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High performance liquid chromatography data related to the concentrations of 12
phenolic compounds in vegetative parts, measured at four sampling times were
processed for developing prediction models, based on the cultivar, grapevine organ,
growth stage, total flavonoid content (TFC), total reducing capacity (TRC), and total
antioxidant activity (TAA). 12 Artificial neural network (ANN) models were developed
with 79 input variables and different number of neurons in the hidden layer, for the
prediction of 12 phenolics. The results confirmed that the developed ANN-models
(R2 = 0.90 – 0.97) outperform the stepwise regression models (R2 = 0.05 – 0.78).
Moreover, the sensitivity of the model outputs against each input variable was computed
by using ANN and it was revealed that the key determinant of phenolic concentration
was the source organ of the grapevine. The ANN prediction technique represents
a promising approach to predict targeted phenolic levels in vegetative parts of the
grapevine.

Keywords: bioactive compounds, grapevine waste, neural network, prediction, regression

INTRODUCTION

Grapevine (Vitis vinifera) as one of the most economically important fruit crops worldwide,
has been extensively cultivated all over the world for fresh consumption as well as industrial
processing. Both cultivation and industrial processing of grapes lead to byproducts, such as leaves
and stems which have been found as the enriched resources of bioactive polyphenolic compounds
(Eftekhari et al., 2017). The phenolics worth is due to their important roles in protection against
degenerative diseases such as cancer and atherosclerosis, in addition to antimicrobial, anti-
inflammatory, antidiabetic and skin protection, hepatoprotective, and neuroprotective activities
(Nassiri-Asl and Hosseinzadeh, 2016). Extracts prepared from grapevine leaves and stems are
known to be promising sources of grape polyphenols including flavonoids, phenolic acids, stilbenes
and COU. These compounds have recently received considerable attention, and because of

Abbreviations: ANN, artificial neural network; CAT, catechin; COU, coumarin; GA, genetic algorithm; GAL, gallic acid; IQ,
isoquercitrin; KAE, kaempferol; MC, m-coumaric acid; NAR, naringenin; OC, o-coumaric acid; PC, p-coumaric acid; QUE,
quercetin; RES, resveratrol; RUT, rutin; TAA, total antioxidant activity; TFC, total flavonoid content; TRC, total reducing
capacity.
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their pharmacological impacts and antioxidant activity (Xia et al.,
2010) can be used as natural antioxidants in the pharmaceutical,
food and cosmetic industries (Houillé et al., 2015; Torres et al.,
2015).

In the standard analytical approach, the identification
and quantification of phenolic compounds requires expensive
and complex equipment including high performance liquid
chromatography (HPLC) and expensive pure standards. An
alternative approach, using simple measurements to predict the
phenolic profile in each part of every grapevine cultivar at defined
developmental stages offers a substitute for the use of foliar waste
materials. This prediction may prevent the loss of high enriched
valuable sources of phenolics. Finding the association between
easier and lower cost measuring indexes such as TRC, TFC, and
TAA with individual phenolics content can be a supplementary
source to predict the level of important phenolics in above
mentioned wastes. ANN modeling provides a way of analyzing
uneven and multi-dimensional datasets arising from such data
collection activities. Datasets are used by software models to
construct networks.

The data set is divided into training and test data. With the
large number of connections, ANN can find the key non-linear
relationships between the determined input and corresponding
output variables in the training dataset used to develop the
model, and then apply that knowledge to new inputs from
previously untested samples (Hashimoto, 1997; Guoqiang et al.,
1998). Accordingly, ANN look for a mathematical formulation
in the training dataset used for model development to achieve
the closest result to the expected value. The ANN technique is
especially helpful for complicated problems involving numerous
variables with restricted knowledge of the interactions between
variables and their variation (Suárez et al., 2015). Hence,
considering the importance of predicting phenolic contents in
agricultural wastes without expensive analyses, this study aims to
evaluate and validate accuracy of the ANN technique to predict
phenolics levels and composition in grapevine vegetative parts
as waste material of pruning and other viticultural practices due
to its capability of learning complex, non-linear relationships
between the input and output.

