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Aluminum (Al) is the most abundant metal in the Earth’s crust and is not an essential
element for plant growth. In contrast, nitrogen (N) is the most important mineral element
for plant growth, but this non-metal is often present at low levels in soils, and plants are
often N deficient. Aluminum toxicity is dominant in acid soils, and so plants growing
in acid soils have to overcome both Al toxicity and N limitation. Because of low
N-use efficiency, large amounts of N fertilizers are applied to crop fields to achieve
high yields, leading to soil acidification and potential Al toxicity. Aluminum lowers plant
N uptake and N-use efficiency because Al inhibits root growth. Although numerous
studies have investigated the interactions between Al and N, a complete review of these
studies was lacking. This review describes: (1) the link between plant Al tolerance and
ammonium/nitrate (NH4

+/NO3
−) preference; (2) the effects of NH4

+/NO3
− and pH on

Al toxicity; (3) the effects of Al on soil N transformations; and (4) the effects of Al on
NH4

+/NO3
− uptake and assimilation by plants. Acid soils are characterized chemically

by a relatively high ratio of NH4
+ to NO3

− and high concentrations of toxic Al. Aluminum-
tolerant plants generally prefer NH4

+ as an N source, while Al-sensitive plants prefer
NO3

−. Compared with NO3
−, NH4

+ increases the solubilization of toxic Al into soil
solutions, but NH4

+ generally alleviates Al phytotoxicity under solution culture because
the protons from NH4

+ compete with Al3+ for adsorption sites on the root surface. Plant
NO3

− uptake and nitrate reductase activity are both inhibited by Al, while plant NH4
+

uptake is inhibited to a smaller degree than NO3
−. Together, the results of numerous

studies indicate that there is a synergistic interaction between plant Al tolerance and
NH4

+ nutrition. This has important implications for the adaptation of plants to acid soils
that are dominated chemically by toxic Al as well as NH4

+. Finally, we discuss how
this knowledge can be used to increase plant Al tolerance and N-use efficiency in acid
soils.

Keywords: aluminum, nitrogen, ammonium, nitrate, interaction, plant, acid soil

INTRODUCTION

Acid soils cover approximately 30% of the ice-free land and up to 70% of potentially arable
soils worldwide (von Uexküll and Mutert, 1995). Acid soils occur mainly in humid tropical and
temperate areas (von Uexküll and Mutert, 1995), where water and heat are generally abundant for
plant growth, implying that acid soils have huge productive potential. However, plant productivity
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in acid soils is limited primarily by aluminum (Al) toxicity
accompanied by deficiencies of some nutrients (Zhao et al., 2014).
The improvement of crop productivity in acid soils depends on
the dual enhancement of plant Al tolerance and nutrient-use
efficiency.

Nitrogen (N) is the most abundant mineral nutrient required
by plants. Soil N availability greatly affects the growth and
development of crops worldwide (Gutiérrez, 2012). Nitrogen
deficiency is a widespread problem for plants grown in terrestrial
ecosystems (Vitousek and Howarth, 1991), and it is also
a major factor limiting plant growth in acid soils (Fageria
and Baligar, 2001). Large amounts of N fertilizers are used
in agriculture to grow crops that feed an increasing global
population every year. Erisman et al. (2008) estimated that N
fertilizer has supported around 4 billion people born since 1908,
accounting for approximately 27% of the world’s population over
the past century. At the same time, excess N fertilization is
causing environmental problems such as water eutrophication,
greenhouse gas emissions, nitrate (NO3

−) loss, acid rain, and
soil acidification due to low N-use efficiency (Ju et al., 2009).
High yields and high nutrient-use efficiency are essential for
contemporary agriculture. Therefore, there is an urgent need to
increase plant N-use efficiency by understanding the responses to
N (Kant et al., 2011).

Aluminum is the most abundant metal in the Earth’s crust. It is
not an essential element for plants, and excess Al is toxic to most
plants. The primary symptom of Al phytotoxicity is the inhibition
of root elongation, which can occur after exposure to Al3+ at
concentrations as low as µM levels within 1 h (Matsumoto, 2000;
Kochian et al., 2005; Ma, 2007). This inhibition can be caused
by reductions in cell elongation and cell division, which are
attributed to Al interference with the cell wall, plasma membrane,
the cytoskeleton, oxidative stress, signal transduction pathways,
cytoplasm calcium homeostasis, magnesium uptake, and auxin
polar transport (Ma, 2007). Plants have two strategies to detoxify
Al (Ma, 2007). One is to exclude Al from the root tips (exclusion
mechanism) and the other is to tolerate Al that enters the plant
body (internal tolerance mechanism). Roots are the main organ
for plants to take up nutrients from the growth medium, so Al
toxicity inevitably affects the ability of plants to acquire nutrients
from acid soils. On one hand, the inhibitory effects of Al on
root growth can reduce the amounts of nutrients taken up by
plants because of the small root volume. On the other hand, Al
may directly affect the transport and metabolism of nutrients
within plants. Interactions between Al and many nutrients often
occur within soils and plants (Zhao et al., 2014). Most reports
have focused on the effects of various externally added nutrients
on Al phytotoxicity (Zhao et al., 2014), but the effects of Al on
the uptake of these nutrients by plants and their corresponding
mechanisms have received relatively little attention.

Aluminum is beneficial and even potentially essential for some
plant species (Bojórquez-Quintal et al., 2017), because of the
Al-induced stimulation of nutrient uptake (Watanabe and Osaki,
2002). Aluminum supply was shown to stimulate N uptake by
several plant species adapted to acid soils (Osaki et al., 1997), and
Al treatments increased shoot N contents in wheat and rye (Dinev
and Stancheva, 1993). In contrast, Al reduced root N uptake and

its upward translocation to shoots in sorghum and corn (Gomes
et al., 1985; Pintro et al., 1996). Aluminum promoted the growth
of plants supplied with ammonium (NH4

+) but inhibited that
of plants supplied with NO3

− (Zhao et al., 2014). Nitrogen is a
metabolic element involved in the synthesis of amino acids and
proteins within plants. Knowledge about Al–N interactions may
supply new information to explain instances where Al benefits
plant growth.

Several reviews have focused on the interactions between Al
and phosphorus (Chen et al., 2012), calcium (Rengel and Zhang,
2003; Meriño-Gergichevich et al., 2010), magnesium (Bose et al.,
2011; Chen and Ma, 2013), boron, and silicon (Hodson and
Evans, 1995; Horst et al., 2010). Aluminum is a metal and a
toxic element to many plants, while N is a non-metal and is
an essential element for all plants. More than 100 papers have
reported on Al–N interactions so far, highlighting the importance
of this topic. Despite the large amount of literature on Al–N
interactions, there has been no systematic review of this topic so
far. Here, we provide a detailed description and analysis of studies
on the interactions between Al and N, including the link between
plant Al tolerance and NH4

+/NO3
− preference, the effects of

NH4
+/NO3

− and pH on Al toxicity, the effects of Al on soil N
transformations, and the effects of Al on NH4

+/NO3
− uptake

and assimilation. We also propose a strategy for improving plant
Al tolerance and N-use efficiency in acid soils.

