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Stalk lodging resistance, which is mainly measured by stem diameter (SD), stalk

bending strength (SBS), and rind penetrometer resistance (RPR) in maize, seriously

affects the yield and quality of maize (Zea mays L.). To dissect its genetic

architecture, in this study multi-locus genome-wide association studies for stalk lodging

resistance-related traits were conducted in a population of 257 inbred lines, with tropical,

subtropical, and temperate backgrounds, genotyped with 48,193 high-quality single

nucleotide polymorphisms. The analyses of phenotypic variations for the above traits

in three environments showed high broad-sense heritability (0.679, 0.720, and 0.854,

respectively). In total, 423 significant Quantitative Trait Nucleotides (QTNs) were identified

bymrMLM, FASTmrEMMA, ISIS EM-BLASSO, and pLARmEBmethods to be associated

with the above traits. Among these QTNs, 29, 34, and 48 were commonly detected by

multiple methods or across multiple environments to be related to SD, SBS, and RPR,

respectively. The superior allele analyses in 30 elite lines showed that only eight lines

contained more than 50% of the superior alleles, indicating that stalk lodging resistance

can be improved by the integration of more superior alleles. Among sixty-three candidate

genes of the consistently expressed QTNs, GRMZM5G856734 and GRMZM2G116885,

encoding membrane steroid-binding protein 1 and cyclin-dependent kinase inhibitor

1, respectively, possibly inhibit cell elongation and division, which regulates lodging

resistance. Our results provide the further understanding of the genetic foundation of

maize lodging resistance.

Keywords: maize, stalk lodging resistance, multi-locus GWAS, QTNs, candidate gene

INTRODUCTION

Lodging is one of the most important factors threatening grain yield in maize, and can result in
reduced photosynthesis, nutrient transportation, and grain quality (Remison and Dele Akinleye,
1978). The annual yield losses caused by lodging are approximately 5–20% globally (Flintgarcia
et al., 2003). In some areas where strong wind and heavy rain occur frequently, the risk of lodging
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will significantly increase (Adelana, 1980). Some properties of the
stem itself are also strongly associated with lodging, such as the
structure and mechanical strength of the stem, and the number
of vascular bundles (Xu et al., 2017). In addition, Tesso and Ejeta
(2011) showed that stalk rot disease can reduce stem strength,
which further leads to lodging.

The most direct way to improve breeding populations for
quantitative traits is phenotypic selection, where the frequency
of favorable alleles is increased within a population over cycles of
selection. Previous studies on crop morphological traits showed
that plant stem diameter (SD), stalk bending strength (SBS), and
rind penetrometer resistance (RPR) are closely associated with
stalk lodging in the field (Kashiwagi et al., 2008; Hu et al., 2012,
2013). Furthermore, these three traits are significantly negatively
correlated with stalk lodging rate in the field (Ling, 2008). The
method for testing RPR involves the use of an electronic rind
penetrometer to penetrate the rind of the maize stalk, and the
maximum value of penetration is then indicated on the screen of
the instrument (Sibale et al., 1992). This method does not affect
maize seedling growth.

Genome-Wide Association Study (GWAS) is a very powerful
tool for dissecting the genetic basis of complex traits (Korte
and Farlow, 2013). To date, GWAS has been used to analyze
many agronomic traits such as leaf architecture, maize kernel
composition, plant height, oil biosynthesis in maize kernels
(Tian et al., 2011; Weng et al., 2011; Cook et al., 2012; Li
et al., 2013), and other traits, i.e., Some genetic research on
crop lodging has also been conducted using GWAS. Hu et al.
(2013) detected a complex polygenic inheritance for SBS-related
traits, including the maximum load exerted to breaking (Fmax),
the breaking moment (Mmax), and critical stress (σmax). A total
of seven quantitative trait loci (QTLs) explaining 65.7% of the
genotypic variance for these three traits. Ookawa et al. (2010)
used chromosome segment substitution lines (CSSL) to identify
an effective QTL, SCM2, for culm strength in rice, and the
near-isogenic line (NIL) carrying SCM2 showed enhanced culm
strength. Moreover, Lin et al. (2005) detected another six QTLs
for stem strength, culm wall thickness, pith diameter, and stem
diameter using a doubled-haploid (DH) population. Conversely,
GWAS for maize lodging has rarely been reported, and the
molecular mechanisms of variation for maize lodging-related
traits remain poorly understood.

Currently, the Bonferroni correction is applied to control
the false positive rate for single-marker GWAS, and some
important loci with small effects could be excluded by this
stringent correction. Multi-locus GWAS methodologies, such as
FASTmrEMMA, ISIS EM-BLASSO, mrMLM, pLARmEB, and
FarmCPU, have been shown to effectively resolve this issue.
The first four methods have higher power and accuracy for
quantitative trait nucleotide (QTN) detection and are more
suitable for genetic models (Liu et al., 2016; Wang et al., 2016;
Tamba et al., 2017; Wen et al., 2017; Zhang J. et al., 2017).
Additionally, a combination of various methods for multi-locus
GWAS has also been used to control the false positive rate (Wu
et al., 2016; Misra et al., 2017).