Based on ours and other published works (Houillé et al., 2015;
Torres et al., 2015; Eftekhari et al., 2017), it has been shown that
the vegetative parts of grapevines, which are often waste-products
in grape cultivation and production, are rich in phenolics. Their
phenolic composition is determined primarily by genetic factors
and the identity of the organ (leaf or stem) (Eftekhari et al.,
2017), and it may change during the vine development (Teixeira
et al., 2013; Eftekhari et al., 2017). Meanwhile, the influence
of additional factors remains unknown, as does prediction of
the phenolics profile in different organs in various time points
through the vine annual growth cycle.

This study first presents and compares the stepwise regression
analyses for 12 important phenolic compounds to determine
the importance of each factor in determining the level of the
phenolics and find the association between them. A back-
propagation ANN model, which consists of cultivar, organ,
sampling time, TRC, TFC and TAA was established for
predicting each phenolic compound using the Matlab software.

The data were obtained from HPLC for individual phenolics
and spectrophotometry for TRC, TFC, and TAA. The total
measurements reflected the phenolic properties of the sample;
but if they have a direct relationship with individual phenolics
is still a question which have been analyzed only with correlation
analysis in the literature (Karacabey et al., 2012; Eftekhari et al.,
2017). By training the network with specified inputs and outputs,
we predict the targeted phenolics content of grape cultivars foliar
parts. And then the trained network can make predictions for
V. vinifera cultivars considering the same factors. Cultivar, organ,
time, as well as TFC, TRC and TAA were set as input variables,
while each phenolic content was set as output to separate ANN
networks. Then, the best network to predict output was selected
based upon an optimization procedure using a GA. Finally, for
the purpose of performance comparison, the predicted results of
ANN models related to 12 phenolic compounds were compared
to the respective stepwise regression models. The goodness of fit
of the ANN and regression models were assessed using statistical
analysis.

To our knowledge, the research described here represents
for the first time, the use of artificial neural network prediction
technique for predicting phenolic contents in plant material. Our
results provide an important contribution to this research area
and industrial field. To promote the commercial consumption
of these bioactive plant materials, it is important to predict the
phenolic potential of these grapevine leftovers in a special cultivar
and organ in a particular time.

MATERIALS AND METHODS

Samples and Datasets
In a previous study (Eftekhari et al., 2017), we collected leaves
and stems from 5-year-old vines of 70 Iranian native grape
cultivars [Supplementary Table S1 in supplementary material of
Eftekhari et al. (2017)] growing in the Research Farm of Faculty
of Agriculture, University of Tehran, Karaj, Alborz, Iran (latitude
35◦ 50′ N, longitude 50◦ 58′ E and altitude 132 m) at the middle
of 4 months of July to October 2015. Collected samples were
extracted after oven-drying at 40◦C for 72 h, using the method
described by Eftekhari et al. (2012).

Extracts were analyzed for their phenolic composition:
flavonoids CAT, KAE, QUE, RUT, NAR, and IQ, phenolic acids
GAL, PC, OC, and MC, stilbene RES and COU.

Beginning with the measured analytical data of HPLC we
used a data matrix containing the results of the samples coming
from different cultivars and organs (leaves or stems) at different
times (July–October), to test the capability of ANN method in
modeling the targeted phenolic profiling of V. vinifera foliage in
relation to cultivar, organ and harvest time. A factorial design
arrangement resulted in the total 1890 data (Table 1).

Statistical Analysis and Model
Development
Stepwise Regression Modeling
The popularity of regression models lie in their ease of use
and interpretation. A multiple regression model with more than
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one explanatory variable may be written as y = b0 + biXi +

. . . + bpXp, where y is the output variable, b the regression
coefficient (i = 0, 1, 2,. . ., p) with b0 as the intercept, and X the
input variable (i = 1, 2,. . ., p). When regression coefficients are
attained, an equation of prediction can then be applied to forecast
the continuous outputs as linear functions of independent
inputs. The regression models popularity may be due to the
interpretability of model parameters coefficients and simplicity
of use. Here, for the prediction of phenolic composition, the
forward stepwise regression models are used and the entry and
stay levels of the p-values were set at 0.05 for the models.
Independent variables were selected according to the maximum
F-value if the associated partial correlation coefficient is zero:

F =

(
n− q− 2

)
r2
yx(q+1).x(q)

1− r2
yx(q+1).x(q)

where ryx(q+1).x(q)
is the sample partial correlation coefficient

between y and the selected (q+1) independent variable with q
as the selected independent variable. If Fmax indicates the value
of F related to the selected independent variable, the related
P-value is:

P = Pr[F > Fmax]

Whenever P exceeds the defined α level, stopping occurs.
The stepwise regression analyses were performed on the data

to test significance of the independent variables cultivar, organ,
harvest time, TRC, TAA, and TFC affecting level of phenolics
GAL, CAT, PC, RUT, IQ, MC, OC, COU, RES, QUE, NAR, and
KAE in grapevine foliage as dependent variables. The regression
analyses were performed using SAS 9.1 (SAS Institute, Cary, NC,
United States).

Hybrid ANN-GA Modeling Procedure
ANN-GA procedures are adaptive having the parallel
information-processing structures, which are able to make
functional associations between data and to provide predominant
tools for non-linear, multidimensional incorporations. Back-
propagation is an optimization algorithm applied on ANNs to
minimize the training error function by iteratively adjusting the
weights and biases of the ANN which comprises three adjacent
layers called the input, hidden and output layers which may
have a number of sub-layers. Each layer consists of a certain
number of neurons that needs to be optimized. ANNs are
prevailing tools for estimation of unknown non-linear functions
and have extensive applications in various fields (Rumelhart and
McClelland, 1986; Lawrence, 1994).

In this study, the hybrid ANN-GA strategy (Mirarab et al.,
2014) was used to efficiently optimize the neuron number in
the hidden layer (Wang, 2005). The structure of the ANN-
GA used in this paper is shown in Figure 1. We built a
three-layer feed-forward ANN and applied the backpropagation
algorithm to obtain the best fit to the training data because of
its capacity of representing non-linear functional relationships
between inputs and targets. As activation functions, we used the
hyperbolic tangent sigmoid (tansig) for the hidden layer and

linear (purelin) for the output layer. The Levenberg-Marquardt
back-propagation training algorithm was used for minimizing
the error function of the ANN (Beale et al., 2010). The fitness
performance function of the GA was used to determine the
optimum structure of the ANN (Figure 1). The mean square
error (MSE) was used as performance function and learning was
completed after 800 epochs. Three replicates of each treatment
resulted in a dataset with total of 1890 observations. These
data were randomly divided into two distinct groups: 65% of
data lines (1228 data) for training set and, 35% (662 data) for
testing set. The same set of data were used for developing 12
neural network models related to 12 phenolic compounds. Using
replicates instead of mean values in ANN modeling helps to
assess not only the mean, but also the range of their deviation
in the model (Silva et al., 2015). The training set was used
to compute all the parameters of the ANN and the testing
set was used to evaluate the precision of the neural network
prediction.

Furthermore, the GA was used in order to determine the
optimal neuron numbers in the hidden layer (Figure 1). So, elite
populations were selected for crossover using a roulette wheel
selection method. An initial population of 50, generation number
of 500, crossover rate of 0.85, and mutation rate of 0.01 were
used to obtain the best ANN structure (Haupt and Haupt, 2004;
Abramson, 2007). The stop criterion was on the basis of the MSE
with the lowest level as the network performance function for the
training dataset (Figure 1). To select the best ANN structures
with optimum neuron number in the hidden layer, the total
number of 3 to 10 neurons were used based on GA. High number
of hidden neurons may cause overlearning of the neural network.
On the other hand, too few hidden neurons will lead to under
fitting. The generational action was frequently run to attain the
number of generations.

The sensitivity analysis was performed on the developed
ANN-models to find the importance of the input variable
(cultivar, organ, time, TRC, TFC, and TAA) in the model for
determining the content of phenolics CAT, KAE, QUE, RUT,
NAR, IQ, GAL, PC, OC, MC, RES, and COU in grapevine
foliar parts. The sensitivity is determined as the ratio between
the error of the eliminated variable and the baseline error. It
ranks the variables according to their importance and determines
which variables that can be omitted and which variables that
are important to keep in further analyses. The sensitivity of
phenolics content against cultivar, organ, time, TRC, TFC, and
TAA was determined using the criteria (Lou and Nakai, 2001;
Ahmadi and Golian, 2010a,b) as follows: the variable sensitivity
error (VSE) value is computed as the performance of the ANN-
model where that variable is omitted, and the estimate of
the variable sensitivity ratio (VSR) is then calculated as the
relative ratio between the VSE and the error of an ANN-model
where all variables are included. Higher VSR value shows more
important variable. So, the input variables may be ranked in
the order of importance on the basis of the obtained VSR
value.