LINK BETWEEN PLANT Al TOLERANCE
AND INORGANIC N PREFERENCE

Acid soils are characterized by poor nitrification and high
levels of soluble Al, while neutral to calcareous soils show high
nitrification and lower levels of Al toxicity (Zhao et al., 2014;
Che et al., 2015). The two main inorganic N sources available
for plant growth are NH4

+ and NO3
−. Therefore, on the basis

of the environment driving evolution, plants originating from
acid soils are Al tolerant and prefer NH4

+ to NO3
−, while

those originating from neutral to calcareous soils are Al sensitive
and prefer NO3

− to NH4
+ (Gigon and Rorison, 1972; Foy

and Fleming, 1978; Rorison, 1985; Falkengren-Grerup, 1995;
Marschner, 1995; Maathuis, 2009; Zhao et al., 2013b) (Table 1).
For instance, the growth of lowbush blueberry, which is adapted
to strongly acid soils, was shown to be greatly promoted by NH4

+

but strongly inhibited by NO3
− (Townsend, 1966; Townsend and

Blatt, 1966). Wheat and barley are Al-sensitive and prefer NO3
−

(Malhi et al., 1988; Cramer and Lewis, 1993; Famoso et al., 2010),
while tea and rice are Al-tolerant and prefer NH4

+ (Ruan et al.,
2007; Famoso et al., 2010; Zhao et al., 2013b). The activity of
NO3

− reductase could not be detected in some calcifuge species,
suggesting that they have a restricted ability to utilize NO3

−

(Havill et al., 1974). Rice (Oryza sativa) has two subspecies, indica
and japonica. Indica rice cultivars generally prefer NO3

−, while
japonica cultivars prefer NH4

+ (Zhao et al., 2013b; Hu et al.,
2015). Correspondingly, indica rice cultivars are generally Al
sensitive, while japonica cultivars are Al tolerant (Zhao et al.,
2013b). Among different rice cultivars, Al tolerance is closely
related to NH4

+ and NO3
− preference (Zhao et al., 2013b).
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TABLE 1 | Aluminum tolerance and NH4
+/NO3

− preference of plant species.

Taxon Al tolerance NH4
+/NO3

− preference Reference

Vaccinium angustifolium Tolerant NH4
+ Townsend, 1966; Townsend and Blatt, 1966

Deschampsia flexuosa Tolerant NH4
+ Rorison, 1985

Oxalis acetosella, Carex pilulifera, Festuca
gigantea, Poa nemoralis, Deschampsia
flexuosa, Stellaria holostea, Rumex acetosella

Tolerant NH4
+ Falkengren-Grerup, 1995

Camellia sinensis Tolerant NH4
+ Ruan et al., 2007

Oryza sativa subsp. japonica Tolerant NH4
+ Zhao et al., 2013b

Holcus lanatus, Bromus erectus Sensitive NO3
− Rorison, 1985

Hordeum vulgare Sensitive NO3
− Malhi et al., 1988

Triticum aestivum Sensitive NO3
− Cramer and Lewis, 1993; Famoso et al., 2010

Urtica dioica, Ficaria verna, Melandrium rubrum,
Aegopodium podagraria, Geum urbanum,
Bromus benekenii, Sanguisorba minor, Melica
ciliata, Silene rupestris, Viscaria vulgaris,
Plantago lanceolata

Sensitive NO3
− Falkengren-Grerup, 1995

Oryza sativa subsp. indica Sensitive NO3
− Zhao et al., 2013b

The above analyses collectively suggest that Al-tolerant plant
species and genotypes utilize NH4

+ more efficiently than NO3
−

(Table 1). This knowledge is helpful for the selection of crop
genotypes with both high Al tolerance and N-use efficiency
via breeding or genetic modification. The selection of such
genotypes should reduce the amount of N fertilizer required
and improve plant growth in acid soils. However, the molecular
mechanism underlying the link between plant Al tolerance and
inorganic N preference is unclear. The two characteristics of grain
protein content and acidity tolerance were found to be positively
correlated among different wheat lines (Mesdag et al., 1970).
In addition, a quantitative trait locus genetic analysis revealed
that loci associated with Al tolerance and NH4

+ utilization were
located in similar regions of rice genome (Ogawa et al., 2014). An
important goal for future research is to uncover the mechanism
of the link between plant Al tolerance and inorganic N preference
at the molecular and genetic levels.

EFFECTS OF NH4
+, NO3

−, AND pH ON Al
TOLERANCE

In recent decades, various anthropogenic activities have greatly
accelerated soil acidification in Chinese crop fields (Guo et al.,
2010; Liang et al., 2013). Among these activities is the excess
use of NH4

+ fertilizer (Barak et al., 1997; Fang et al., 2014).
Atmospheric NH4

+ deposition is also an important factor
resulting in soil acidification (van Breemen et al., 1982).
Nitrification is the mechanism by which NH4

+ acidifies soils.
During the nitrification of NH4

+ to NO3
−, H+ are released

into soils, which increase the concentration of soluble Al (van
Breemen et al., 1982; Mulder et al., 1989; Mulder and Stein,
1994; Che et al., 2015) (Figure 1). Thus, NH4

+ facilitates the
occurrence of Al toxicity much more than NO3

− does. However,
increased soluble Al content in soils caused by low pH does not
always increase Al phytotoxicity, because lower pH can result

in the desorption of Al from plant roots into the rhizosphere
solution (Figure 1).

Early studies showed that changes in root zone pH due to ion
uptake imbalances were related to Al tolerance in triticale, wheat,
and rye under certain solution and soil conditions (Mugwira
and Patel, 1977). The plant growth medium can be acidified
due to NH4

+ uptake by plant roots and the nitrification of
NH4

+ to NO3
−. Alternatively, the growth medium can be

alkalinized due to the uptake of NO3
− by plant roots. Because

Al toxicity occurs in acid soils, one could speculate that the
preferential utilization of NO3

− relative to NH4
+ can enhance

plant Al tolerance through increasing the pH of the growth
medium via NO3

− uptake. The Al tolerance of some wheat
varieties was attributable to their abilities to preferentially utilize
NO3

− relative to NH4
+ through rhizosphere alkalization (Foy

et al., 1965, 1967; Foy and Fleming, 1978, 1982; Fleming,
1983; Taylor and Foy, 1985a,b,c). The results of subsequent
studies, however, indicated that genotypic differences in wheat
Al tolerance were not caused by differences in rhizosphere pH
induced by the differential uptake of NH4

+ and NO3
− (Taylor,

1988a,b; Miyasaka et al., 1989). Instead, the differences in the
uptake of NH4

+ and NO3
− among different wheat genotypes

were suggested to be the result of, rather than the cause of,
differences in A1 tolerance among genotypes (Taylor, 1988a,b;
Miyasaka et al., 1989). Another research demonstrated that the
decrease in the growth medium pH under Al stress was greater
for an Al-tolerant wheat genotype than an Al-sensitive one
(Ikeda and Yamanishi, 1999). Therefore, genotypic differences
in the relative Al tolerance of wheat could not be explained
by root-induced pH changes due to the uptake of NH4

+

and NO3
−.

