the signaling might be inhibited
by the loss of FtsH. Notably, a recent study by Wang et al.
(2016) reported the involvement of FtsH in an EXECUTER1
(EX1)-mediated retrograde signaling pathway activated by singlet
oxygen (1O2). EX1 was originally identified through a suppressor
screen of fluorescent (flu) mutants, which generate 1O2 in

Frontiers in Plant Science | www.frontiersin.org 3 June 2018 | Volume 9 | Article 855

https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-09-00855 June 18, 2018 Time: 16:8 # 4

Kato and Sakamoto FtsH in the Thylakoid Membrane

FIGURE 2 | Model of PSII repair and regulation of FtsH activity in chloroplasts. In chloroplasts, photodamaged D1 migrates from the grana stacks to the grana
margins, which is the location of D1 degradation in the PSII repair cycle. Dephosphorylation of PSII core proteins by chloroplast PP2C phosphatase and partial
disassembly of the PSII complex occur prior to the degradation process. D1 degradation is mainly conducted by FtsH (fundamental degradation), and endopeptidic
cleavages by Deg proteases facilitate the effective degradation by FtsH in photoinhibitory conditions. Newly synthesized D1 is processed at its C-terminus by CtpA
peptidase. Repaired PSII migrates to the grana core to form functional PSII. Phosphorylation of PSII core proteins is carried out by STN8 kinase. On the other hand,
the PSII repair cycle might require proper FtsH turnover in chloroplasts. When FtsH has access to damaged PSII, FtsH concomitantly suffers from oxidative damage
induced by ROS. The damaged FtsH should be repaired by proper turnover. Newly synthesized FtsH proteins are imported into chloroplasts and subsequently
integrated into the thylakoid membrane. FtsH forms functional complexes in the grana margin. The post-translational modification in FtsH might regulate protease
activity and/or complex formation.

chloroplasts upon a dark-to-light shift (Lee et al., 2007; Przybyla
et al., 2008). In the flu mutant, an 1O2 burst resulting from
the abnormal accumulation of a chlorophyll precursor causes
the degradation of EX1 and eventually leads to programmed
cell death. In this process, FtsH degrades EX1, which might be
oxidized by 1O2 (Wang et al., 2016). Because the inactivation
of FtsH in flu mutants prevents 1O2 signaling and related gene
expression (Wang et al., 2016; Dogra et al., 2017), the degradation
of EX1 by FtsH is necessary for the retrograde signaling pathway.
The mechanisms by which EX1 degradation products act as
retrograde signaling molecules remains to be investigated.

OTHER BIOLOGICAL FUNCTIONS OF
FtsH

FtsH is involved in the degradation and assembly of several
thylakoid proteins other than D1. An early in vitro study
suggested that FtsH participates in the degradation of
unassembled Rieske Fe-S protein, a component of the
thylakoid-bound cytochrome b6f complex that may undergo
a conformational change upon absorption of light energy
(Ostersetzer and Adam, 1997). A later study in Chlamydomonas
showed that the cytochrome b6f complex is degraded by FtsH in
conditions of sulfur or nitrogen starvation, indicating that FtsH

plays a role in protein quality control during nutrient deficiency
(Malnoë et al., 2014; Wei et al., 2014). On the other hand, Järvi
and coworkers showed that FtsH functions in the biosynthesis
of PSI (Järvi et al., 2016). Furthermore, the low levels of FtsH in
Arabidopsis ftsh mutants seem to affect the entire photosynthetic
electron transfer chain. Analysis of chlorophyll fluorescence
implies that mutants lacking FtsH exhibit high rates of cyclic
electron transfer around photosystem I (PSI), which results in a
higher non-photochemical quenching value (Järvi et al., 2016).
Additionally, Chlamydomonas FtsH plays a role in degrading the
light-harvesting chlorophyll a/b-binding proteins associated with
PSI (Bujaldon et al., 2017). How FtsH is involved in the early
assembly of PSI complexes remains unknown; however, these
results expand our understanding of the physiological function
of FtsH in thylakoid membranes.

