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Wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.) are major crops cultivated

around the world, thus playing a crucial role on human diet. Remarkably, the growing

human population requires a significant increase in agricultural production in order to

feed everybody. In this context, phosphorus (P) management is a key factor as it is

component of organic molecules such as nucleic acids, ATP and phospholipids, and

it is the most abundant macronutrient in biomass after nitrogen (N), although being one

of the scarcest elements in the lithosphere. In general, P fertilization has low efficiency,

as only a fraction of the applied P is acquired by roots, leaving a substantial amount to

be accumulated in soil as not readily available P. Breeding for P-efficient cultivars is a

relatively low cost alternative and can be done through two mechanisms: i) improving P

use efficiency (PUE), and/or ii) P acquisition efficiency (PAE). PUE is related to the internal

allocation/mobilization of P, and is usually represented by the amount of P accumulated

per biomass. PAE relies on roots ability to acquire P from the soil, and is commonly

expressed as the relative difference of P acquired under low and high P availability

conditions. In this review, plant adaptations related to improved PAE are described,

with emphasis on arbuscular mycorrhizal (AM) symbiosis, which is generally accepted to

enhance plant P acquisition. A state of the art (1980–2018) of AM growth responses and

P uptake in wheat and barley is made to discuss about the commonly accepted growth

promoting effect and P increased uptake by AM fungi and the contrasting evidence

about the generally accepted lack of positive responses in both plant species. Finally,

the mechanisms by which AM symbiosis can affect wheat and barley PAE are discussed,

highlighting the importance of considering AM functional diversity on future studies and

the necessity to improve PAE definition by considering the carbon trading between all

the directly related PAE traits and its return to the host plant.
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INTRODUCTION

Cereals have been cultivated for more than 10,000 years, playing
a crucial role in the development of human civilization. Today,
cereals are still important, being the principal crops harvested in
the world with more than 2.8 Gt of combined grain production
(FAO, 2013). Among major cereals, the widespread and closely
related wheat (Triticum aestivum L.) and barley (Hordeum
vulgare L.) represents 31% of global grain yield (El Rabey et al.,
2015). Cereals are also the major component of human diet
worldwide with more than 50% of daily caloric intake, with
values exceeding 80% in the poorest countries (Awika, 2011).
Agricultural practices and technology have greatly improved over
the last decades to reduce problems associated with food scarcity
and to provide cereals for the daily diet. However, risks and
unprecedented challenges still remain considering that global
food, and grain production must increase a 70% by the year 2050
as world population is expected to be reach 9 billion people (FAO,
2012). Meanwhile, the slight increase in crop yields observed
since the 1980s and the scarcity of available land suitable for
production make the focus on reducing crop losses empirical
due to various kinds of biotic and abiotic stresses factors, such as
pathogen attack, cold, heat, drought, salt, deficiency of nutrients
as phosphorous (P), and phytotoxicity by heavy metal stresses
(Ray et al., 2012; Bhardwaj et al., 2014).

P fertilizers are manufactured from rock phosphate found
only in a few places in the world, being Morocco the owner
of 85% of the known active mining reserves. As a non-
renewable resource, rock phosphate, as well as other non-
renewable resources such as oil and coal is expected to become
scarce near the 2030s (Cordell et al., 2009), or more optimistically
within two to three centuries (Sattari et al., 2012). The market
and countries are already responding to this scenario, which
is reflected in the fact that both USA and China (the biggest
P producer in the world) have stopped exporting this resource
(van de Wiel et al., 2016). In addition, P fertilizers may cause
environmental problems associated with eutrophication (Gaxiola
et al., 2001) and can contain heavy metals such as cadmium that
may accumulate in arable soils as a result of the addition of rock
phosphate (van de Wiel et al., 2016). Remarkably, usually only
about 10–30% of the P fertilizer applied in the first year is taken
up by the roots, with a substantial part accumulated in the soil
as residual P not readily available for plants (Syers et al., 2008).
In alkaline soils, P can be bound to calcium, and in acidic soils
it can be readily complexed to charged Al and Fe oxides and
groups hydroxyls on clay surfaces (Kochian et al., 2004; Seguel
et al., 2013), limitations that can occur in ca. 30% of arable soils
worldwide (Kochian, 2012). Moreover, organic material present
in the soil (e.g., from manure or crop residues) can also bind
phosphate ions as well as phytate (inositol compounds).

Ideally, P taken up by agricultural products should represent
the same amount of applied P fertilizer, achieving a neutral
balance (Helyar, 1998; Syers et al., 2008). However, this
situation is often only achieved in low input, low production
farming systems (e.g., Burkitt et al., 2007; McIvor et al., 2011),
on intrinsically low P-buffering capacity soils in productive
agriculture (e.g., sands), or where P-buffering capacity is low

because sorption sites for P are close to saturation and soil P
availability is relatively high (e.g., Syers et al., 2008). Elsewhere, P-
balance is relatively low, which contributes to an inefficient P use
(Richardson et al., 2011). Thus, Pmanagement must be improved
in order to enhance plant uptake in soils, as well as using the
less available and bound-P through a better understanding of the
processes happening in the soil-plant systems.

PHOSPHORUS IN THE SOIL-PLANT
CONTINUUM

In general, P is present in plants either as organic phosphate
esters or as free inorganic orthophosphate forms, representing up
to ca. 0.2% of plants dry weight, making it the most abundant
macronutrient in plants after nitrogen (N). However, unlike N,
the amount of P available for agriculture is finite (Bovill et al.,
2013). When compared to other essential macronutrients, P is
one of the less-abundant elements in the lithosphere (0.1% of the
total). P is an important component of organic molecules such
as nucleic acids, ATP and phospholipids; thus playing a crucial
role in energy metabolism of both plants and animals (Abel et al.,
2002; Vance et al., 2003). Phosphate is also involved in signal-
transduction pathways via phosphorylation/dephosphorylation,
hence regulating key enzyme reactions in general cellular
metabolism, including N fixation on N-fixing plants (Theodorou
and Plaxton, 1996; Schachtman et al., 1998; Marschner, 2012).

Plants acquire P from the soil solution predominately as
inorganic phosphate (Pi) (H2PO

−

4 /HPO−2
4 ), having maximal

uptake rates at pH 5-6 (Holford, 1997; Rae et al., 2003;
Marschner, 2012). It acquisition occurs by a plasma membrane-
localized phosphate transporter-mediated process, which has
been suggested to operate as a H+ co-transporter (Rae
et al., 2003; Raghothama, 2005). Phosphate transporters are
classified into four families: Pht1, Pht2, Pht3, and Pht4, which
are located on the plasma membrane, plastidial membrane,
mitochondrial membrane, and Golgi-compartment, respectively
(Lopez-Arredondo et al., 2014). Two different uptake systems
have been proposed: one with high-affinity, which is regulated by
Pi availability and activatedmainly under P deficiency, with a Km
of 3–7µM; and the other is a low-affinity system constitutively
expressed system with Km of 50–300µM (Bucher et al., 2001;
Preuss et al., 2010; Liu et al., 2011; Tian et al., 2017). Despite of
having a high-affinity acquisition system, P has a low availability
and poor mobility in the soil, being one of the most inaccessible
elements for plants (Holford, 1997). Concentrations of available
P in soil solution are extremely low, being generally lower than
10µM (Holford, 1997; do Nascimento et al., 2016), whereas in
wheat leaves and stems concentrations of over 100mM can be
achieved (Bauer et al., 1987; Seguel et al., 2017). Therefore, as
plants normally take up P faster than it is supplied by diffusion
a depletion zone around the root system is quickly created,
inducing P deprivation (Figure 1A; Hinsinger, 2001).

The rhizosphere encompasses the first millimeters of the soil
surrounding plant roots, where biological and ecological complex
processes occur. This is the critical zone for P dynamics as plants
roots are capable of modifying this environment through their
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FIGURE 1 | Phosphorus acquisition efficiency related traits of wheat and barley roots affected by arbuscular mycorrhizal symbiosis in comparison to a non-colonized

counterpart. (A) Representation of P depletion zone around the rhizosphere; (B) Access to smaller soil pores by AM fungal hyphae; and (C) Modulation of plant P

transporters following colonization.

physiological activities, especially by exudation of organic acid
anions, enzymes, secondary metabolites and sugars (Bais et al.,
2006; Giles et al., 2017). These processes not only determine
solubilization/mineralization, acquisition of soil nutrients and
microbial dynamics, but also control the efficiency of nutrient
use by plants and crops, therefore influencing productivity and
sustainability of the agroecosystems (Hinsinger et al., 2009;
Zhang et al., 2010).