Three reports on rice plants drew different conclusions. In two
studies, an Al-tolerant rice genotype had a stronger ability than an
Al-sensitive genotype to increase nutrient solution pH through
efficient NO3

− uptake and metabolism (Ganesan et al., 1993;
Justino et al., 2006). However, another study (van Hai et al., 1989)
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FIGURE 1 | Schematic diagram of possible effects of NH4
+ and NO3

− on the adsorption and desorption of Al on the root–soil interface. NH4
+ acidifies rhizosphere

solution (1), which stimulates the desorption of Al from bulk soils into rhizosphere solution (2) but inhibits the adsorption of Al from rhizosphere solutions to plant roots
(3) both because of the competition between Al3+ and H+. In contrast, NO3

− alkalizes rhizosphere solution (4), which inhibits the desorption of Al from soils into
rhizosphere solution (5) but stimulates the adsorption of Al from rhizosphere solutions to plant roots (6) because NO3

−-increased negative electrical charge of root
surface. Al-tolerant plant species prefer NH4

+ to NO3
− (7), while Al-sensitive plant species prefer NO3

− to NH4
+ (8). Excess NH4

+ and H+ are both toxic to the
growth of Al-sensitive plant species (9). Consequently, NH4

+ alleviates Al toxicity to Al-tolerant plant species while aggravates Al toxicity to Al-sensitive plant species
compared with NO3

−.

obtained the opposite result, in that an Al-resistant genotype took
up more NH4

+ and acidified the nutrient solution to a greater
degree than did an Al-sensitive one. In barley, Al tolerance of
different cultivars was not related to the root-induced pH change
by the uptake of inorganic N sources from the growth medium
(Wagatsuma and Yamasaku, 1985). Similarly, differences in pH
changes in the growth medium were not related to differences
in A1 tolerance between two sorghum genotypes (Galvez and
Clark, 1991). In fact, the NO3

− uptake rate was found to be
higher in an Al-sensitive sorghum genotype than in an Al-
tolerant one (Cambraia et al., 1989). Genotypic differences in
the Al tolerance of soybean plants were not associated with the
difference in NH4

+ uptake vs. NO3
− uptake and root-induced

pH changes (Klotz and Horst, 1988b). Changes in the medium
pH were also not related to Al tolerance in triticale (Antunes and
Antonieta Nunes, 1997). These analyses further demonstrated
that genotypic differences in the Al tolerance of diverse plant
species cannot be explained only by root-induced pH changes due
to NH4

+ and NO3
− uptake.

Since low pH increases the concentrations of soluble Al in
soils, the alkalization of the rhizosphere was proposed to be
an important mechanism of plant Al tolerance (Matsumoto,
2000; Kochian et al., 2004; Ma, 2007). However, several studies
demonstrated that H+ could alleviate Al toxicity because H+
competed with Al3+ for adsorption to the root surface (Kinraide
et al., 1992; Godbold et al., 1995; Zhao et al., 2009; Zhao et al.,
2014). A supply of H+ also alleviated Al toxicity in bacteria
(Kinraide and Sweeney, 2003) and yeast (Zhao et al., 2017).
These results implied that Al toxicity is much lower at low pH

than at high pH under a certain acid pH range (pH < 5.0)
because of the H+ alleviation of Al phytotoxicity. The uptake of
NH4

+ and NO3
− decreases and increases the pH of the medium,

respectively. Many reports have indicated that NH4
+ supply can

enhance plant Al tolerance, while NO3
− supply aggravates Al

toxicity (Table 2). In some studies, Al was found to stimulate the
growth of some grasses (Rorison, 1985), tropical trees (Watanabe
et al., 1998), Lespedeza bicolor (Chen et al., 2010), and rice (Zhao
et al., 2013b) when supplied with NH4

+, but not when supplied
with NO3

−. The stimulatory effects of Al on plant growth may be
related to the effects of Al to alleviate H+ toxicity (Kinraide et al.,
1992). Thus, NH4

+ alleviates Al toxicity, and Al enhances NH4
+

utilization.
It is now accepted that the NH4

+-induced rhizosphere
acidification is the primary mechanism underlying the NH4

+

enhancement of Al tolerance in plants (Zhao et al., 2009; Wang
et al., 2015) (Figure 1). Relative to NO3

−, NH4
+ uptake by

rice roots reduces the pH of the nutrient solution. Lower pH
further decreases the number of Al-binding functional groups
and enhances the positive electrical potential of the root surface
(Wang et al., 2015; Liu et al., 2016). Consequently, NH4

+-fed
roots adsorb less Al than do NO3

−-fed roots, thereby alleviating
Al toxicity. The ability of NH4

+ to alleviate Al toxicity was
also observed under constant pH conditions (Rorison, 1985;
Klotz and Horst, 1988a,b; Grauer and Horst, 1990), indicating
that factors other than pH may be involved. It is possible that
intermediate products of N metabolism such as nitric oxide (NO)
play a role in the alleviation of Al toxicity by NH4

+ (Zhao and
Shen, 2013).
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TABLE 2 | Summary of NH4
+ effects on plant Al tolerance relative to NO3

−: (+)
enhancement, (−) decrease, and (0) no change.

Taxon Effects Reference

Holcus lanatus + McCain and Davies, 1983

Deschampsia flexuosa, Holcus
lanatus, Bromus erectus

+ Rorison, 1985

Spruce and beech + Van Praag et al., 1985a

Glycine max + Klotz and Horst, 1988a,b

Secale cereal, Lupinus luteus + Grauer and Horst, 1990

Pinus rigida + Cumming, 1990a; Cumming
and Weinstein, 1990a;
Schier and McQuattie,
1999a

Triticosecale + Antunes and Antonieta
Nunes, 1997; Domingues,
2010

Melastoma malabathricum,
Acacia mangium, Melaleuca
cajuputi

+ Watanabe et al., 1998

Oryza sativa + Zhao et al., 2009, 2013b;
Wang et al., 2015

Lespedeza bicolor + Chen et al., 2010

Sorghum bicolor + or −b Tan et al., 1992

Sorghum bicolor 0 Keltjens, 1987

Picea abies 0 Godbold et al., 1988

Mucuna pruriens 0 Hairiah et al., 1994

Triticum aestivum − Fleming, 1983; Taylor and
Foy, 1985a,b,c

aStudy was conducted using sand culture irrigated with nutrient solutions. Studies
not marked by superscript letter were conducted using hydroponic systems.
bEffect was dependent on plant genotypes.