Our objectives were to (i) estimate the genetic variance and
heritability of SD, SBS, and RPR; (ii) estimate the correlations

between these three traits; (iii) detect significant quantitative
trait nucleotides (QTNS) for SD, RPR, and SBS in multiple
environments; (iv) dissect the genetic basis of variation of
lodging-related traits in maize, and (v) identify candidate genes
controlling maize stalk lodging-related traits.

MATERIALS AND METHODS

Phenotyping of Maize Lodging-Related
Traits
The SD, SBS, and RPR tests were conducted in an association-
mapping panel of 257 diverse inbred lines, which were collected
from tropical or subtropical and temperate regions (Li et al.,
2013). The names and pedigree information for this association
panel are presented in Table S1. The 257 inbred lines were
planted in three locations: Xishuangbanna (XSBN, N22◦0,
E100◦79′, Yunnan province, China, 2014), Bijie at Guizhou
(GZ, N27◦32′, E105◦29′, Guizhou province, China, 2014), and
Wenjiang (WJ, N30◦97, E103◦81′, Chengdu, Sichuan province,
China, 2014). The 257 inbred lines were sown in a randomized
complete block design in two replications. Each plot consisted of
a single row (14 plants) that was 3m in length and 0.75m from
the next row, and the plant density was approximately 62,000
individuals per hectare. Each line was grown in a single-row.

At the flowering stage, 10 plants from each line from each
replication were randomly selected for phenotyping and their
mean values were computed for the three traits: SD, SBS, and
RPR, as detailed in Wang L. M. et al. (2012). Briefly, a Vernier
caliper was used to measure the SD (mm) of the 15-cm region
above ground. A plant stalk strength appliance SY-S03 with a
measuring range from 5 to 500N and a resolution ratio of 0.1N
(Shijiazhuang Shiya Technology Co., Ltd) was used to measure
RPR and SBS, and the units of RPR and SBS are N/mm2 and N,
respectively.

Statistical Analysis of the Phenotype
SPSS version 21.0 (IBM, Armonk, NY, 2012) was used to analyze
the phenotypic data, including descriptive statistics (mean, range,
standard deviation, skewness, kurtosis) and the correlation
analysis. To obtain the best linear unbiased prediction (BLUP)
of the three lodging-related traits, the R package lme4 (version
3.4.2, https://www.r-project.org/) was fitted to each genotype:
Phenotype ∼ (1|Genotype) + (1|Repeat%in%Environment) +

(1|Genotype&Environment). Broad-sense heritability (h2) for
each trait was estimated as described by Knapp (Knapp et al.,
1985) as: h2 = σg

2/(σg
2
+σgy

2/r+σe
2/yr), where σg

2, σgy
2, and σe

2

are genetic, genotype-by-environment interaction and residual
error variances, respectively, r is the number of replications, and y
is the number of environments. All the variances were calculated
using a general linear model in SPSS.

Genotyping and ML-GWAS
Using publicly available genotypic data from previous studies,
all the 257 lines of the association panel were genotyped using
the Maize SNP50 BeadChip (Illumine, San Diego, CA), which
contains 56,110 SNP loci (Ganal et al., 2011; Yang et al., 2011; Li
et al., 2012). A total of 48,193 high-quality SNPs with a minor
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allele frequency (MAF) ≥0.05 were used in this study (http://
www.maizego.org/Resources.html). A total of 500 SNPs for each
chromosome were randomly selected to calculate population
structure, as described by (Pritchard et al., 2009). Briefly, five
independent simulations with 500,000 Markov Chain Monte
Carlo (MCMC) replications and 5,000 SNPs were performedwith
the number of subpopulations (k) ranging from 1 to 12. The
results calculated by STRUCTURE software were submitted to
the website http://taylor0.biology.ucla.edu/structureHarvester/,
and the optimal k was inferred. The relative kinship (K matrix)
between the lines was calculated as previously described inWang
et al. (2016) and Zhang J. et al. (2017). Four multi-locus GWAS
methods including mrMLM, FASTmrEMMA, pLARmEB, and
ISIS EM-BLASSO were used in this study. All parameters were
set at default values (Wang et al., 2016; Tamba et al., 2017; Wen
et al., 2017; Zhang J. et al., 2017).