PHOSPHORUS EFFICIENCY

Great efforts have been made in the last decade concerning P
efficiency. In this sense, agronomic strategies for increasing P
fertilizer availability to crops has been developed, for example, by
applying liquid fertilizers (Holloway et al., 2001) or by localized
fertilizer placement (Ma et al., 2009). However, those techniques
require modern technologies and increase operational costs. On
the other hand, breeding for P-efficient crop cultivars has been
advocated due to its relatively low cost, providing benefits to both
high and low-input systems (Rose et al., 2010).

Despite the growing knowledge in the field, there is still
controversy in the concept and measurement of efficiency, as it
has many definitions, and even different terms are often used
although they are calculated in the same way (Bovill et al.,

2013). Nowadays, P efficiency is understood as two different
mechanisms: i) the internal efficiency of allocation/mobilization
of P in order to produce higher biomass with lower input, and
ii) plant ability to acquire P from the soil, also known as P
acquisition efficiency (Wang et al., 2010; Rose and Wissuwa,
2012; Sandaña and Pinochet, 2016).

The internal use efficiency or P use efficiency (PUE) is here
defined as the amount of P accumulated in the tissue per biomass
unit (shoot and/or root) or grain produced (Rose and Wissuwa,
2012). It is related to a range of metabolic modifications that
can occur for reducing P demand during plant development
(Hammond et al., 2009; Vaneklaas et al., 2012). Improving
internal PUE will lead to a more resource-efficient use of P
rather than increasing uptake of potentially scarce P forms, as in
theory less P will be acquired by crops, minimizing P fertilizer
requirement and removal from fields. However, to date no crop
species or genotypes within species are known to be capable of
reducing its net P uptake if the demand is reduced (Rose and
Wissuwa, 2012). This is operating in sandy or low P-soption
capacity soils. On the contrary, in soils rich in sorbed P, which are
observed in the majority of acid soils, breeding programs focused
on the optimization of P scavenging mechanisms would be a key
role to improve P efficiency. Consenquently, this review has been
mainly focused on P acquisition efficiency.
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Phosphorus Acquisition Efficiency
While PUE aims to produce more biomass with lesser P costs, P
acquisition efficiency (PAE) is related to enhancing its acquisition
from soil, especially from unavailable forms, and for this purpose
root traits are a key factor. PAE is commonly expressed in the
literature as the relative difference of P taken up in low and high
P availability conditions (Vandamme et al., 2013; Seguel et al.,
2015, 2017). However, this definition does not take into account
the root traits involved. In this sense, Liao et al. (2008) made a
more realistic approximation by integrating root length and root
biomass. Nevertherless, other traits related to root architecture
and physiolgy must be integrated in the PAE definition due to
their key role in uptake as discussed below (Figure 2).

Root Architecture
P status is a major factor modulating root architecture, being
a higher root-to-shoot ratio the most evident change in the
majority of plants experiencing P deprivation (Wissuwa et al.,
2005; Gruber et al., 2013). Phosphate, the available form of P,
presents a heterogeneous distribution (patches) given its high
affinity for the soil matrix. Root P gathering implies a continuous
root growth due to the quickly depletion of rhizosphere P and the
need of looking for new hotspots in soils (Figure 1A).

The upper soil layer (0–10 cm)—known as topsoil—is the
zone where P availability for plants and microorganisms is
generally higher, mainly due fertilizers input in the surface and
its poor mobility throught soil profile. Important adaptations of
plants to access this richer environment are the development of
axial roots with shallower angle, enhancing adventitious rooting,
and greater density and dispersion of lateral roots and root
hairs (Wang et al., 2004; Lynch, 2007). These traits, together
with root length, diameter and surface area comprise the most
important inter- and intra-specifically functional variations of
plant root adaptations for PAE for most plant species. During
their screening for traits directly related to PAE, Manske et al.
(2000) found that higher root length density in top soil of wheat
crops was the most important root trait for P uptake, which

FIGURE 2 | General scheme showing the proposed PAE determination based

on carbon trading between all directly related P acquisition traits in AM

colonized plants.

was positively correlated with enhanced recovery of fertilized
P. Basal roots in some legumes (as bean and soybean) appear
in distinct nodes or “whorls,” which affect root growth angles
and therefore top soil exploration. Differences of up to 100% of
improved P acquisition can be found in common bean cultivars
as basal root whorl number varies among genotypes (Lynch,
2007; Miguel, 2011). However, a certain tradeoff occurs between
P and water uptake since plants with higher density of roots in
top soil and shallower angles have lower water use efficiency, as
water is usually more abundant in deeper layers under drought
conditions (Ho et al., 2005). Another obstacle in improving root
density is the associated carbon cost of producing root hairs, that
have to be compensated by producing either smaller or thinner
hairs and/or increased proportion of aerenchyma in the cortex
and less secondary growth of the stele (Lynch and Ho, 2005; Zhu
et al., 2010). Plants would otherwise spare carbon allocated in
developing “productive” parts.

Modeling root traits are clearly advantageous strategy for
enhancing PAE. However, screening and phenotyping for these
traits remain a complex challenge as soil-based study systems
are high technology based, and hydroponic/aeroponic systems
cannot totally emulate the complexity of the processes occurring
in the soil. Therefore, genotypes selected in this way do not always
show their superiority in field trials (van de Wiel et al., 2016).

Root Exudates
If P is present on fixed sources and/or unavailable forms, plants
having larger and/or more branched root architecture do not
significantly improve P acquisition. In this case, root physiology
and biochemical responses play a major role on accessing P from
sparingly available pools in soil. Hence, the exudation of low
molecular weight organic acids (LMWOAAs), proton extrusion,
phosphatase exudation and/or association with symbiotic and
non-symbiotic microorganisms present in the rhizosphere are
the most important adaptations developed by plants (Figure 1).

As inorganic P forms availability and enzymatic activity are
strongly affected by soil pH (Hinsinger, 2001), P solubility can
be increased by root-induced acidification in alkaline soils or by
pH increase of the rhizosphere in acidic and deeply weathered
soils (Gahoonia et al., 1992; Jones and Oburger, 2011). This
process occurs mainly because changes in pH in the rhizosphere
can influence surface charges on soil particles and therefore Pi
availability (Geelhoed et al., 1999). Plants have the ability to either
increase or decrease rhizospheric pH up to 2–3 pH units, mainly
by absorption or release of protons in order to equilibrate cation/
anion balance (Hinsinger et al., 2003). In the specific case of the
cereals wheat and barley, Gahoonia and Nielsen (1996) observed
that when rhizospheric pH was invariable, the plants displayed
significant genotypic variation in terms of PAE, indicating that
other mechanisms should also be involved in causing variation
on P acquisition.