Several studies found that NH4
+ aggravated Al toxicity,

relative to NO3
− (Table 2), which may reflect differences in

plants’ sensitivity to NH4
+. Some studies on the aggravating

effects of NH4
+ on Al toxicity used wheat as the experimental

material (Fleming, 1983; Taylor and Foy, 1985a,b,c). Wheat plants
prefer NO3

− to NH4
+ and are sensitive to both Al and NH4

+

(Table 1). If wheat plants are supplied only with NH4
+, then

NH4
+ toxicity may occur and may be more serious than Al

toxicity. Thus, NH4
+ may aggravate rather than alleviate Al

toxicity in wheat plants. Some sorghum genotypes showed lower
Al toxicity and some showed higher Al toxicity with NH4

+

relative to NO3
− N (Tan et al., 1992). Because an Al-sensitive

sorghum genotype was more NH4
+-sensitive than an Al-tolerant

one, NH4
+ toxicity probably masked Al toxicity in sorghum

(Keltjens, 1987). Consequently, it is difficult to observe the
NH4

+ alleviation of Al toxicity in NH4
+-sensitive plant species

(Keltjens, 1987). Thus, plants grown in acid soils may suffer
from Al toxicity accompanied by NH4

+ toxicity due to poor soil
nitrification.

Most studies on the effects of NH4
+ and NO3

− on Al tolerance
have been conducted using hydroponic experiments (Table 2),
which might not reflect the real effects of NH4

+ and NO3
− on

Al tolerance. In soils, lower root rhizosphere pH will result in
greater solubilization of Al ions from the soil into the rhizosphere
solution, potentially increasing Al toxicity to plants. However,

under nutrient solution culture, lower rhizosphere pH will only
affect Al speciation (Keltjens and van Loenen, 1989). Lower pH
due to NH4

+ uptake by plants increases the solubilization of
Al3+ from bulk soils into the rhizosphere solution (Figure 1).
Nevertheless, for plant roots, more H+ in the rhizosphere
solution can decrease Al3+ adsorption by roots through cation
competition and increasing the positive electrical potential of the
root surface. Thus, whether Al toxicity is exacerbated or alleviated
by NH4

+ or NO3
− may depend on the relative dominance of the

effects of pH on Al desorption from soils into the rhizosphere
solution and Al adsorption from the rhizosphere solution into
the roots. Further studies on this topic should be conducted on
soil-grown plants.

EFFECTS OF Al ON N
TRANSFORMATIONS IN SOILS

Although the effects of nitrification on soil pH and Al solubility
are well known, less is known about the effects of Al on soil
N transformations such as nitrification and ammonification.
The nitrification rate is lower in acid soils than in neutral to
calcareous soils (Che et al., 2015), although the reasons for this
are still unclear. It is generally considered that low pH inhibits
the activity of nitrifying microbes. Higher levels of soluble Al are
often concomitant with lower soil pH. Soil N transformations
are controlled by microbes. Most microbes are very sensitive to
Al (Piña and Cervantes, 1996), while fungi are relatively more
tolerant than bacteria to Al and acids (Zhao et al., 2013a, 2017).
Low pH does not always result in high concentrations of active Al
in soils, because Al ions can form complexes with various organic
and inorganic ligands. Future research should explore the role of
Al in regulating soil N transformations and in N cycle as a whole.

In a paper published almost 100 years ago (Denison, 1922),
Al salts stimulated ammonifying microbes but adversely affected
nitrifying bacteria. However, more recent reports showed that
Al did not affect the nitrification potential and abundance of
ammonia-oxidizing amoA gene of archaea and bacteria (Kasuga
et al., 2010; Lin et al., 2017). Bacterial growth was shown to
gradually decrease as the pH decreased from 6.5 to 4.0 (Rousk
et al., 2010), while soil exchangeable Al linearly increased as
the pH decreased from 5.4 to 3.7 (Aciego Pietri and Brookes,
2008). In addition, the OTU richness and Shannon’s diversity
index of both ammonia-oxidizing archaea and bacteria showed
significantly negative correlation with soil pH ranging from
3.77 to 8.46 (Hu et al., 2013). Therefore, microbial growth was
found to be limited at soil pHs lower than 5.4 when Al became
soluble, but was limited by low pH rather than Al toxicity at
pHs ranging from 6.5 to 5.4. These analyses suggested that
the inhibition of soil nitrification that transformed NH4

+ to
NO3

− was due to acid stress rather than Al toxicity, when
soil pH decreased from 6.5 to 5.4. There are several soil N
transformation processes such as nitrification, denitrification,
and ammonification, and different types of microbes control
the different pathways of transformations. To clarify the
effects of Al on soil N transformation, further studies should
evaluate N transformation-related microbial populations and Al
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solubility under controlled conditions with variable soil pH and
NH4

+/NO3
− supply.

EFFECTS OF Al ON NO3
− UPTAKE BY

PLANT ROOTS

Approximately 30 published studies have focused on the effects
of Al toxicity on NO3

− uptake, and most of them found
that Al inhibited NO3

− uptake (Table 3). Jerzykiewicz (2001)
observed that an extremely high concentration of Al (5 mM)
even resulted in NO3

− efflux from cucumber roots. The
mechanism by which Al inhibits NO3

− uptake is still unclear,
but some possible mechanisms have been proposed. In one
study, a high Al concentration resulted in large amounts of Al
entering the symplast of soybean roots, leading to symplastic
Al concentrations that were high enough to inhibit NO3

−

transport across the membrane (Lazof et al., 1994). Thus, one
proposed mechanism by which Al inhibits NO3

− uptake is
that intracellular Al may bind to NO3

− transporters, NO3
−

metabolic enzymes, and other components of systems related
to NO3

− uptake. Plant NO3
− transport involves at least three

systems; the constitutive high-affinity transport system (cHATS),
the inducible high-affinity transport system (iHATS), and the
constitutive low-affinity transport system (cLATS) (Crawford
and Glass, 1998; Miller et al., 2007). The constitutive systems

function without NO3
− pretreatment, but the inducible system

is stimulated by external NO3
−. The cHATS has low values of

both Km (6–20 µM) and Vmax (0.3–0.82 µmol g−1 h−1), while
the iHATS is characterized by higher Km (20–100 µM) and
Vmax (3–8 µmol g−1 h−1) values and is induced by exposure
to NO3

− for hours to days. The cLATS functions at NO3
−

concentrations above 250 µM and does not become saturated
even when NO3

− concentrations are as high as 50 mM. Durieux
et al. (1993) reported that Al exerted stronger effects on the
inducible system than on the constitutive systems. Their results
also suggested that high concentrations of Al inhibited the
activity of NO3

− transporters in the inducible system rather
than affected the number of NO3

− transporters (Durieux et al.,
1993). Pretreatment with Al had little effect on NO3

− uptake
by plants (Jarvis and Hatch, 1986; Durieux et al., 1993), and
NO3

− transport quickly recovered when Al was removed from
the external growth medium (Durieux et al., 1993). These results
suggested that Al directly interacts with NO3

− transporters but
that this interaction is reversible, leading to the inhibition of
NO3

− uptake by Al.
The inhibition of root elongation is the main symptom of Al

phytotoxicity. Root elongation was inhibited much more than
NO3

− uptake in the presence of high Al concentrations in
soybean (Rufty et al., 1995). The Al-inhibition of NO3

− uptake
was found to be similar across different Al-tolerant soybean
genotypes and different root regions (Lazof et al., 1994). The

TABLE 3 | Summary of effects of aluminum on NO3
− uptake: (−) inhibition, (+) stimulation, and (0) no change.