REGULATION OF FtsH PROTEASE
ACTIVITY

Several important questions remain to be answered, as to how
the protease activity of FtsH in chloroplasts is regulated. E. coli
FtsH hexamers interact with other membrane protein complexes
composed of the prohibitin-like proteins HflK and HflC (Kihara
et al., 1996; Saikawa et al., 2004). Increasing evidence suggests
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that prohibitin-like proteins act as a negative regulator in the
selection of FtsH substrates (Kihara et al., 1996, 1998). Prohibitin
homologs (PHBs) have also been implicated in regulating FtsH
activity in other bacteria, yeast, and plant mitochondria (Steglich
et al., 1999; Piechota et al., 2010). In photosynthetic organisms,
however, supercomplexes consisting of thylakoid FtsH and PHBs
have been reported only in cyanobacteria (Boehm et al., 2012).
Although FtsH-containing supercomplexes have been observed
in Chlamydomonas chloroplasts (Wang et al., 2017), PHBs have
not been found in the chloroplasts; therefore, the composition
of these supercomplexes remains unknown. In Arabidopsis, blue
native polyacrylamide gel electrophoresis analysis of thylakoid
membranes showed that most FtsH proteins migrated in small
complexes, likely in the form of dimers, whereas a small amount
was present as a larger complex, at the position where a
functional complex would be expected (Takabayashi et al., 2017).
Yoshioka et al. (2010) suggested that smaller FtsH complexes
are mainly present in the stroma-exposed thylakoid, whereas the
large functional complex is detected in PSII-enriched thylakoid
membranes, including grana margins where D1 degradation
occurs during the PSII repair cycle. These results suggested
the flexible oligomerization capability of FtsH proteins and
the existence of different mechanisms for the regulation of
FtsH activity in the chloroplasts of seed plants. Instead of
forming supercomplexes with PHBs, an interesting hypothesis
is that FtsHs in seed plants might transiently form a functional
hexameric complex to fulfill its degradation function. A recent
proteomics analysis demonstrated that thylakoid FtsH proteins
themselves show a higher turnover rate than other chloroplast
proteases (Li et al., 2017). Given that damaged PSII complexes
are a potential site of ROS generation, FtsH might suffer from
oxidative damage as well and require its own quality control by
means of its fast turnover (Figure 2). Supporting this possibility,
degradation of FtsH was suggested to be accelerated during
high-light stress (Zaltsman et al., 2005a). Sinvany-Villalobo
et al. (2004) reported that upon high-light exposure, some
FtsH genes are dramatically upregulated at the mRNA level
(e.g., FtsH8), whereas FtsH protein levels showed only modest
increase. Overall, these data implicate a fast turnover rate
of FtsH, which should be further investigated in the future
works.

In addition to the possible turnover of FtsH during light
stress, PTMs seem to contribute to its regulation. Thus far, two
PTMs are thought to regulate FtsH function. In Arabidopsis,
phosphorylation of FtsH in the chloroplasts was suggested by a
proteome study on calcium-dependent protein phosphorylation
(Reiland et al., 2009; Stael et al., 2012; Roitinger et al., 2015).

Whether phosphorylation controls FtsH activity remains unclear,
and we are currently testing this possibility by means of site-
directed mutagenesis of predicted phosphorylation sites. On the
other hand, a recent study in Chlamydomonas showed that
the formation of intermolecular disulfide bridges promoted the
oligomerization of FtsH (Wang et al., 2017). Of note, these results
suggested that the proteolytic activity of FtsH could be regulated
by the thylakoid redox state, because the formation of disulfide
bridges in chloroplasts is controlled mainly by the thioredoxin
system in the stroma and thylakoid membrane.

PERSPECTIVES AND REMAINING
QUESTIONS

A recent study in cyanobacteria suggests that Thylakoid
formation 1 (THF1) protein, which seems to positively affect the
accumulation of FtsH, physically interacts with FtsH (Beèková
et al., 2017). Together, increasing evidence indicates that the
stability and complex formation of FtsH are key to understanding
the details of FtsH function. Another remaining question is the
issue of substrate recognition. Focusing on the PSII repair cycle,
selective D1 recognition by FtsH after disassembly of CP43, the
core antenna protein of PSII, from the damaged PSII complex
might be important for enhancing photosynthesis in plants by
improving the PSII repair. Krynická et al. (2015) showed that the
accessibility of FtsH to the D1 protein is crucial for its selection
of substrates in the PSII complex. For example, oxidative
modification of the PSII reaction center may be associated
with D1 degradation. Recent progress in mass spectrometry
has enabled the identification of specific photooxidative protein
modifications in PSII core proteins (Dreaden et al., 2011). Future
research in this area will uncover the relationship between
photooxidative protein modifications and proteolysis by FtsH.
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