Carboxylates and the corresponding carboxylic acids, also
known as LMWOAAs, constitute the major fraction of root
exudates during P deficiency (Figure 1). Usually, the most
common organic acid anions found in rhizosphere are lactate,
acetate, oxalate, succinate, fumarate, malate, citrate, isocitrate,
and aconitate (Jones, 1998). They have distinct functions on
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energetic cell metabolism, maintaining charge balance or osmotic
potential. It has been widely suggested that LMWOAAs can
improve P availability by mobilizing sparingly available P forms
in the soil solution. This occurs by chelating metals ions like Al,
Fe or Ca involved in P sorption and occupying sorption sites on
minerals (Jones, 1998). Pmobilizing activity through LMWOAAs
is based on their variable negative charge, which would allow the
complexation of metal cations and the displacement of anions
from the soil matrix. The above is supported by several studies
reporting an increase of organic acids exudation by roots in
response to P deprivation, especially in plants from Proteacea
family that possess cluster roots (Jones, 1998; Vance et al., 2003;
Delgado et al., 2013). In addition, the presence of LMWOAAs
in solution has been seen to increased P availability compared to
water treatments (Gerke, 1992; Khademi et al., 2009, 2010). The
efficiency in mobilizing P differs across LMWOAAs as follows:
citrate > oxalate > malate > acetate. However, organic acid
anion-induced P release depends on many factors, such as pH,
soil mineralogy and anion concentration (>100mM for citrate,
>1mM for oxalate, malate and tartrate) (Bolan et al., 1994;
Jones and Darrah, 1994; Lan et al., 1995). Indeed, the rates to
which Pi and organic anions are replaced in soil solution make
predictions of the real effect difficult. Organic acid anions have
a fast turnover as they can be quickly adsorbed in acidic soils
and rapidly degraded in alkaline counterparts, with half-lives of
several hours (Wang et al., 2010). Contrasting evidence found
that, despite exuding citrate, pea genotypes were not capable of
mobilizing P from Al-P and Fe-P complexes (Pearse et al., 2007).
Nevertheless, organic acid production constitutes an important
carbon cost in plantmetabolism, with 5–25% of total fixed carbon
by photosynthesis being used to sustain exudation. However, this
does not seem to significantly affect net biomass production as P
deficiency can reduce growth to an even greater extent (Johnson
et al., 1996; Keerthisinghe et al., 1998).

Sparingly available organic P forms represent between 30%
and 90% of total P in some soils (Borie et al., 1989; Jones
and Oburger, 2011). Substantial flows of P occur between
inorganic and organic P pools in soil through immobilization and
mineralization, being both processes mediated predominantly
by soil microorganisms (Oberson and Joner, 2005; Richardson
and Simpson, 2011). In order to utilize this P source,
organic compounds have to be mineralized; that is, organic
P substrates must be hydrolyzed by enzymatic activity of
phosphatases to release Pi. This activity seems to be more
pronounced in the rhizosphere and it is associated with a
depletion of soil organic P (Gahoonia and Nielsen, 1992; Chen
et al., 2002; Spohn and Kuzyakov, 2013). Phosphatases are
enzymes responsible for catalyzing the hydrolysis of phosphoric
acid anhydrides and esters (Schmidt and Laskowski, 1961).
These are classified by the Nomenclature Committee of the
International Union of Biochemistry and Molecular Biology into
5 groups: phosphomonoesterases (EC 3.1.3), phosphodiesterases
(EC 3.1.4), triphosphoric monoester hydrolases (EC 3.1.5),
enzymes acting on phosphoryl-containing anhydrides (EC
3.6.1) and on P–N bonds (EC 3.9) (Nannipieri et al., 2011).
Phosphomonoesterases are the most abundant enzymes in soils
and include acid and alkaline forms and phytases, among others.

To date, there is no evidence that any plants produce alkaline
phosphomonoesterases.

There is an increasing interest on phytases due to the fact
that they hydrolyze inositol phosphates (isomers and lower
order derivatives of inositol hexakisphosphate) which generally
constitute a major component of soil total organic P. Ranging
from 4 to 40% of total P in soils (Borie et al., 1989; Smernik
and Dougherty, 2007; Turner, 2007), inositol phosphates are
readily adsorbed to soil particles and can react with cations (Fe
and Al in acidic soils and Ca in alkaline ones) depending on
pH to form poorly soluble precipitates (Shang et al., 1992; Celi
and Barberis, 2005). However, in most plant species phytase
activity has limited capability to mineralize inositol phosphate
due to its low production and exudation from roots and the
poor availability of the substrate in solution (Richardson et al.,
2001; George et al., 2007). Attempts to creating transgenic
plants overexpressing phytases and/or other phosphatases have
been achieved (Lung et al., 2005; Wasaki et al., 2009) with
little successes under natural soil conditions, where substrate
availability is restricted (Lung and Lim, 2006; Wang et al.,
2009). Interestingly, phosphatase activities are higher near the
rhizosphere, with maximum activities found from 2 to 3.1mm
to the root surface for acid and 1.2 to 1.6mm for alkaline
phosphomonoesterases, showing a negative correlation with
rhizospheric organic P content in wheat plants (Nannipieri et al.,
2011). Phosphatase activity is also regulated by other factors,
such as soil mineralogy, organic matter content, P availability
and bacterial communities present in the rhizosphere (Joner and
Jakobsen, 1995; Snajdr et al., 2008; Stursova and Baldrian, 2011).

Microorganisms
Non-symbiotic soil microorganisms play a key role on
organic P ecosystem dynamics (Figure 1; Harvey et al.,
2009; Khan et al., 2010). It has been proposed that all alkaline
phosphomonoesterases found in soil have a microbial origin,
mainly bacterial (Tabatabai, 1994; Yadav and Tarafdar, 2003).
Additionally, the majority of Pi mineralized from phytase activity
is mediated by free-living bacteria and fungi (Unno et al., 2005;
Richardson and Simpson, 2011). Spohn et al. (2013) using the 33P
isotopic approach found that the release of root exudates could
be a plant strategy to increase P mineralization by enhancing
microbial activity.

Free-living soil microorganisms are believed to be more
efficient than plants in absorbing and incorporating P into their
biomass. Therefore, microbial P represents an important soil
sink (Xu et al., 2013) and a potential source of available P for
most plants as microbial P is located in more labile intracellular
compounds with a fast turnover (Oberson and Joner, 2005;
Bünemann et al., 2013; Hinsinger et al., 2015). Despite having an
important role in organic P dynamics, most research related to
free-living soil microorganisms to enhance PAE has been focused
on microorganisms capable of solubilizing sparingly available
P (Wakelin et al., 2004; Leggett et al., 2007). Microorganisms
can release protons, LMWOAAs, and other secondary organic
metabolites that may contribute to P solubilization fromminerals
(Jones and Oburger, 2011). Indeed, between 1-50% of soil
bacteria and about 0.5-0.1% of soil fungi can be classified as
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P-solubilizing microorganisms (Kucey et al., 1989; Gyaneshwar
et al., 2002). Fungal isolates (particularly the Genus Penicillium)
have been largely studied due to their great capacity for
solubilizing Pi in both solid and liquid media (Gyaneshwar
et al., 2002; Leggett et al., 2007; Morales et al., 2011). A group
of bacteria, usually denominated as plant-growth-promoting
rhizobacteria (PGPR), are widely found in the rhizosphere of
cropping and wild species and have the potential of enhancing
PAE mainly through influencing nutrient availability, such
as P, or via the indirect production of phytohormones, or
plant growth regulators (Richardson et al., 2009). Among the
latter, classical phytohormones as auxin, cytokinin, ethylene,
gibberellin, and abscisic acid are included. These regulators
influence root architecture and other features related to plant
development (Peleg and Blumwald, 2011; Vacheron et al., 2013).
Although the benefits of using PAE enhancing microorganisms
have been evidenced in laboratory and glasshouse conditions,
inconsistent results have been observed in field trials (Goos et al.,
1994; Karamanos et al., 2010), with the exception of arbuscular
mycorrhizal symbiosis established with certain soil fungi.

ARBUSCULAR MYCORRHIZAL
SYMBIOSIS

Mycorrhizal symbiosis is an association between plant and some
fungal species that generally colonize root or rhizoids, and is
beneficial to both partners, at least under some circumstances
(Jansa et al., 2011). Arbuscular mycorrhizal (AM) is the most
common and widespread type of mycorrhizal symbiosis (Trappe,
1987; Wang and Qiu, 2006; Smith and Read, 2008), found in
ca. 80% of plant species among all major plants lineages (Wang
and Qiu, 2006; Brundrett, 2009) and in most of agricultural
species (exceptions include Brassica spp., and Lupinus spp.).
Although AM symbiosis is facultative for many plant species,
fossil evidence indicates that the symbiosis matches with the
first appearance of land plants, more than 400 million years
ago, playing a crucial role in the development of terrestrial
plants (Bonfante and Genre, 2008; Brundrett, 2009). AM fungi
(subphylum Glomeromycotina) are obligate biotrophs that when
associated with plant roots can provide an enhanced foraging
system in order to improve acquisition of soil water and
nutrients, particularly P, and to improve resistance to biotic and
abiotic stresses in exchange of energy (using carbohydrates as
trade) for fungal growth and reproduction (Jansa et al., 2003a;
Smith and Read, 2008; Jung et al., 2012; Pozo et al., 2015; Armada
et al., 2016; Santander et al., 2017). P appears to be one of
major regulators of AM symbiosis establishment and efficiency,
as root colonization, P uptake through fungal pathway (Figure 1)
(See section Changes in P Transporters) and growth responses
diminish with increasing soil P availability (Smith and Read,
2008; Richardson et al., 2011; Smith et al., 2011). However,
plants can also modulate the symbiosis, by stimulating fungal
metabolic activity and hyphal branching among other effects
(Bücking and Shachar-Hill, 2005; Besserer et al., 2006), through
the exudation of strigolactones (Akiyama et al., 2005; Parniske,
2006; López-Ráez et al., 2017) Accordingly, the production of

these strigolactones is promoted by P deprivation, although
in wheat can be also promoted in a small fraction by N
deficiency (Yoneyama et al., 2007, 2012; López-Ráez et al.,
2008).