Taxon Al (µM) NO3
− (mM) Al duration Effects Reference

Triticum aestivum 111 3.5 29 days − Fleming, 1983

Trifolium repens 25–100 0.7 21 days − Jarvis and Hatch, 1986

Sorghum bicolor 55–370 0.1–14 15 h–36 days − Keltjens, 1987, 1988; Keltjens and van
Ulden, 1987; Cambraia et al., 1989;
Galvez and Clark, 1991

Pinus rigida 200 2–4 42 days − Cumming, 1990a

Picea abies 37–1483 1 14 days − Peuke and Tischner, 1991

Zea mays 5–166 0.2–0.6 1.5 h–7 days − Durieux et al., 1993, 1995; Calba and
Jaillard, 1997; Purcino et al., 2003

Glycine max 80 0.3 30 m–2 h − Lazof et al., 1994

Triticosecale 185, 370 1.6–12 4–7 days − Antunes and Antonieta Nunes, 1997;
Domingues, 2010

Musa spp. 78.5 1.8 40 days − Rufyikiri et al., 2001

Lotus japonicus 102–104 0.15 24 h − Pal’ove-Balang and Mistrík, 2007

Lotus corniculatus 103 0.15 72 h − Pal’ove-Balang and Zelinova, 2013

Oryza sativa 50 2.86 24–96 h − Zhou et al., 2016

Broadleaf trees 600 3.5 3 h − Burnham et al., 2017b

Camellia sinensis 400 3.6 24 h 0 Morita et al., 1998

Glycine max 56 1.4 14 h + Klotz and Horst, 1988b

Oryza sativa 0–1111 0.36 65 days + (<185 µM Al ) or − (>185 µM Al) van Hai et al., 1989

Hordeum vulgare 102 0.37 5 min + Nichol et al., 1993

Glycine max 0–45 0.3 72 h + (<10 µM Al) or − (>10 µM Al) Rufty et al., 1995

Cucumis sativus 500, 103, 5 × 103 1 1–6 h + (0.5 mM Al exposure for 3 h) or −
(1 mM or 5 mM Al exposure for 6 h)

Jerzykiewicz, 2001

Quercus serrata 103 2.8 3–14 days + Tomioka et al., 2007

aStudy was conducted using sand culture irrigated with nutrient solutions. bStudy was conducted using soil culture. Studies not marked by superscript letters were
conducted using hydroponic systems.
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root apex is the primary target of Al toxicity to plants (Ryan
et al., 1993). However, NO3

− uptake rates by corn root tips
only accounted for a low percentage of NO3

− taken up by the
total root system, and N in root tips was mainly derived from
N adsorbed through other root regions (Lazof et al., 1992). The
mechanism by which Al inhibits root elongation was suggested
to differ from the mechanism of Al inhibition of NO3

− uptake in
maize (Durieux et al., 1995). The results of these studies indicated
that the mechanism of Al inhibition of NO3

− uptake might differ
from the mechanism(s) of plant Al sensitivity and Al-inhibited
root elongation, at least in maize and soybean. This should be
further tested using more plant species.

The effects of Al on NO3
− uptake may depend on Al

concentrations, Al exposure time, plant species, and plant
genotype. Aluminum does not always affect NO3

− uptake, for
example, in Al-tolerant tea trees (Morita et al., 1998) (Table 3).
A stimulatory effect of Al on root NO3

− uptake has been
observed in studies where Al was supplied at low concentrations
(van Hai et al., 1989; Rufty et al., 1995; Jerzykiewicz, 2001), or
for a short-term (Nichol et al., 1993; Jerzykiewicz, 2001), and/or
in studies on wild plant species that prefer Al (Tomioka et al.,
2007) (Table 3). Similar to the observed stimulatory effects of
Al on NO3

− uptake, N uptake and partitioning were found to
be enhanced by lower Al concentrations (20–200 µM Al) but
inhibited by high Al concentrations (1000 µM Al) in defoliated

grasses (Thornton, 1998). In wheat, N uptake by root tips was
inhibited by Al in an Al-sensitive genotype, but stimulated in an
Al-tolerant genotype (Ikeda and Yamanishi, 1999). These results
suggested that low Al accumulation in plants could stimulate
NO3

− uptake.
Several possible mechanisms were suggested to be responsible

for the stimulation of NO3
− uptake by low concentrations of

Al (Rufty et al., 1995; Jerzykiewicz, 2001) (Figure 2). First, the
increase in the positive electrical potential of the cell surface by
Al3+ could facilitate the access of negatively charged NO3

− to
the root cell surface. Second, Al-induced H+ extrusion under
acid stress could increase NO3

− transport across the membrane
via H+/NO3

− co-transport. Finally, NO3
− efflux from cells

could be diminished by the binding of extracellular Al to the
cell membrane if Al impairs the structural integrity of plasma
membranes and alters their permeability (Cakmak and Horst,
1991). However, direct and specific evidence for each of these
mechanisms is still lacking.

Rufty et al. (1995) compared experimental conditions
including the Al concentration, medium pH, and calcium
concentration among several papers reporting different effects of
Al on NO3

− uptake. This comparative analysis suggested that
pH and calcium levels, rather than Al concentrations, explained
the differences in results among studies (Rufty et al., 1995).
Under acid stress and low calcium levels, Al ameliorated acid

FIGURE 2 | Schematic diagram of possible effects of Al on uptake and assimilation of NH4
+ and NO3

− by plants. NRT, nitrate transporter; AMT, ammonium
transporter; NR, nitrate reductase; NiR, nitrite reductase; GS, glutamine synthetase; GOGAT, glutamate synthase; GDH, Glutamate dehydrogenase. When plant
roots accumulate low concentrations of Al in the apoplastic space, root NO3

− uptake is stimulated by apoplastic Al because of Al3+-increased positive electrical
charge of cell surface (1), enhanced H+-NO3

− cotransport (2), and diminished NO3
− efflux (3). When plant roots accumulate large amounts of Al that enters the

symplasm of roots, intracellular Al inhibits NO3
− uptake as Al binds to NO3

− transporter (4) and induces enhanced efflux of NO3
− (5). Al3+-increased positive

electrical charge of cell surface results in the Al inhibition of NH4
+ uptake (6). Low concentrations of Al stimulates NRA (7) because of Al-stimulated NO3

− uptake by
the three ways (1, 2, and 3), while high concentrations of Al inhibits NRA (8) because of Al-inhibited NO3

− uptake by the two ways (4 and 5). Al stimulates GS activity
(9) due to the binding of Al with GS while inhibits that (10) due to the inhibition of NH4

+ uptake (6). The effects of Al on GOGAT and GDH are still uncertain (?).
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stress to roots, thereby enhancing NO3
− influx into cells (Rufty

et al., 1995). Further studies using carefully designed experiments
should explore how pH and calcium affect the ability of Al to alter
NO3

− uptake.
Based on the analyses summarized above, we present a

schematic diagram to explain the mechanisms of the effects of Al
on NO3

− uptake (Figure 2). When plant roots accumulate low
concentrations of Al in the apoplastic space of roots, extracellular
Al may stimulate NO3

− uptake because of an Al3+-induced
increase in the positive electrical charge of the cell surface,
enhanced H+-NO3

− cotransport, and diminished NO3
− efflux.