Matlab R2010a (Matlab R2010a, 2010) software was applied
for writing mathematical code to build and evaluate the
ANN-models. In fact, the developed program is a modified
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FIGURE 1 | Flow chart of integrating ANN with GA for optimization of inputs combination to achieve the highest amount of each metabolite.

source code of an ANN algorithm which was previously used
by (Ahmadi and Golian, 2011; Arab et al., 2016; Jamshidi et al.,
2016).

Twelve models were developed separately for predicting the
concentration of CAT, KAE, QUE, RUT, NAR, IQ, GAL, PC, OC,
MC, RES, and COU. In order to make the model computationally
more tractable, both the input and output data were normalized
to the range of −1 to 1 (Beale et al., 2010; Gulati et al., 2010;
Ahmadi and Golian, 2011).

For determining the accuracy of the developed ANN and
regression models, the statistical parameters root mean square
error (RMSE) and mean bias error (MBE) were applied in
addition to R2, using the following formulas (Ahmadi et al.,
2007):

R2
= 1−

∑n
i=1
(
ŷ− y

)2∑n
i=1
(
y− ȳ

)2 (1)

RMSE =
√

(
∑n

i=1

(
ŷ− y

)2
)/n (2)

MBE = 1/n
∑n

i=1

∣∣ŷ− y
∣∣ (3)

where n is the number of observations in the test data, y are
the values of the output in the test data, and y are values of the
predicted outputs.

RESULTS

Stepwise Regression Modeling
According to the results of the stepwise regression models
(Table 2) (number of observations = 1890), organ, time and
cultivar were found to differently affect the phenolics content. So
that RUT and NAR concentrations are under the effect of all three
factors while for GAL, m- and OCs and COU levels, cultivar is
not an important factor as well as time which is not critical in
determining IQ, RES and PC content. Cultivar is the only factor
among three above mentioned factors which affects QUE level
whereas time is important for CAT and KAE content.

The amounts of TRC, TFC, and TAA showed various
relationships with the content of phenolics, as well. As CAT is
associated with all three measured factors but TAA is excluded
about GAL and OC as well as exclusion of TFC for RUT, IQ,
and COU. NAR, p- and MCs are just related to TRC while QUE
and KAE are associated to TFC. RES content did not show any
relationship with the last three measured factors.

ANN-GA Modeling and Sensitivity
Analysis
To verify the capability of the ANN in phenolic profiling
prediction, we used empirical data of our previous HPLC analyses
(Eftekhari et al., 2017). Initially, we used cultivar, organ, sampling
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TABLE 2 | Stepwise regression model of cultivar, organ (leaf or stem), month (July,
August, September, and October), TRC, TFC, and TAA for different measured
phenolics content of V. vinifera foliara.