Despite its broad host range and that its cosmopolitan
distribution, AM diversity involves only ∼250 morphologically
and 350 to 1000molecularly definedAM fungi (Kivlin et al., 2011;
Öpik et al., 2014), with low endemism patterns at global scale
(Davison et al., 2015). The absence of AM fungal colonization is
rare in natural conditions in plants able to perform the symbiosis,
only being achieved in soils lacking AM fungal propagules or
in non-mycorrhizal (NM) plant species (Smith et al., 2011).
Commonly, the difference in plant growth in presence and
absence of mycorrhizal fungal partners is defined as mycorrhizal
growth responses (MGR) and vary widely from positive to
negative depending on plant/fungi species and growth conditions
(Johnson et al., 1997; Klironomos, 2003). When compared to
MGR observed from other cereal crops [positives responses
in maize (Sylvia et al., 1993; Karasawa et al., 2001) and rye
(Baon et al., 1994a); and excluding rice, which is often not
colonized or poorly colonized under continuous submersion
(Vallino et al., 2009)], wheat and barley plants present a high
variable response to AM colonization, being generally considered
as low and sometimes showing even negative effects in plant
growth (Hetrick et al., 1996; Grace et al., 2009). However,
positive responses can also be found when applying different
experimental conditions or analyzing at different growth stages,
which indicates that AM fungal inoculation under appropiated
circumstances can be an effective agronomic practice also in
these crops (Borie and Rubio, 1999; Seguel et al., 2016a,b,
2017).

Interestingly, a recent meta-analysis by Pellegrino et al. (2015)
looking at wheat responses to AM symbiosis inoculation under
field conditions found out that although straw biomass was
weakly correlated with root AM fungal colonization rate, grain
yield and P accumulation correlated positively. A review of
the main mycorrhizal growth responses and P uptake from
mycorrhizal and NM treatments in wheat (Table 1A) and barley
(Table 1B) are presented below highlighting the idea that growth
responses associated to AM symbiosis are not directly related to P
acquisition. Growth depletions upon AM fungal colonization are
normally attributed to an excess of photosynthates shared with
the fungal partner, which are estimated to be up to 20% of the C
fixed by the host plant (Jakobsen, 1995; Ortas et al., 2002; Li et al.,
2005; Morgan et al., 2005). However, some studies indicated that
growth depletion resulting from C drain to the fungal symbiont
do not apply in all cases. Hetrick et al. (1992) and Grace et al.
(2009) reported that growth reductions in wheat and barley did
not vary when associated with two different AM fungal partners
with contrasting capacity to colonize their roots (e.g., 61 and 5%,
respectively), and therefore, hypothetically different C demand
from the host plant (Hetrick et al., 1992). Even so, cereals benefits
from AM symbiosis despite growth and/or nutritional benefits
(such as net P uptake) are not apparent. Special techniques
such as isotopic labeling are necessary to demonstrate symbiosis
functioning (nutrient, water and carbohydrate exchange) in these
cases (Smith et al., 2004, 2009; Grace et al., 2009).
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Table 1A | Mycorrhizal growth responses (MGR) and P uptake on mycorrhizal (+AM) and non-colonized (–AM) wheat (T. aestivum L.) cultivars under greenhouse or field

conditions and at different days after sowing (DAS).

Wheat

cultivar

AM specie MGR (%) P uptake (mg/g) Exp.

conditions

Harvest

(DAS)

Observation References

+AM −AM

TAM-105 G. etunicatum 22 5.20 4.63 Field 175 Al-Karaki et al., 2004

Steardy G. etunicatum 19 5.43 4.67 Field 175 Al-Karaki et al., 2004

Tam-105 G. mossae 6 4.73 4.63 Field 175 Al-Karaki et al., 2004

Steardy G. mossae 6 5.20 4.67 Field 70 Al-Karaki et al., 2004

Tormes G. mossae 36 1.6 1.2 Pot 70 Azcón and Ocampo,

1981

Anza G. mossae 27 1.3 0.9 Pot 70 Azcón and Ocampo,

1981

Negrillo G. mossae −2 0.7 0.8 Pot 70 Azcón and Ocampo,

1981

7 Cerros G. mossae 107 1.5 0.8 Pot 70 Azcón and Ocampo,

1981

Bastion G. mossae 35 1.3 1.1 Pot 70 Azcón and Ocampo,

1981

Pane 247 G. mossae 15 2.0 1.3 Pot 70 Azcón and Ocampo,

1981

Lozano G. mossae 28 1.9 1.6 Pot 70 Azcón and Ocampo,

1981

Cocorit G. mossae 87 1.3 1.0 Pot 70 Azcón and Ocampo,

1981

Champlein G. mossae 4 0.9 0.9 Pot 70 Azcón and Ocampo,

1981

Castan G. mossae 3 1.9 1.8 Pot 70 Azcón and Ocampo,

1981

Tajo G. mossae 4 1.8 1.6 Pot 70 Azcón and Ocampo,

1981

Boulmiche G. mossae 3 1.1 1.0 Pot 70 Azcón and Ocampo,

1981

Jupateco G. mossae 0 1.5 1.2 Pot 70 Azcón and Ocampo,

1981

Neepawa G. intraradices −27 1.5 1.1 Pot 42 Goh et al., 1997

Neepawa G. intraradices −29 2.6 2.9 Pot 42 50mg P/kg Goh et al., 1997

Neepawa G. intraradices −11 3.8 4.1 Pot 42 100mg P/kg P Goh et al., 1997

Neepawa G. intraradices −24 5.0 6.1 Pot 42 300mg P/kg Goh et al., 1997

Newton G. etunicatum + G.
mosseae + G.
intraradices

−27 2.7 0.8 Pot 98 Hetrick et al., 1996

Turkey G. etunicatum + G.
mosseae + G.
intraradices

160 1.4 0.8 Pot 98 Hetrick et al., 1996

Lewjain G. intraradices −7 1.56 1.33 Field Tillering Mohammad et al.,

1998

Lewjain G. intraradices 10 1.17 1.06 Field Anthesis Mohammad et al.,

1998

Lewjain G. intraradices 19 0.82 0.70 Field Harvest Mohammad et al.,

1998

Lewjain G. intraradices 5 1.76 1.80 Field Tillering 30 kg P/ha Mohammad et al.,

1998

Lewjain G. intraradices −4 1.26 1.28 Field Anthesis 30 kg P/ha Mohammad et al.,

1998

Lewjain G. intraradices 11 0.93 0.71 Field Harvest 30 kg P/ha Mohammad et al.,

1998

(Continued)
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Table 1A | Continued

Wheat

cultivar

AM specie MGR (%) P uptake (mg/g) Exp.

conditions

Harvest

(DAS)

Observation References

+AM −AM

Diamondbird G. intraradices 8 1.8 1.5 Field 122 Ryan and Angus, 2003

Diamondbird G. intraradices −9 2.3 2.3 Field 122 20 kg P/ha Ryan and Angus, 2003

Diamondbird Scutellospora calospora 8 2.1 1.5 Field 122 Ryan and Angus, 2003

Diamondbird Scutellospora calospora −5 2.1 2.3 Field 122 20 kg P/ha Ryan and Angus, 2003