Annotation of Candidate Genes and
Pathway Enrichment Analysis
Those genes with common SNPs in the GWAS result were
selected as candidate genes. The maize inbred line B73
assembly v2 that was used as the reference genome for the
candidate gene analyses was publicly available on the MaizeGDB
genome browser (Andorf et al., 2010). The methods of Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathways for these
candidate genes were annotated as described by Zhang Y. et al.
(2017).

RESULTS

Diversity and Heritability of the Three
Lodging-Related Traits
The phenotypic characteristics for SD, SBS, and RPR across
the three environments are shown in Table 1 and Figure 1. As
shown in Table 1, the skewness and kurtosis were less than 1
for SD and RPR, indicating that SD and RPR followed a normal
distribution. SBS was slightly skewed to the left (Figures 1A,C,E).
For the above three traits, the means of phenotypic values
decreased from XSBN, WJ, to GZ; the coefficients of variation
ranged from 11.87∼14.2, 36.42∼49.29, and 19.43∼23.45 (%),
respectively (Table 1, Figures 1B,D,F).

The results of correlation analysis were showed in Table 2.
Significant correlations between the traits across three
environments were observed. For example, the correlation
coefficients between SD and SBS in GZ, WJ, and XSBN were
0.762, 0.615 and 0.668 (P-values <0.01), respectively; the
correlations between SD and RPR across three environments
were relatively smaller (0.219 < r < 0.308, P < 0.01) than those
between SBS and RPR (0.507 < r < 0.652, P < 0.01). In addition,
a significant correlation between different environments was
observed for each of the three traits (Table 2).

In the analysis of variance for the three traits, highly
significant variations for genotypes (G) and environments
(E) and significant variation for genotype-by-environment
interaction were found (Table 3). This indicates the important

TABLE 1 | Phenotypic performance of the three lodging resistance-related traits in

257 inbred lines under three environments.

Trait Env. Mean Range SDD CV (%) Skew Kurt

SD GZ 13.62 9.23–19.44 1.93 14.20 0.43 −0.16

WJ 15.80 12.03–21.56 1.88 11.87 0.40 −0.26

XSBN 18.19 12.11–25.19 2.22 12.18 0.20 −0.06

SBS GZ 21.26 6.43–64.94 10.48 49.29 1.22 1.65

WJ 25.33 7.11–70.58 10.68 42.17 1.15 1.77

XSBN 32.25 7.91–70.84 11.74 36.42 0.70 0.32

RPR GZ 39.86 20.24–73.79 9.35 23.45 0.73 0.62

WJ 41.07 23.90–67.46 7.98 19.43 0.64 0.22

XSBN 45.03 27.54–79.79 8.87 19.70 0.82 1.39

SD (stalk diameter) is measured in the unit of millimeter (mm), SBS (stalk bending strength)

is measured in the unit of newton (N) and RPR (rind penetrometer resistance) is measured

in the unit of newton per square millimeter (N/mm2 ).

Env. Represents environments; GZ, WJ, and XSBN represent Guizhou, Wenjiang and

Xishuangbanna, respectively. SDD, standard deviation.

CV, coefficient of variation.

roles of both environment and G × E interaction. The broad-
sense heritabilities (h2) for SD, SBS, and RPR across the three
environments in the 257 inbred lines ranged from 0.679 (SD) to
0.854 (RPR), indicating the predominant role of genetic factors
for these traits (Table 3).

QTNs Identified by ML-GWAS
The 1K calculation of STRUCTURE indicated a peak (K = 2)
in the broken line graph reflecting the number of subpopulations
(K) (Figures S1A,B), indicating that the 257 maize inbred lines
could be divided into two subpopulations. Owning to significant
variations for each of the three lodging-related traits in 257
maize inbred lines across the three locations, BLUP values across
the three locations were also used for the GWAS. In total, 423
significant QTNs were identified at the critical logarithm of odds
(LOD) score (≥3) for these traits in the three environments using
mrMLM, FASTmrEMMA, PLARmEB and ISIS EM-BLASSO
(Table S2, Figure S2).

A total of 126 significant QTNs, mainly distributed on
chromosomes 1, 2, 3, 5, 6, 8, and 9, were detected to be associated
with SD (Table S2, Figure S2A). Among them, 29 QTNs were
common across the methods or the locations. The LOD of these
32 QTNs identified by mrMLM ranged from 3.03 to 6.25, and
the percentage of phenotypic variation explained by each QTN
(PVE) in GZ, WJ, XSBN, and BLUP was 30.96, 40.90, 44.21, and
54.38 (%), respectively. The LOD scores of the significant 21
QTNs identified by FASTmrEMMA ranged from 3.08 to 6.21,
and the PVE in GZ, WJ, XSBN, and BLUP for SD was 19.51,
20.51, 22.31, and 21.25 (%), respectively. For PLARmEB, the LOD
scores of the 43 QTNs ranged from 3.01 to 7.83 in GZ, WJ,
XSBN, and BLUP, and PVE was 13.84, 35.20, 31.17, and 36.84
(%), respectively. The LOD scores of the 66 QTNs detected by
ISIS EM-BLASSO ranged from 3.00 to 14.08, and the PVE in
GZ, WJ, XSBN and BLUP was 51.15, 41.37, 48.99, and 44.37 (%),
respectively.
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FIGURE 1 | Frequency distributions of SD (A), SBS (C), RPR (E) in 257 maize inbred lines and the boxplots for SD (B), SBS (D), RPR (F) in the three environments.