Measured factor Variablea Parameter estimation Standard error

Gallic acid Intercept 111.45986 6.17210

Organ −67.80296 3.03427

Month 6.33617 0.60438

TRC 0.00043 0.00006

TFC 0.00079 0.00032

R2 0.78380

RMSEb 16.87642

MBEC 8.90901

Catechin

Intercept 690.33232 138.70621

Month −215.99405 34.93546

TAA −0.01073 0.00180

TRC 0.02550 0.00589

TFC 0.08383 0.00589

R2 0.20350

RMSE 888.37214

MBE 546.28009

p-coumaric acid

Intercept 269.28027 15.44732

Organ −115.13223 9.21706

Cultivar −1.07779 0.20843

TRC 0.00163 0.00037

R2 0.19460

RMSE 101.06410

MBE 61.11106

Rutin

Intercept 776.67442 35.50774

Organ −407.04701 21.12686

TRC 0.00998 0.00148

Cultivar −2.21759 0.41505

Month 31.43606 9.05637

TAA −0.00105 0.00048

R2 0.33550

RMSE 223.31979

MBE 156.03616

Isoquercitrin

Intercept 447.57991 20.82450

Organ −200.06385 12.73737

TRC 0.00743 0.00096

Cultivar −1.36077 0.26954

TAA −0.00130 0.00029

R2 0.2796

RMSE 124.35464

MBE 94.42968

m-coumaric acid

Intercept 104.20099 7.86134

Organ −63.64240 4.62065

TRC 0.00163 0.00020

Month 9.08716 2.04670

R2 0.11200

RMSE 64.32313

(Continued)

TABLE 2 | Continued

Measured factor Variablea Parameter estimation Standard error

MBE 39.04541

o-coumaric acid

TFC 0.04527 0.01659

Month 390.38893 31.47157

TRC 0.02274 0.00313

Organ −739.79659 158.00088

R2 0.17610

RMSE 820.62908

MBE 399.13679

Coumarin

Intercept 1526.68644 59.78865

Organ −462.00556 39.17702

Month −170.17934 16.81054

TAA −0.00382 0.00088

TRC 0.00547 0.00275

R2 0.47530

RMSE 382.57347

MBE 246.86150

Resveratrol

Intercept 436.31941 50.74028

Organ −235.66322 27.79515

Cultivar 1.47387 0.69026

R2 0.05860

RMSE 307.85297

MBE 110.67512

Quercetin

TFC 0.10599 0.01387

Cultivar −7.02131 3.12538

R2 0.04740

RMSE 1322.70590

MBE 535.04881

Naringenin

Intercept 15.29345 2.26374

Organ −19.70467 1.20828

Month 6.36006 0.53486

TRC 0.00038 0.00005

Cultivar 0.07100 0.02650

R2 0.21260

RMSE 11.72686

MBE 7.69754

Kaempferol

Intercept −23.91979 5.30187

Month 9.96098 1.70531

TFC 0.00412 0.00042

R2 0.12590

RMSE 32.28414

MBE 22.06913

aSignificant (p < 0.05) variables left in the model. bRMSE, root mean square error,
cMBE, mean bias error.

time, TRC, TFC, and TAA as input variables and each phenolic
concentration as the output variable of the network, and the
concentration of every phenolic compound could be predicted
according to the trained network in separate models.
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In order to test the performance of the developed
ANN-models, the predicted and experimental datasets of
training samples were compared and the results presented in
Table 3 show the high ability of the ANN to produce outputs
close to the experimental data. The average accuracy (R2 = 0.95)
of training data is indicating that the developed network could
be used for testing data in the subsequent analysis.

In order to evaluate the generalization capability of the
model, we examined the response ability of established models
to respond to the testing dataset not involved in the training
process. The prediction results of the testing dataset are listed in
Table 3. Clearly, a high correlation between the predicted results
and targets is noticeable. The average testing accuracy (R2 = 0.92)
is indicating that the developed network is efficient and feasible.

The error statistics evaluated on our developed ANN-models
are highly constant for both training and test data prediction of
each output (Table 3) suggesting lack of over fitting throughout
the training process (Ahmadi and Golian, 2010a,b).

In order to determine the relative importance of input
variables, the entire dataset was used to estimate the overall VSR
for each phenolic concentration. The obtained VSR for each
output variable of the models concerning 79 input variables are
shown in Table 4.

The higher the VSR value, the more important is the
input variable. Thus, the inputs can be ranked according to

TABLE 3 | Statistics and information on artificial neural network models for
measured phenolics in leaf and stem extracts of V. vinifera during 4 months
(training vs. testing values).