HPW-89 G. mosseae (local) 15 2.69 2.42 Field 150 Suri et al., 2011

HPW-89 G. intraradices 14 2.78 2.42 Field 150 Suri et al., 2011

HPW-89 G. mosseae (IARI) 13 2.79 2.42 Field 150 Suri et al., 2011

HPW-89 G. mosseae (local) 94 3.14 2.42 Field 150 50% P2O5

based on STCR

Suri et al., 2011

HPW-89 G. intraradices 103 3.36 2.42 Field 150 50% P2O5

based on STCR

Suri et al., 2011

HPW-89 G. mosseae (IARI) 95 3.34 2.42 Field 150 50% P2O5

based on STCR

Suri et al., 2011

HPW-89 G. mosseae (local) 154 3.67 2.42 Field 150 75% P2O5

based on STCR

Suri et al., 2011

HPW-89 G. intraradices 153 3.82 2.42 Field 150 75% P2O5

based on STCR

Suri et al., 2011

HPW-89 G. mosseae (IARI) 151 3.65 2.42 Field 150 75% P2O5

based on STCR

Suri et al., 2011

Laura G. clarum −10 1.42 1.10 Pot 95 0mg P/kg Xavier and Germida,

1997

Laura G. clarum −19 2.16 2.77 Pot 95 5mg P/kg Xavier and Germida,

1997

Laura G. clarum 12 2.76 2.22 Pot 95 10mg P/kg Xavier and Germida,

1997

Laura G. clarum −7 2.43 2.67 Pot 95 20mg P/kg Xavier and Germida,

1997

Neepawa G. clarum 17 0.42 0.57 Pot 95 0mg P/kg Xavier and Germida,

1997

Neepawa G. clarum −8 0.68 0.55 Pot 95 5mg P/kg Xavier and Germida,

1997

Neepawa G. clarum 4 1.03 1.07 Pot 95 10mg P/kg Xavier and Germida,

1997

Neepawa G. clarum 12 1.00 1.72 Pot 95 20mg P/kg Xavier and Germida,

1997

81(85) G. versiforme 3 1.03 0.77 Pot 56 Yao et al., 2001

Fengxiao 8 G. versiforme 39 0.98 0.70 Pot 56 Yao et al., 2001

NC37 G. versiforme 21 1.06 0.91 Pot 56 Yao et al., 2001

HD 2204 G. fasciculatum 78 1.10 1.02 Field 135 Khan and Zaidi, 2007

HD 2204 G. fasciculatum 146 1.15 1.02 Field 135 A. chrococum Khan and Zaidi, 2007

HD 2204 G. fasciculatum 155 1.89 1.02 Field 135 Bacillus Khan and Zaidi, 2007

HD 2204 G. fasciculatum 295 1.76 1.02 Field 135 A. chrococum +

Bacillus

Khan and Zaidi, 2007

HD 2204 G. fasciculatum 178 1.56 1.02 Field 135 A. chrococum +

P. variable

Khan and Zaidi, 2007

HD 2204 G. fasciculatum 193 1.57 1.02 Field 135 A. chrococum +

Bacillus + P.

variable

Khan and Zaidi, 2007

WH 283 Glomus sp. 88 15 0.17 0.18 Pot 55 Singh and Kapoor,

1999

WH 283 Glomus sp. 88 42 0.20 0.18 Pot 55 B. circulans Singh and Kapoor,

1999

(Continued)
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Table 1A | Continued

Wheat

cultivar

AM specie MGR (%) P uptake (mg/g) Exp.

conditions

Harvest

(DAS)

Observation References

+AM −AM

WH 283 Glomus sp. 88 51 0.20 0.18 Pot 55 C. herbarum Singh and Kapoor,

1999

WH 283 Glomus sp. 88 97 0.19 0.18 Pot 55 B. circulans + C.

herbarum

Singh and Kapoor,

1999

Star G. mosseae 17 2.5 2.2 Pot 60 Bavendorf soil,

200mg P/kg

Tarafdar and

Marschner, 1994b

Star G. mosseae 16 1.4 0.8 Pot 60 Bavendorf soil,

200mg

organicP/kg

Tarafdar and

Marschner, 1994b

Star G. mosseae 28 2.3 2.0 Pot 60 Niger soil,

200mg P/kg

Tarafdar and

Marschner, 1994b

Star G. mosseae 22 1.5 0.7 Pot 60 Niger soil,

200mg

organicP/kg

Tarafdar and

Marschner, 1994b

UP 2003 G. fasciculatum 6 2.63 0.42 Pot 80 Zaidi and Khan, 2005

UP 2003 G. fasciculatum 136 1.0 0.42 Pot 80 A. chroococum Zaidi and Khan, 2005

UP 2003 G. fasciculatum 142 1.61 0.42 Pot 80 P. striata Zaidi and Khan, 2005

UP 2003 G. fasciculatum 236 1.10 0.42 Pot 80 A. chroococum

+ P. striata

Zaidi and Khan, 2005

UP 2003 G. fasciculatum 108 1.31 0.42 Pot 80 A. chroococum

+ P. variable

Zaidi and Khan, 2005

UP 2003 G. fasciculatum 122 1.5 0.42 Pot 80 A. chroococum

+ P. variable +

P. striata

Zaidi and Khan, 2005

Mycorrhizal Influence on PAE Traits of
Wheat and Barley
Root Architecture and Surface Area
The root systems of grain cereals as wheat and barley consist of
two types of roots. The first type is known as primary or seminal
roots, and comprises between three to seven roots growing from
the seedling. They have 0.2–0.4mm diameter, occupying 5–
10% of total root volume in mature plants. The second type is
the secondary roots, also called nodal, crown, or adventitious
roots. These roots emerge from nodes at the base of main
stem and tillers 1–3 months after germination, having a larger
diameter (0.3–0.7mm) than primary roots (Hoad et al., 2001).
Significant genetic variation for root architectural traits has been
found among cereal cultivars (Kujira et al., 1994; Marschener,
1998). Interestingly, it was found out that the number of tillers
positively correlated with root length density and grain yield
of semidwarf bread wheat cultivars grown under P deficiency
(Manske et al., 2000). In addition, Gahoonia et al. (1997) showed
that the presence of root hairs increased the total root surface of
winter wheat by 95–341% and by up to 112–245% for barley.

Perhaps the main mycorrhizal-associated mechanism
enhancing plant PAE is the increase of explored soil volume
by the AM fungal hyphae, which can extend plant access from
millimeters to centimeters from root surface. Fungal hyphae
can also access soil pores that root hairs cannot due to their
smaller diameter (20–50 um) (Figure 1B). Moreover, AM roots

can improve water and nutrients uptake efficiency compared to
non-colonized roots due to a lower C cost per unit of hyphal
surface related to the root surface (Jansa et al., 2003a; Jakobsen
et al., 2005; Gregory, 2006; Schnepf et al., 2008).

There is a complex interplay between root architecture and
AM fungi and, as expected, root traits can influence how plants
respond to mycorrhizal colonization (Newsham et al., 1995;
Smith and Read, 2008). It is suggested that species with root
systems characterized by low root hair length and density, and
roots with relatively large diameters would display the greatest
growth benefits from the symbiosis (Brundrett, 2002; Fitter, 2004;
Smith and Read, 2008), especially under P-limiting conditions.
Several studies have corroborated this assumption by making
this comparison between wild and agricultural species, reporting
associations between root traits and MGR (Baon et al., 1994a;
Declerck et al., 1995; Schweiger et al., 1995; Jakobsen et al., 2005).
However, a recent meta-analysis carried out by Maherali (2014)
does not support this hypothesis.

Usually, root system architecture is also frequently modified
before and following the establishment AM symbiosis
(Scannerini et al., 2001; Hodge et al., 2009), especially through
some fungal exudates, known as Myc-factors (Figure 1; Maillet
et al., 2011; Mukherjee and Ané, 2011). These signal molecules
are exuded even in the absence of a host plant and are involved
not only in symbiotic signaling stimulating colonization, but also
acting as plant growth regulators by modifying root development
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Table 1B | Mycorrhizal growth responses (MGR) and P uptake on mycorrhizal (+AM) and non-colonized (–AM) barley (H. vulgare L.) cultivars under greenhouse or field

conditions and at different days after sowing (DAS).