When large amounts of Al enter the symplasm of roots, root
NO3

− uptake is inhibited by Al because Al binds to the NO3
−

transporter and enhances NO3
− efflux. We emphasize that this

schematic diagram is based only on the published reports. There
is still no direct evidence for these proposed mechanisms. Just
as the molecular basis for N uptake has been discovered in
recent years, the molecular basis of both the Al-stimulation and
Al-inhibition of NO3

− transport can be explored in molecular
studies on plant mutants defective in NO3

− transport.

EFFECTS OF Al ON NH4
+ UPTAKE BY

PLANT ROOTS

Various studies have reported that root NH4
+ uptake was either

inhibited, stimulated, or unaffected by Al (Table 4). However,
most studies have reported inhibitory effects of Al on NH4

+

uptake by plants. Nichol et al. (1993) indicated that Al treatment
for 5 min suppressed the movement of cations (NH4

+, Ca2+, and
K+) across the plasma membrane but facilitated the movement of
anions (NO3

− and phosphate). Aluminum ions may bind to the
cell surface and form a positively charged layer, thereby inhibiting
the adsorption of positively charged cations to the cell surface but
stimulating the adsorption of negatively charged anions. Thus,
similar to the mechanisms responsible for the Al stimulation of
NO3

− uptake described above, the Al3+-induced increase in the

positive electrical charge of the cell surface is responsible for the
inhibition of NH4

+ uptake by Al (Figure 2).
In general, Al exerts a smaller negative effect on NH4

+

uptake than on NO3
− uptake. In maize roots, Al reduced the

uptake of both NH4
+ and NO3

− but increased the uptake
ratio NH4

+/NO3
−, indicating that NH4

+ uptake was inhibited
much less than NO3

− uptake by Al (Purcino et al., 2003). An
Al treatment reduced NO3

− uptake but not NH4
+ uptake in

maize and triticale (Durieux et al., 1993; Calba and Jaillard,
1997; Domingues, 2010), while Al inhibited NO3

− uptake but
stimulated NH4

+ uptake in sorghum and triticale (Keltjens and
van Ulden, 1987; Antunes and Antonieta Nunes, 1997). Leaf
N content was increased by A1 when NH4

+ was supplied but
reduced by Al when NO3

− was supplied (Van Praag et al., 1985).
An Al treatment reduced the NO3

− concentration but increased
the free NH4

+ concentration in the leaves of corn plants (Souza
et al., 2016).

The studies reporting that Al stimulated root NH4
+ uptake

generally used N sources comprising a mixture of NH4
+ and

NO3
− (Keltjens, 1987, 1988; Keltjens and van Ulden, 1987;

Antunes and Antonieta Nunes, 1997). Since Al inhibited NO3
−

uptake in those studies, we may infer that N deficiency caused by
the inhibition of NO3

− uptake might explain the stimulation of
NH4

+ uptake by Al. When NO3
− cannot meet the N demands of

plants under Al stress, plants may take up more NH4
+ in place of

NO3
− to alleviate N deficiency.

EFFECTS OF Al ON NO3
− REDUCTION

Nitrate reductase (NR) represents the first enzymatic and rate-
limiting step of NO3

− assimilation in plants. It catalyzes the
reduction of nitrate to nitrite and is a substrate-inducible enzyme
(Tischner, 2000). A large body of research has indicated that Al
inhibits NR activity (NRA) in roots, shoots, or both (Table 5).
Several studies reported that Al toxicity reduced NRA much more
in Al-sensitive plant genotypes than in Al-tolerant ones (Foy

TABLE 4 | Summary of effects of aluminum on NH4
+ uptake: (−) inhibition, (+) stimulation, and (0) no change.

Taxon Al (µM) NH4
+ (mM) Al duration Effects Reference

Oryza sativa 0–1111 0.36 65 days − van Hai et al., 1989

Sorghum bicolor 300 0.36–3.6 2–18 days − Galvez and Clark, 1991

Hordeum vulgare 100 0.03 5 min − Nichol et al., 1993

Triticum aestivum 10, 100 2 2–3 days − Ikeda and Yamanishi, 1999

Musa spp. 78.5 0.2 40 days − Rufyikiri et al., 2001

Lotus japonicus 102–104 0.2 24 h − Pal’ove-Balang and Mistrík, 2007

Lotus corniculatus 103 0.2 72 h − Pal’ove-Balang and Zelinova, 2013

Zea mays 166 0.2 7 days − Purcino et al., 2003

Zea mays 5–100 0.2–0.24 0.5 h–3 days 0 Durieux et al., 1993; Calba and Jaillard, 1997

Camellia sinensis 400 3.6 24 h 0 Morita et al., 1998

Triticosecale 370 0.2–1.6 4 days 0 Domingues, 2010

Triticosecale 185 0.8, 1.4 5–7 days + or 0 Antunes and Antonieta Nunes, 1997

Sorghum bicolor 55–370 2–4 96 h–36 days + Keltjens, 1987, 1988; Keltjens and van Ulden, 1987

Glycine max 56 1.4 14 h + Klotz and Horst, 1988b

All studies used hydroponic systems.
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and Fleming, 1982; Keltjens and van Ulden, 1987; Justino et al.,
2006). In wheat and sorghum, Al significantly inhibited NRA in
shoots rather than roots (Foy and Fleming, 1982; Keltjens and
van Ulden, 1987). In contrast, Al inhibited NRA in roots rather
than shoots in red spruce (Cumming and Brown, 1994). The
inhibitory effect of Al on NRA may result from Al-inhibition
of NO3

− uptake, as the decreased level of the substrate, NO3
−,

would lead to decreased NRA (Gomes et al., 1985; Keltjens and
van Ulden, 1987; Keltjens, 1988; Justino et al., 2006; Pal’ove-
Balang and Mistrík, 2007; Souza et al., 2016). The Al-induced
decrease in NO3

− content in plants was proposed to be the main
mechanism by which Al inhibits NRA, so the interaction between
Al and NR may be indirect. Roots generally accumulate more
Al than do shoots. However, Al significantly inhibited NRA in
the shoots but not in roots of wheat and sorghum (Foy and

Fleming, 1982; Keltjens and van Ulden, 1987), suggesting that
a direct interaction between NR and Al is unlikely. The ratio of
absorbed 15NO3

− to reduced ammonia-containing N remained
constant with increasing Al, also suggesting an indirect effect
of Al on NR (Rufty et al., 1995). However, in another study,
Al inhibited the shoot NRA of sorghum, and this could not be
reversed by increased NO3

− concentrations (Cambraia et al.,
1989). Aluminum decreased NO3

− accumulation in cucumber
roots and maize leaves but enhanced their NRA (Lidon et al.,
1998; Jerzykiewicz, 2001).