Compound R2 RMSEa MBEb

Gallic acid Training 0.9937 3.17 1.27

Testing 0.9723 6.02 1.97

Catechin Training 0.9615 228.41 93.25

Testing 0.9176 283.87 118.06

p-coumaric acid Training 0.9674 25.53 9.58

Testing 0.9257 30.76 14.44

Rutin Training 0.9695 56.42 33.19

Testing 0.9228 75.21 42.16

Isoquercitrin Training 0.9684 35.30 20.08

Testing 0.9179 41.07 25.41

m-coumaric acid Training 0.9361 17.51 9.04

Testing 0.9196 19.38 11.39

o-coumaric acid Training 0.9801 159.72 53.93

Testing 0.9247 251.31 84.27

Coumarin Training 0.9405 142.92 49.21

Testing 0.9129 156.44 62.26

Resveratrol Training 0.9114 133.30 37.72

Testing 0.9179 95.88 47.30

Quercetin Training 0.9315 526.26 168.05

Testing 0.9606 275.36 146.74

Naringenin Training 0.9495 4.35 1.79

Testing 0.9027 3.92 1.96

Kaempferol Training 0.90 20.48 8.65

Testing 0.903 10.37 6.57

aRMSE, root mean square error; bMBE, mean bias error.

their importance in determining the outputs using VSR values
(Table 4).

Among the input variables, organ had the highest values of
VSR in datasets for all phenolics. According to the obtained VSR
values, the order of the most important phenolics in grapevine
were organ, time, cultivar, TRC, TFC, and TAA, respectively. But
about the last three mentioned factors, OC was more sensitive to
TAA (3.35) followed by TRC (1.73) and TFC (1.45), while QUE
was more sensitive to TFC (4.70) followed by TAA (1.16) and
TRC (1.08) (Table 4). The order of input sensitivity for NAR and
KAE was as TFC (2.33 and 3.48), TRC (1.20 and 1.43) and TAA
(1.03 and 1.20).

Comparison of ANN-GA and Stepwise
Regression Models
The estimated statistical values related to the ANN-models
revealed a substantially higher accuracy of prediction than for
regression models, so as calculated R2 for ANN vs. regression
models were: GAL = 0.97 vs. 0.78, CAT = 0.92 vs. 0.19, PC = 0.93
vs. 0.18, RUT = 0.92 vs. 0.34, IQ = 0.92 vs. 0.27, MC = 0.92 vs.
0.11, OC = 0.92 vs. 0.18, COU = 0.91 vs. 0.48, RES = 0.92 vs. 0.06,
QUE = 0.96 vs. 0.05, NAR = 0.90 vs. 0.21 and KAE = 0.90 vs. 0.13

TABLE 4 | Importance of evaluated factors on phenolics content of grapevine
vegetative parts according to the sensitivity analysis on the developed neural
network models.

Element VSRa

Organ Month Cultivar TRC TFC TAA

Gallic acid 57.00 22.95 21.54 15.55 13.04 2.37

Rank 1 2 3 4 5 6

Catechin 77.62 23.30 19.84 5.68 1.88 1.69

Rank 1 2 3 4 5 6

p-coumaric acid 23.34 17.98 12.94 2.19 2.17 2.02

Rank 1 2 3 4 5 6

Rutin 88.00 36.63 35.95 9.36 5.67 1.88

Rank 1 2 3 4 5 6

Isoquercitrin 34.04 17.36 14.92 2.31 1.10 1.33

Rank 1 2 3 4 6 5

m-coumaric acid 15.62 9.83 7.71 1.42 1.32 1.28

Rank 1 2 3 4 5 6

o-coumaric acid 27.64 14.70 10.99 1.73 1.45 3.35

Rank 1 2 3 5 6 4

Coumarin 19.77 11.66 7.46 1.60 1.37 1.26

Rank 1 2 3 4 5 6

Resveratrol 41.27 15.17 10.65 3.27 1.28 1.21

Rank 1 2 3 4 5 6

Quercetin 39.54 16.33 11.76 1.08 4.70 1.16

Rank 1 2 3 6 4 5

Naringenin 21.37 8.46 6.91 1.20 2.33 1.03

Rank 1 2 3 5 4 6

Kaempferol 68.86 10.78 7.03 1.43 3.48 1.20

Rank 1 2 3 5 4 6

aRelative indication of the ratio between the variable sensitivity error and the error
of the model when all variables are available.
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(Tables 2, 3). In order to develop an accurate prediction model, it
is important to use a reliable modeling system to predict subjects.