Barley

cultivar

AM specie MGR

(%)

P uptake (mg/g) Exp.

conditions

Harvest

(days)

Observation References

+AM −AM

Vodka G. intraradices −4 0.28* 0.18* Pot 80 0mg P/kg Plenchette and Morel,

1996

Vodka G. intraradices −12 0.29* 0.21* Pot 80 20mg P/kg Plenchette and Morel,

1996

Vodka G. intraradices −8 0.32* 0.24* Pot 80 30mg P/kg Plenchette and Morel,

1996

Vodka G. intraradices −7 0.37* 0.27* Pot 80 40mg P/kg Plenchette and Morel,

1996

Vodka G. intraradices −11 0.48* 0.34* Pot 80 50mg P/kg Plenchette and Morel,

1996

Vodka G. intraradices −6 0.45* 0.41* Pot 80 60mg P/kg Plenchette and Morel,

1996

Vodka G. intraradices −8 0.44* 0.42* Pot 80 70mg P/kg Plenchette and Morel,

1996

Vodka G. intraradices −7 1.06* 0.76* Pot 80 110mg P/kg Plenchette and Morel,

1996

Vodka G. intraradices −3 1.65* 1.06* Pot 80 160mg P/kg Plenchette and Morel,

1996

Vodka G. intraradices 3 3.07* 2.92* Pot 80 310mg P/kg Plenchette and Morel,

1996

cv. SLB-6 G. mosseae 14 2.33 1.29 Pot 45 120

spores/100g dry

soil

Al-Karaki and Clark,

1999

cv. SLB-6 G. mosseae 39 2.77 1.29 Pot 45 240

spores/100g dry

soil

Al-Karaki and Clark,

1999

cv. SLB-6 G. mosseae 27 2.17 1.29 Pot 45 360

spores/100g dry

soil

Al-Karaki and Clark,

1999

Pallas P02 G. claroideum + G.
intraradices

−17 1.32 1.32 Pot 28 Jakobsen et al., 2005

brb G. claroideum + G.
intraradices

46 1.75 1.45 Pot 28 root hairless

mutant

Jakobsen et al., 2005

UC 566 G. constrictus 49 0.83 0.88 Pot 80 Jensen, 1982

UC 566 G. fasciculatus n.185 38 0.97 0.88 Pot 80 Jensen, 1982

UC 566 G. fasciculatus n. 0–1 45 1.00 0.88 Pot 80 Jensen, 1982

UC 566 Gigaspora margarita −14 0.73 0.88 Pot 80 Jensen, 1982

Rupal G. fasciculatus no. 0–1 2 2.82 2.79 Pot 102 Jensen, 1984

Rupal G. fasciculatus no. 92 6 3.20 2.79 Pot 102 Jensen, 1984

Rupal G. epigaeus 19 3.02 2.79 Pot 102 Jensen, 1984

Rupal Gigaspora margarita 1 2.62 2.79 Pot 102 Jensen, 1984

Rupal G. mosseae CA 0 2.98 2.79 Pot 102 Jensen, 1984

Rupal G. mosseae DK 5 3.07 2.79 Pot 102 Jensen, 1984

Rupal G. mosseae GB 7 3.23 2.79 Pot 102 Jensen, 1984

Rupal G. caledonius 3 3.43 2.79 Pot 102 Jensen, 1984

Rupal G. macrocarpus CA 13 3.12 2.79 Pot 102 Jensen, 1984

Rupal G. macrocarpus DK 6 3.36 2.79 Pot 102 Jensen, 1984

Rupal G. etunicatus 4 3.74 2.79 Pot 102 Jensen, 1984

Lofa Abed G. mosseae 0 4.38 4.35 Pot 23 No sterilized Khaliq and Sanders,

1998

Lofa Abed G. mosseae 0 2.26 2.46 Pot 52 No sterilized Khaliq and Sanders,

1998

(Continued)
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Table 1B | Continued

Barley

cultivar

AM specie MGR

(%)

P uptake (mg/g) Exp.

conditions

Harvest

(days)

Observation References

+AM −AM

Lofa Abed G. mosseae −14 2.07 1.95 Pot 67 No sterilized Khaliq and Sanders,

1998

Lofa Abed G. mosseae −15 1.96 1.81 Pot 91 No sterilized Khaliq and Sanders,

1998

Lofa Abed G. mosseae −13 2.17 2.08 Pot 116 No sterilized Khaliq and Sanders,

1998

Lofa Abed G. mosseae −5 4.72 5.21 Pot 23 Sterilized Khaliq and Sanders,

1998

Lofa Abed G. mosseae −20 2.29 2.59 Pot 52 Sterilized Khaliq and Sanders,

1998

Lofa Abed G. mosseae −24 2.57 2.04 Pot 67 Sterilized Khaliq and Sanders,

1998

Lofa Abed G. mosseae −23 2.33 1.64 Pot 91 Sterilized Khaliq and Sanders,

1998

Lofa Abed G. mosseae −26 2.3 1.57 Pot 116 Sterilized Khaliq and Sanders,

1998

Lofa Abed G. mosseae −3 0.17 0.16 Field 124 Sterilized 0 kg

P/ha

Khaliq and Sanders,

2000

Lofa Abed G. mosseae −2 0.2 0.18 Field 124 Sterilized 100 kg

P/ha

Khaliq and Sanders,

2000

Lofa Abed G. mosseae −2 0.13 0.12 Field 124 No sterilized 0 kg

P/ha

Khaliq and Sanders,

2000

Lofa Abed G. mosseae −2 0.14 0.14 Field 124 No sterilized

100 kg P/ha

Khaliq and Sanders,

2000

ACSAD 6 Mix 37 2.27 1.97 Pot 35 Soil A Mohammad et al.,

2003

ACSAD 6 Mix 87 2.54 1.97 Pot 35 Soil A + 25mg

P/kg

Mohammad et al.,

2003

ACSAD 6 G. intraradices 40 2.07 1.97 Pot 35 Soil A Mohammad et al.,

2003

ACSAD 6 Mix 28 2.76 2.29 Pot 35 Soil B Mohammad et al.,

2003

ACSAD 6 Mix 4 2.69 2.29 Pot 35 Soil B + 25mg

P/kg

Mohammad et al.,

2003

ACSAD 6 G. intraradices 14 2.42 2.29 Pot 35 Soil B Mohammad et al.,

2003

ACSAD 6 Mix 22 2.63 1.80 Pot 35 Soil C Mohammad et al.,

2003

ACSAD 6 Mix 20 2.78 1.80 Pot 35 Soil C + 25mg

P/kg

Mohammad et al.,

2003

ACSAD 6 G. intraradices 5 2.22 1.80 Pot 35 Soil C Mohammad et al.,

2003

Galleon G. intraradices −15 1.96 1.98 Pot 48 Soil temperature

10◦C

Baon et al., 1994b

Galleon G. intraradices −26 2.45 2.3 Pot 48 Soil temperature

15◦C

Baon et al., 1994b

Galleon G. intraradices −5 2.39 2.19 Pot 48 Soil temperature

20◦C

Baon et al., 1994b

*Phosphorus concentration on grain.

in some plant species (Maillet et al., 2011; Mukherjee and Ané,
2011). The formation of lateral roots has been found to be the
most affected trait, making roots progressively more branched,

probably to increase the number of suitable sites for colonization
(Harrison, 2005). However, mycorrhizal-induced modifications
on root traits are still poorly understood and seem to vary
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according to specific plant-fungal combinations, (Schellenbaum
et al., 1991; Berta et al., 2005; Fusconi, 2014). In the case of
wheat and barley, evidences are controversial as well. Behl et al.
(2003) found a significant increase of total root length in wheat
colonized by G. fasciculatum, being up to 90% higher than
control plants when co-inoculated with Azotobacter. The same
pattern was found by Al-Karaki and Al-Raddad (1997), who
studied the response of two durum wheat genotypes to AM
colonization, detecting an increase of 25 and 20% in root length.
On the other hand, AM fungal inoculation decreased wheat root
length and surface area under high rates of P application in a
calcareous soil (Mohammad and Malkawi, 2004).