In some studies, Al was found to increase NRA (Table 5).
At low concentrations, Al stimulated NRA in spruce (<37 µM
Al; Peuke and Tischner, 1991) and rice (80 µM Al; Sharma and
Dubey, 2005). Aluminum stimulated NRA in the Al-preferring
species Quercus serrata (Tomioka et al., 2007, 2012) and tea

TABLE 5 | Summary of effects of aluminum on nitrate reductase activity: (−) inhibition, (+) stimulation, (0) no change and (N) not studied.

Taxon Al (µM) Al duration Effects Reference

Root Shoot

Sorghum bicolor 50–185 5–30 days − − Cambraia et al., 1989; Cruz et al., 2011a

Sorghum bicolor 55–370 48 h–24 days 0 − Keltjens and van Ulden, 1987; Keltjens,
1988

Oryza sativa 160–500 5–21 days − − Ganesan et al., 1993; Justino et al.,
2006; Mishra and Dubey, 2011a

Picea rubens 37–370 2–42 days − N Yandow and Klein, 1986

Picea rubens 200 10 weeks − 0 Cumming and Brown, 1994a

Pinus rigida 200 6 weeks − N Cumming, 1990a

Lotus japonicus 102–104 24 h − N Pal’ove-Balang and Mistrík, 2007

Zea mays 5 × 104–2 × 105 15 days N − Souza et al., 2016a

Helianthus annuus 100 15 days N − Ruiz et al., 2007

Hordeum vulgare 2 × 103–6 × 103 6 days N − Shahnawaz et al., 2017

Triticum aestivum 19–111 20 0 − (Al-sensitive genotype) or
0 (Al-tolerant genotype)

Foy and Fleming, 1982

Mucuna pruriens 110 4 weeks N 0 Hairiah et al., 1994

Oryza sativa 80, 160 15 days + (80 µM Al) or −
(160 µM Al)

+ (80 µM Al) or − (160 µM
Al)

Sharma and Dubey, 2005a

Zea mays 100 15 days − or + (dependent on
genotypes and N
source)

N Mihailovic et al., 2015

Glycine max 56 6 h–4 days + or − (dependent on
genotype and root
distance)

N Klotz and Horst, 1988b

Zea mays 103 20 days N + Lidon et al., 1998b

Triticum aestivum 30 3 h + N Sun et al., 2014

Glycine max 50, 100 24 h + N Wang et al., 2017

Phaseolus vulgaris 50 6–24 h + N Wang et al., 2010

Quercus serrata 103–2.5 × 103 1 h–14 days + N Tomioka et al., 2007, 2012

Cucumis sativus 500, 103, 5 × 103 24 h + N Jerzykiewicz, 2001

Triticum aestivum,
Triticale hexaploidae,
and Secale cereale

37–370 20 days N + (Triticum aestivum, and
Triticale hexaploidae); −
(Secale cereale)

Dinev and Stancheva, 1993

Camellia sinensis 300 14 days + + Hajiboland et al., 2014

Picea abies 37–741 2–3 months + (<37 µM Al) or −
(>37 µM Al)

+ Peuke and Tischner, 1991

astudy was conducted using sand culture irrigated with nutrient solutions. bStudy was conducted using vermiculite culture irrigated with nutrient solutions. Other studies
not marked with superscript letters were conducted using hydroponic systems.
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(Hajiboland et al., 2014). The production of NO mediated by NR
alleviated Al toxicity in red kidney bean, wheat, and soybean by
alleviating oxidative stress, where Al significantly enhanced NRA
in root tips (Wang et al., 2010, 2017; Sun et al., 2014). In another
study, Al more strongly promoted NRA in Al-tolerant wheat than
in Al-sensitive wheat (Sun et al., 2014).

The interaction between Al and NR appears to be complex,
and can be positive or negative, direct or indirect. Many
environmental factors are known to modulate NRA (Tischner,
2000). In various studies, the effects of A1 on NRA depended
on the plant genotype (Foy and Fleming, 1982; Keltjens and van
Ulden, 1987; Justino et al., 2006; Sun et al., 2014; Mihailovic
et al., 2015), plant species (Dinev and Stancheva, 1993), plant
part (Foy and Fleming, 1982; Keltjens and van Ulden, 1987),
medium pH (Yandow and Klein, 1986), Al levels (Peuke and
Tischner, 1991; Sharma and Dubey, 2005), N source and levels
(Cumming, 1990; Mihailovic et al., 2015; Gupta et al., 2016), and
inoculation treatments (Cumming, 1990). Although the Al–NR
interaction is complex, we can conclude that NRA is generally
inhibited by high Al concentrations, and stimulated by low Al
concentrations (Figure 2). This overall trend is similar to the
effects of Al on NO3

− uptake, because NO3
− is the primary factor

regulating NRA.
Further research with detailed and well-designed experiments

using different plant materials is necessary to clarify the details
of the interaction between NR and Al. Recently, several genes
encoding NR in maize (Zea mays) were found to be differently
modulated at the transcriptional level by Al toxicity (Cantú et al.,
2016). Molecular biology techniques could be helpful to clarify
the detailed mechanisms of the interaction between Al and NR as
well as NO3

− uptake.

EFFECTS OF Al ON NH4
+ ASSIMILATION

In plants, NH4
+ is mainly assimilated by the GS/GOGAT

(glutamine synthetase/glutamate synthase) cycle, where GS
catalyzes the reaction between NH4

+ and glutamate to
form glutamine. Glutamine subsequently combines with 2-
oxoglutarate in a reaction catalyzed by GOGAT to form

two molecules of glutamate (Masclaux-Daubresse et al., 2010).
Glutamate dehydrogenase (GDH) is considered to be an
alternative pathway to incorporate NH4

+ into glutamate when
plants are exposed to high NH4

+ concentrations under stress.
However, there is more evidence that GDH functions mainly
in glutamate deamination (Masclaux-Daubresse et al., 2010).
The presence of Al was shown to decrease the concentrations
of NO3

−-N and asparagine but increase the concentrations of
amino acid-N and glutamine in the xylem sap of sorghum plants,
potentially indicating that Al interferes with the synthesis and/or
interconversion of N in plants (Gomes et al., 1985).

Pécsváradi’s research group reported the activating effect of
the Al(III)-tartrate 1:3 complex and the Al(III)–nitrilotriacetic
acid complex on the activity of GS extracted from roots and
leaves of wheat (Kertész et al., 2002; Pécsváradi et al., 2009). This
activating effect was attributable to the specific binding of Al to
the protein chain of GS, similar to the role of Mg in activating
GS activity (Pécsváradi et al., 2009). Except for those two reports
(Kertész et al., 2002; Pécsváradi et al., 2009), all of the other
studies summarized here reported Al inhibition of GS activity
in both roots and shoots (Table 6). However, Al either activated,
suppressed, or did not affect the activities of GOGAT and GDH
(Table 6). The effects of Al on the activities of N-assimilating
enzymes were found to vary between Al-tolerant and Al-sensitive
maize varieties and depend on the N form supplied. In maize,
NH4

+ facilitated the Al stimulation of N assimilation in the roots
of an Al-tolerant maize genotype (Mihailovic et al., 2015). Here,
we suggest that Al might stimulate GS activity by binding to it,
or inhibit it by limiting NH4

+ uptake (Figure 2). However, it is
difficult to draw clear conclusions about the interaction between
Al and NH4

+ assimilation on the basis of studies published to
date. Therefore, more research is required to explore the effects
of Al on these enzymes involved in NH4

+ assimilation.