Accuracy of ANN Prediction
Based on the train and test accuracies (Table 3), we can conclude
that the use of the tansig activation function provides a rational
choice for modeling non-linearities over all experiments. The
number of neurons in hidden layer (Table 5) as well as close
errors of training and testing subsets ensure that over-learning
has not happened (Matlab R2010a, 2010). The strength of our
work is that we used the same datasets (training and testing)
for developing different ANN-models which confirms that the
developed models are quite reliable and valid.

As it was pointed out before, plant organ is of critical
importance since phenolics accumulate in different organs
according to the plant growth stage (Eftekhari et al., 2017) and
the content of phenolic compounds is also cultivar dependent
(Eftekhari et al., 2017). Predicting the amount of phenolics in
different parts of the grapevine as enriched raw material for
extraction and industrial applications is highly helpful and much
required as knowledge of the phenolic profiles and features of the
samples will assist to make a decision in the collection of the most
appropriate sample for industrial scale extraction increasing the
value of a potential commercial product.

DISCUSSION

To the best of our knowledge, this study is the first to give an
idea about the prediction of phenolic composition in grapevine
foliage. Using the combination of ANN and GA is recommended
as a promising prediction method to evaluate phenolics in
different grape cultivars, organs and developmental stages. And
this technique cannot only be useful for making predictions for
high value bioactive compounds, but also provides new potential
approaches for bio-compounds research into other plants and
other environmental conditions.

The present study was conducted to predict the phenolic
profiles of grapevine (V. vinifera) leaves and stems, as residues

TABLE 5 | Structure of artificial neural networks used to build models for
prediction of phenolics concentrations.

Phenolic
compound

Number of
input layer(s)

Number of hidden
layer neurons

Number of
output layer(s)

Gallic acid 79 7 1

Catechin 79 8 1

p-coumaric acid 79 8 1

Rutin 79 6 1

Isoquercitrin 79 9 1

m-coumaric acid 79 8 1

o-coumaric acid 79 8 1

Coumarin 79 7 1

Resveratrol 79 6 1

Quercetin 79 7 1

Naringenin 79 10 1

Kaempferol 79 7 1

of the viticulture or winery industries, addressed to food,
pharma or cosmetic industries. Previous results (Eftekhari
et al., 2017) on the V. vinifera cultivars foliar parts revealed
that they contain high levels of valuable phenolic compounds
comparable or more than the reported levels in different parts
of the fruit and winery by-products (Di Lecce et al., 2014;
Ky et al., 2014). In the same study, grape cultivars were
discriminated according to the phenolic compounds composition
in their foliar parts during grapevine development confirming the
significant impact of vine growth stage in addition to cultivar
and organ on phenolics accumulation. Recent valorization
studies on grape and wine industry wastes open paths to
the production of bioactive compounds. Various analytical
spectrophotometric techniques have been established based on
different principles for the total determination of different
structural groups existing in the phenolic compounds such as
TFC. These determinations accompanied by the antioxidant
activity are preliminary evaluation of polyphenol content due to
providing valuable information about the comparative content
and potential bioactivity of the sample (Cámara et al., 2010;
Fontana et al., 2017).

The diverse phytochemical contents of leaves and stems
(Eftekhari et al., 2017) together with the drive to reduce
environmental effects on wastes has led to viticulture waste
valorization initiatives including using those wastes as a source
for the production of high-value bioactive chemicals such as
RES.

The stepwise regression modeling and ANN performed
here were used to assess the relationships between three
factors of cultivar, organ and time as well as three total
measured factors, i.e., TRC, TFC, and TAA with the contents
of phenolics in grapevine foliar parts and the possibility of
the prediction of phenolics content according to determined
factors. Such mathematical relationships and predictions have
not been previously reported by researchers in this area. ANN-
based models were compared with stepwise regression models
considering accuracy of the prediction, relative importance, and
the effect of input variables on phenolics content.

Neural networks are able to learn complex relationships and
generalize results from given patterns of input/output data.
Therefore, ANNs are appropriate techniques for the modeling
of complicated systems for which precise models or probable
performances have not been found. Solving a problem using
ANNs depends on the magnitude, quality and preprocessing of
the training data, type, and construction of the ANN and the
learning algorithm for that special case (Baykal and Yildirim,
2013).