Organic Acid Anion and Phosphatase Exudation
It has been suggested that AM fungi may have biochemical
and physiological capacities to increase plant PAE through
the uptake of P from sparingly available forms in soil, being
the exudation of protons, phosphatases and LMWOAAs the
suggested mechanisms involved in these processes (Figure 1;
Tarafdar and Marschner, 1994a; Koide and Kabir, 2000; Klugh
and Cumming, 2007).

AM fungi possess many genes encoding acid phosphatases
(EC 3.1.3.2, ACP) in their genomes, with at least seven genes
expressed in Rhizophagus clarus (Sato et al., 2015). However,
exudation of phosphatases was mostly associated with the cell
wall (Olsson et al., 2002) and their presence in the rhizosphere
has been demonstrated only in limited cases (Tarafdar and
Marschner, 1994a; Koide and Kabir, 2000). The magnitude of
these processes is questioned as it is difficult to isolate the
effects of plants, fungi and others microorganisms present in
the experiments under unsterile conditions (Joner and Jakobsen,
1995; Joner et al., 2000). However, Sato et al. (2015) in an
experiment with separated compartments for hyphal growth,
collected exudates from soil solution, sand culture and in
vitro monoxenic culture, providing strong evidence that the
corresponding acid phosphatase activity was originated from
R. clarus. Little information is available about the relationship
between AM symbiosis and changes in enzymatic exudation and
activity patterns in wheat and barley. Rubio et al. (1990) found
out a positive correlation between wheat colonization by AM
fungi and acid phosphatase activity in roots and soil, mainly
under P-limiting conditions. Using a different experimental
approach with separated compartments for hyphal growth,
Tarafdar and Marschner (1994a,b) observed depletion in organic
P content with a concomitant increase of phosphatase activity
when wheat was colonized by Glomus mosseae (Nicol & Gerd)
Gerd & Trappe. The same trend was found for barley in a
10 years’ field trial where P-deprived plants presented higher
colonization by AM fungi and higher phosphatase activity than
fertilized treatments (Goicoechea et al., 2004). In this sense,
Ye et al. (2018) in a recent report show the importance of
phosphatase activity in P acquisition by non-AM colonized
barley efficient genotypes through direct changes of rhizosphere
P fractions. Nevertheless, the interaction of AM association with
the phosphatase activity and the subsequent P acquisition by
efficient genotypes is still unclear.

The phosphate-solubilizing activities of AM fungi are still
controversial although AM plants have generally been shown to
increase the uptake of insoluble Pi (Yao et al., 2001; Tawaraya
et al., 2006; Klugh-Stewart and Cumming, 2009). In many
studies, mycorrhizal inoculants proved to alter the composition
and/or amount of total LMWOAAs exuded by Liriodendron
tulipifera and Andropogon virginicus, respectively (Figure 1;
Klugh and Cumming, 2007; Klugh-Stewart and Cumming, 2009).
However, direct evidence for solubilization of P by AM fungi
has not been obtained so far. Despite that AM fungi might not
exude LMWOAAs by themselves, they can, however, improve
P solubilization and/or mineralization indirectly by stimulating
the surrounding soil microbes via the exudation of labile C, thus
increasing local nutrient availability in the hyphosphere and in
soil patches beyond the root hairs (Hodge et al., 2010; Cheng
et al., 2012; Jansa et al., 2013). Recently, Kaiser et al. (2015)
using nanoscale secondary ion mass spectrometry imaging and
13C-phospho and neutral lipid fatty acids, traced the flow of
recently photoassimilated C and found out that a significant and
exclusive proportion of photosynthates was delivered through
AM pathway and used by different microbial groups compared
to C directly released by the roots.

The interaction between phosphate-solubilizing
microorganisms with AM wheat and barley plants has been
assessed by some researchers, with positive responses on growth
and P uptake. Omar (1998) observed that the interaction
between Funneliformis constrictum and the rock-phosphate-
solubilizing Aspergillus niger and Penicillium citrinum fungi
significantly increased biomass production of wheat plants under
all experimental conditions tested. The effect was more evident
in non-sterilized conditions. Bacteria from the Azotobacter and
Pseudomonas genera also improved AM wheat growth under
field and pot conditions, with positive correlation between AM
colonization and Azotobacter survival in the rhizosphere (Kucey,
1987; Behl et al., 2003; Zaidi and Khan, 2005; Yousefi et al.,
2011). Singh and Kapoor (1999) analyzed the effect of Bacillus
circulans, Cladosporium herbarum and an isolated AM fungus
in wheat where larger populations of phosphate-solubilizing
microorganisms in the rhizosphere of mycorrhizal roots and
an enhanced P acquisition in combined inoculation were
found. Similarly, the inoculation with Penicillium variable alone
negatively affected the biomass production of wheat. However,
when applied in combination with Azotobacter chroococcum,
Pseudomonas striata and the AM fungus G. fasciculatum, grain
yield significantly increased compared with the other treatments
(Zaidi and Khan, 2005).

In another study, wheat grain yield was enhanced by
92.8% in the presence of the rhizobacteria Pseudomonas
fluorescens and Burkholderia cepacia and the AM fungus
Claroideoglomus etunicatum (Saxena et al., 2013). The synergistic
effect of combined inoculation with plant growth-promoting
rhizobacteria and AM fungi on wheat was also proved to
be effective under field conditions. It was shown that the
combination of A. chroococcum and Bacillus sp. with G.
fasciculatum significantly increased the dry matter by 2.6-fold
and grain yield by 2-fold when compared to the control (Khan
and Zaidi, 2007). In another field study, Mehrvarz et al. (2008)
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found that although bacterial inoculation alone achievied the
maximum biological yield, its application combined with AM
fungi produced grains with higher weight.

Changes in P Transporters
In general, AM plants have two different pathways for P uptake
from the soil (Figure 1C) with different P transporters involved
in both of them. The direct P uptake is the plant endogenous
pathway, which occurs via root epidermis and root hairs, while
in the AM pathway the external hyphae is the responsible for
acquiring P from the medium and transport to intracellular
symbiotic interfaces where it finally goes to the plant (Grace
et al., 2009; Smith et al., 2011). According to their function,
plant transporters involved in the direct pathway are expressed
mostly in the root apex and root hairs (Gordon-Weeks et al.,
2003) and down-regulated inmore mature regions. However, up-
regulation of genes encoding phosphate transporters proved to
have little influence on P acquisition. Rae et al. (2004) studying
transgenic barley plants over-expressing a gene encoding for a
phosphate transporter found no improvement on P uptake under
any of the tested conditions, suggesting that post-transcriptional
mechanisms could be involved affecting the activity of these
transporters. AM transporters are less known due to their
obligate biotrophic nature, coupled with the fact that they
are multinuclear and heterocaryotic organisms (Sanders, 1999),
which make the use of traditional genetic approaches difficult
(Maldonado-Mendoza et al., 2001). These authors observed that
the expression of a phosphate transporter gene from the extra-
radical mycelium of Rhizofagus intraradices was regulated in
response to P concentrations in the environment surrounding
the extra-radical hyphae and that it was modulated by the overall
phosphate status of the AM fungus rather than the host plant
(Maldonado-Mendoza et al., 2001). Another important aspect
of the AM pathway is the presence of AM-inducible plant P
transporters, which are generally present at much higher levels
in AM roots than other P transporters (Javot et al., 2007).
These transporters are responsible for the exchange of P between
the fungal hyphae and plant cell. They have been found in
all AM plants investigated, regardless their growth response to
colonization, and are mainly expressed in the colonized cortical
cells, specifically in the arbusculated cells which is the place
where the nutrient exchange takes place (Bucher, 2007; Javot
et al., 2007). Genes encoding for AM-inducible transporters
have been described in cereals and include the HvPHT1.11 and
HvPHT1.8 for barley and TaPHT1.8, TaPHT1.11, TaPHT1.12,
and TaPHT1.14 for wheat (Teng et al., 2017).