CONCLUDING REMARKS

A complex interaction between Al and N occurs in the soil–
plant system. Relative to NO3

−, NH4
+ uptake by roots generally

alleviates Al phytotoxicity under solution culture conditions,

TABLE 6 | Summary of effects of aluminum on the activities of glutamine synthetase (GS), glutamate synthase (GOGAT), and glutamate dehydrogenase (GDH): (−)
inhibition, (+) stimulation, (0) no change, and (N) not studied.

Taxon Al (µM) Al duration Effects Reference

Root Shoot

Triticum aestivum 10–100 5 days GS: + GS: + Kertész et al., 2002; Pécsváradi et al., 2009

Zea mays 166 3–9 days GS: −; NADH-GDH: +;
GOGAT: 0

GS: 0; NADH-GDH: −; GOGAT: 0 Purcino et al., 2003

Zea mays 100 15 days GS, NADH-GDH:
(dependent on genotypes
and N source)

N Mihailovic et al., 2015

Lotus japonicus 102–104 24 h, 72 h GS and GOGAT: − N Pal’ove-Balang and Mistrík, 2007, 2011

Helianthus annuus 100 15 days N GS and GOGAT: − Ruiz et al., 2007

Oryza sativa 160–320 5–20 GS: −; NADH-GDH: + GS: −; NADH-GDH: + Mishra and Dubey, 2011a

astudy was conducted using sand culture irrigated with nutrient solutions. Other studies were conducted using hydroponic systems.
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while NH4
+ aggravates the solubilization of toxic Al from soils

into rhizosphere solutions. Both the alleviation and aggravation
effects mainly result from NH4

+-induced H+ excretion due to
NH4

+ uptake by plant roots and/or soil nitrification.
Compared with the effects of N on Al, the effects of Al

on N are much more complicated because N is involved in
multiple physiological processes within plants. Many reports have
demonstrated that Al toxicity inhibits NO3

− uptake by plant
roots because Al binds to the NO3

− transporter and stimulates
NO3

− efflux. In some cases, such as low Al concentrations, short-
term Al exposure, and Al-preferring plants, the Al stimulation
of NO3

− uptake is probably because of an increase in the
positive electrical charge at the root-surface, enhanced H+-NO3

−

cotransport, and diminished NO3
− efflux. The inhibitory effect

of Al is generally smaller for root NH4
+ uptake than for NO3

−

uptake. Similar to the Al inhibition of NO3
− uptake, the activity

of NR can be inhibited by Al treatment because of decreased
internal NO3

− accumulation. Low concentrations of Al can
stimulate NR activity as a result of stimulating NO3

− uptake. The
effects of Al on the activities of GS, GOGAT, and GDH are still
uncertain.

Despite the diverse interactions between Al and N in many
studies as described above, it is clear that Al-tolerant plants
generally prefer NH4

+, while Al-sensitive plants prefer NO3
−.

This relationship between plant Al tolerance and NH4
+/NO3

−

preference may be the result of ecological evolution and natural
selection because acid soils are characterized by a relatively higher
ratio of NH4

+ to NO3
− and higher concentrations of toxic Al

than are neutral to calcareous soils.
Together, the results of numerous studies have suggested that

the synergistic interaction between plant Al tolerance and NH4
+-

N nutrition may be an important strategy of plants to thrive in
acid soils dominated by both toxic Al and NH4

+. In addition, the
Al stimulation of N uptake and assimilation can help to explain
why Al stimulates plant growth in some cases.

Many studies have focused on the interactions between
Al and N in plants, but the exact mechanisms underlying
these interactions are still unclear. The Al–N interactions
have been studied mainly at the physiological level rather
than the molecular level. Physiological effects are indirectly
affected by many factors and are not specific. Many genes that
function in N uptake, N assimilation, and Al tolerance/toxicity
have been identified (Masclaux-Daubresse et al., 2010; Ryan
et al., 2011; Schroeder et al., 2013; Ma et al., 2014). The
use of mutants with knocked-out or knocked-down expression
of these genes could be helpful to explore the detailed
mechanisms of Al–N interactions. In addition, we emphasize
the importance of soil experiments for researching Al–N
interactions, because the ultimate goal of understanding Al–
N interactions is to improve the growth of plants in soils.
Unfortunately, most studies on Al–N interactions have been
conducted under solution culture conditions. As discussed above,
the Al–N interactions in solutions may differ from those in
soils.

How can the existing knowledge of Al–N interactions be
used to improve the productivity of plants grown in acid soils?
Plants need to overcome the dual limitation of Al toxicity and

N deficiency in acid soils. Due to poor nitrification, acid soils
have a higher NH4

+ to NO3
− ratio than do neutral to calcareous

soils. Large-area forest decline has been linked to both NH4
+

toxicity and soil acidification, and NH4
+ toxicity has become

an important issue in global agriculture and ecology (Britto
and Kronzucker, 2002). Symptoms of NH4

+ toxicity, such as
leaf chlorosis, growth suppression, and even death generally
appear when the external NH4

+ concentrations exceed 0.1
to 0.5 mM, depending on the plant (Britto and Kronzucker,
2002). Thus, any enhancements in plant Al tolerance in acid
soils should be accompanied by improvements in plant NH4

+

utilization or reduced plant NH4
+ sensitivity. Although NH4

+

supply generally enhances plant Al tolerance, it also increases
the concentrations of toxic Al in soils and leads to potentially
toxic NH4

+ concentrations. How can we solve this contradiction?
Which type of N fertilizer should be applied in acid soils, NH4

+

or NO3
−? The NO3

− fertilizers are much more expensive than
NH4

+ fertilizers. In addition, NO3
− is lost to water more readily

than is NH4
+ because NO3

− binds weakly to soil particles,
which are generally negatively charged. Therefore, applying
NO3

− fertilizers to acid soils appears to be impractical at the
moment.

Fortunately, plants originating from acid soils are generally
both Al-tolerant and NH4

+-preferring. Thus, one way to increase
productivity from acid soils is to breed and develop genotypes
that are both Al-tolerant and NH4

+-preferring. This strategy may
synergistically enhance plant Al tolerance and N-use efficiency,
and reduce NH4

+ sensitivity and NO3
− loss. The improvement

of N-use efficiency could reduce the amounts of N fertilizers
applied to soils, thereby alleviating soil acidification and Al
toxicity. Recently, an in situ 15N-labeling experiment showed that
soluble soil Al inhibited the relative uptake of NO3

− by six tree
species, potentially increasing NO3

− loss from acid soils into the
surrounding water environment (Burnham et al., 2017). Thus,
knowledge about Al–N interactions is important for agriculture,
ecology, and the environment.
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