The key privilege of ANN-model is that it is not necessary to
specify a preceding proper fitting function; so, it has a complete
calculation capability to estimate practically all types of non-
linear functions which helps us to develop the most accurate
prediction model. Based on the high accuracy of the predicted
data both in the training and testing processes, we can conclude
that the offered neural networks are capable of predicting the
respective phenolic content in grape foliage. Despite lots of
research reports on the existing correlation between TAA, TRC,
or TFC with the individual phenolics in grape berries, leaves,
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stems, and wine (Bors et al., 1990; Rice-Evans and Miller, 1996;
Torres et al., 2015; Eftekhari et al., 2017), there is still this question
that which phenolic compounds have direct relationship with
the mentioned total indices. As mentioned above, the sensitivity
of the studied phenolics prediction models to continuous input
variables, i.e., TRC, TFC, and TAA is less than three categorical
inputs, i.e., cultivar, time and organ but the ANN-models were
constructed considering all inputs together. In our previous work
(Eftekhari et al., 2017), we concluded that the type of the phenolic
compound is important in determining the antioxidant activity
of an extract as it has also been stated by other researchers (Rice-
Evans and Miller, 1996). Here, we can more precisely state that
OC is more related to the TAA than other investigated phenolics
(Table 4). The most sensitive flavonoid model to TAA is the
model related to QUE which has been previously found as the
most powerful flavonoid with the anti-oxidative action (Bors
et al., 1990; Rice-Evans et al., 1996). And one of its glycosylated
forms, i.e., IQ, as a flavonoid, was also more sensitive to TAA than
TFC (Table 4).

Previous modeling studies in different research areas have
also indicated substantially higher accuracy of ANN modeling
technique than regression modeling (Jamshidi et al., 2016) or
other modeling procedures (Moghri et al., 2015). Comparing
other regression methods performances like partial least squares
(PLS) with ANN using spectrum data of near-infrared (NIR)
for the prediction of total anthocyanin concentration in red-
grape homogenates revealed that the PLS prediction had a high
error at concentration extremes while ANN provided a higher
correlation (Janik et al., 2007). In order to estimate total phenol
in tea, Luo et al. (2005) also used NIR with ANN rather than a
linear PLS model theoretically to expand the applicable analysis
range as mentioned in the wine study. Furthermore, it has been
displayed that GA is an easy, precise and effective optimization
method (Moghri et al., 2015) which can be useful for developing
an optimized number of neurons in hidden layer of ANN
for constructing prediction model of phenolics composition in
grapevine foliar parts.

Neural models have been used before in order to assessment
of β-carotene and lycopene concentrations in samples of food to
solve the intervention of analytical techniques UV-vis and HPLC
(Cámara et al., 2010) but these models have not been developed
previously for modeling the effect of different factors like cultivar,
time and organe on phenolics yield in plants as well as even using
TAA, TRC, or TFC indices to predict the presence of phenolics
to avoid using complex and expensive analytical techniques like
HPLC.

Factors like altitude of the place in which grapevine is growing
and the skin color of grape berry can be added as inputs to

the model to achieve more extensive models and predictions.
Thus, future studies are suggested to evaluate these facts in the
grapevines with the aim to establish the effect on the phenolic
composition of foliage.

CONCLUSION

Twelve ANN-models were constructed to predict targeted
phenolics (GAL, CAT, PC, MC, OC, RUT, IQ, COU, RES, QUE,
NAR, and KAE) levels in the grapevine foliage. Very small
differences between the ANN predicted results and experimental
data of the phenolic concentration confirmed the outstanding
performance of the GA-ANN method. This can be attributed
to the ANN capability to construct non-linear mapping of data.
Sensitivity analysis of the ANN-model revealed that the organ
was the most important controlling factor affecting the content
of each phenolic compound, followed by sampling time, and
then cultivar; however, considering the total measured indices as
predictive factors, phenolics were most related to TRC, followed
by TFC, and then TAA with the exception of OC, QUE, NAR and
KAE which were somehow different.

These results are promising from the standpoint of the
industrial exploitation of grapevine foliage wastes and can be
assumed as a starting point to design future studies focused on
the determination of phenolics composition in different parts of
the grape including fruit, wine and wastes of industrial processing
from different cultivars.
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