The two P pathways were believed to be additive in their
contribution to plant nutrient uptake, and it was assumed
that direct pathway made a constant contribution to the total
P uptake, while the AM pathway participated as an extra
contribution in plants with positive growth responses (Pearson
and Jakobsen, 1993). However, further investigations proved
that AM colonization could reduce the direct uptake pathway
in some species (even in plants that respond positively to the
symbiosis as in Medicago truncatula), and deactivate completely
in others (Liu et al., 1998; Smith et al., 2004). Therefore, in
order to not become P deficient AM pathway should compensate

the reduced contribution of direct pathway (Smith et al., 2011).
Recent studies using radioactive P isotopes has shown that AM
pathway contributed significantly to total P uptake on wheat and
barley. In this sense, Smith et al. (2015) clearly demonstrated
that indigenous AM fungi contribute to wheat P uptake in
6.5–21% of total plant P in field conditions and 3–40% when
grown in pots. However, mycorrhizal wheat plants acquired less
P and produced less biomass when compared to their non-
mycorrhizal counterpart (Li et al., 2006; Grace et al., 2009). It
was suggested that negative growth responses could be generated
by suppression of the direct pathway in these species, especially
in the plants with very low colonization. Conversely, Grace et al.
(2009) found out that the magnitude of the negative responses of
barley was independent of contrasting colonization by two AM
fungal species (R. intraradices and F. geosporum). In addition,
the expression of P transporters belonging to direct pathway
in barley was not affected by the symbiosis as expected. Again,
this indicated that possible post-translational modifications of
regulatory components could be involved in the plant response.

AM FUNCTIONAL DIVERSITY

It is a general consensus that there is little specificity between
AM fungal and host plant species, and that AM plants can
be colonized by several AM fungal species at the same time
(Merryweather and Fitter, 1998; Jansa et al., 2003b; Smith et al.,
2011). However, the existence of different colonization patterns
could imply certain preferences for specific AM fungal species,
functional groups or the co-evolution strategies between specific
plant-fungus associations (Smith et al., 2009; Chagnon et al.,
2013; López-García et al., 2017). For instance, Mao et al. (2014)
showed that these preferences can exist even across wheat
cultivars as they found a variation in AM fungal community
composition, displaying a complex pattern of cultivar-AM fungal
interaction under experimental field conditions. Despite of the
projection of this work, the study of the AM fungal diversity
associated to wheat and barley is overall scarce. Considering the
wide distribution and economic importance of these two species,
only 131 and five AM fungal sequences in MaarjAM database,
the most complete sequence database of Glomeromycota (Öpik
et al., 2010), are associated to wheat (Triticum sp.) and barley
(Hordeum sp.) respectively, out of 5,296 sequences belonging
to Poaceae in the database. The few studies covering molecular
diversity in roots of wheat have shown differences between in
community composition associated to wheat and N-fixing crops
(Bainard et al., 2014; Higo et al., 2016). Communities associated
to wheat have also been found to vary during the growing
season and depend on P fluxes and degree of fertilization (Wu
et al., 2011; Bainard et al., 2014; Qin et al., 2015). The diversity
of AM fungal communities associated directly with roots of
wheat is overall high, including members of different taxonomic
families (e.g., Manoharan et al., 2017), but being predominatly
associated with Funneliformis spp., in conventional cropping,
and Claroideoglomus spp., in organically managed systems (Dai
et al., 2014). In agreement, with this result, one of the few studies
analyzing AM fungi in roots if barley, found that the abundance
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of Funneliformis spp. were associated with high levels of P in soil,
meanwhile Claroideoglomus spp. with lower levels of P (Cruz-
Paredes et al., 2017), but harboring a high phylogenetic diversity
as well (Manoharan et al., 2017). N fertilization has been seen
another affecting AM fungal community composition in barley
and interacting with the plant-fungus P trade, as tends to decrease
the efficiency in the interexchange (Williams et al., 2017).

The lack of information on molecular diversity has been
in some manner compensated with morphological studies of
spore communities. In this context, a high taxonomic diversity
has been found. Aguilera et al. (2014, 2017) analyzing spore
morphology on acidic soils under continuous wheat cropping,
found 24 AM fungal species, being Acaulospora and Scutellospora
the dominant genera. In another study under similar conditions
in acidic soils, Castillo et al. (2016b) described 26 fungal
species with a prevalence of Acaulospora and Claroideoglomus.
This dominance of Acaulospora spores in soils cropped with
wheat was also observed by Hu et al. (2015) in North
China and by Nadji et al. (2017) in Algeria, however in the
last study Glomeraceae species was also detected as highly
abundant.

The mycorrhizal growth response of a single host plant
species can differ across AM fungal species, and in the same
way, colonization by the same AM fungal isolated can result in
different growth responses in different plant species or genotypes
(Feddermann et al., 2010; Smith et al., 2011; Castillo et al., 2016a).
Indeed, previous studies have demonstrated a high variability
in the symbiotic response of different combinations of host
plant and AM fungi (e.g., Smith et al., 2004; Avio et al., 2006;
Jansa et al., 2008). Variations in MGR have also been revealed
across wheat cultivars, which can range from −2% to 107% in
different genotypes (Azcón and Ocampo, 1981). On the other
hand, Graham and Abbott (2000) showed a huge variation in
MGR when testing several AM fungal isolates in symbiosis with
wheat, being Scutellospora calospora the only one promoting
higher plant biomass. In a study in wheat showed that MGR
by different AM fungal species and their combination or with
F. mosseae alone resulted in negative growth responses, while
positive responses were reported when inoculated with R. clarum
(Talukdar and Germida, 1994). This variability in mycorrhizal
response comes from the fact that AM fungi are functionally
diverse both inter- and intraspecifically (see for example Koch
et al., 2004, 2017; Antunes et al., 2011). Differences among AM
fungal species have been suggested to exist in the colonization
rates in roots and soils depending on the AM fungal colonization
pattern (Hart and Reader, 2002; Powell et al., 2009). Perhaps,
although morphological traits seem to be well-conserved across
AM fungal phylogeny, i.e. morphological traits into the same
species and related clades are similar, most of variation in plant
growth promotion and P uptake occurs indeed intraspecifically
(Munkvold et al., 2004; Koch et al., 2017). In general, it had
been assumed that morphological traits, such as the hyphal
lenght in soil, could be good predictors of P uptake. However,
the above mentioned results on huge variabilities in plant P
uptake on morphological and phylogenetically similar fungal
isolates redirects the question toward which fungal functional
trait have to be measured to understand soil-plant P dynamics in

agricultural systems. Therefore, functional diversity among AM
fungal species and genotypes need to be considered.

FUTURE PERSPECTIVES

Despite displaying negative responses in some studies and being
considered as non-responsive by many authors, wheat and barley
plants presented positive growth and P responses by performing
AM symbiosis (Tables 1A,B respectively). There could be factors
involved in this large PAE variation and the processes affecting
both AM function and its benefits are still unknown. The
question is complex due to the many factors are involved:
plant genotype and fungal functional diversity, as well as their
mutual compatibility, soil variable conditions or agricultural
management needs to be studied. Indeed, the fact is that a major
part of the research carried out in the interaction between crop
cereals and AM fungi has only involved a handful of AM fungal
isolates. In addition, there is little information available regarding
the effect of different -or combined- AM fungal taxa colonization
and different genotypes of wheat and barley on root morphology,
development, exudation pattern, interaction with PGPR and/or
P-solubilizing fungi, and the interplay between the two pathways
of P uptake.

It is widely accepted that AM plants access to poorly available
sources more effectively than non-colonized plants, but the
mechanisms by which they are operating at field are not well
understood (Smith et al., 2015). Studies using more than one
crop cultivar and multiple AM species and genotypes should be
carried out in order to analyze the effect of fungal diversity on
PAE related traits as root length, root hair angles, changes on
root-mycorrhiza exudation patterns and degree of inhibition (or
not) of plant P transporters. In addition, these studies should
be traced along different stages of development, until grain
production, as it was found that although mycorrhization could
hamper biomass production, it enhanced P acquisition and final
grain production (Pellegrino et al., 2015). Isotopic, spectroscopic
and molecular techniques coupled to new experimental designs
could help identify some of the mechanisms mentioned
above and the genetic background behind the different
responses. In this sense, we suggest an inclusion of the
Carbon costs related to all P acquisition traits (not only root
architeture), specially those involved and altered by mycorrhizal
colonization, in order to support accurate phenotyping for
breeding programs focused on lowering P fertilizer inputs
(Figure 2).
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