In total, 148 significant QTNs were correlated with SBS,
and were evenly distributed on 10 chromosomes under
the environments and BLUP model. Among them, 35
QTNs were common across the methods or the locations.
The LOD values of the 148 QTNs identified by mrMLM,
FASTmrEMMA, PLARmEB, and ISIS EM-BLASSO were
in the range of 3.01∼8.78, 3.32∼10.75, 3.09∼8.69, and
3.05∼12.18, respectively (Table S2, Figure S2B). Among
these QTNs, 43 identified by mrMLM explained 58.31, 53.47,

52.02, and 57.69 (%) of the phenotypic variation in GZ, WJ,
XSBN, and BLUP for SBS, respectively. Conversely, 26.98,
43.87, 17.02, and 26.10 (%) of the phenotypic variation was
separately explained by 28 QTNs using FASTmrEMMA.
Using PLARmEB, the PVE was 28.77, 30.40, 17.31, and
49.24 (%) in the different environments, respectively. The
PVE in GZ, WJ, XSBN, and BLUP for SBS was 53.88, 64.19,
56.12, and 49.64 (%), respectively, for the 73 QTNs by ISIS
EM-BLASSO.
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TABLE 2 | Phenotypic correlation coefficients between lodging resistance-related traits across three environments.

Trait SD SBS RPR

Environment GZ WJ XSBN GZ WJ XSBN GZ WJ XSBN

SD GZ 1

WJ 0.314** 1

XSBN 0.356** 0.568** 1

SBS GZ 0.762** 0.297** 0.255** 1

WJ 0.349** 0.615** 0.319** 0.524** 1

XSBN 0.300** 0.387** 0.668** 0.385** 0.485** 1

RPR GZ 0.219** 0.238** 0.131* 0.507** 0.381** 0.352** 1

WJ 0.078 0.308** 0.099 0.324** 0.652** 0.307** 0.661** 1

XSBN 0.036 0.279** 0.274** 0.283** 0.391** 0.614** 0.688** 0.644** 1

*,**Indicate significance level at P < 0.05 and 0.01, respectively.

Env. Represents environments; GZ, WJ, and XSBN represent Guizhou, Wenjiang, and Xishuangbanna, respectively.

TABLE 3 | Analysis of variance (ANOVA) for lodging resistance-related traits of

257 lines in three environments.

Trait Source of variation Mean square F Significance H2

SD Environment (E) 2,679.898 1,046.302 <0.01** 0.679

Genotype (G) 14.811 5.783 <0.01**

Replication 9.878 3.857 0.051

G × E 4.761 1.859 <0.01**

Residual Error 2.561 <0.01**

SBS Environment (E) 15,870.661 288.548 <0.01** 0.720

Genotype (G) 463.779 8.432 <0.01**

Replication 35.159 0.639 0.424

G × E 129.899 2.362 <0.01**

Residual Error 55.002 <0.01**

RPR Environment (E) 3,761.979 127.496 <0.01** 0.854

Genotype (G) 355.790 12.058 <0.01**

Replication 123.123 4.173 0.042*

G × E 51.886 1.758 <0.01**

Residual Error 29.507 <0.01**

*,**Indicate significance level at P < 0.05 and 0.01, respectively.

We detected a total of 149 RPR-associated QTNs with
LODs ranging from 3.01 to 14.39 in the three environments
and BLUP model, and were mainly located on chromosomes
1, 2, 4, 5, 7, 8, and 9 (Table S2, Figure S2C). And 47 QTNs
were common across the methods or the locations. Among
these, four QTNs were also detected in SBS traits. Of the 149
RPR-associated QTNs, 54, 31, 57, and 74 QTNs were separately
identified by mrMLM, FASTmrEMMA, PLARmEB, and ISIS
EM-BLASSO, which explained 60.91∼67.76, 23.53∼35.38,
30.90∼56.86, and 45.28∼63.77 (%) of the phenotypic variation,
respectively.

Verification of the Common QTNs by
Multi-Methods or Across Environments
A total of 107 QTNs were co-identified by at least two of
the methods or across different environments, among which

29, 34, and 48 were associated with SD, SBS, and RPR,
respectively (Table S3 and Figure 2). To verify the significance
of each common QTN, we divided the population into two
groups according to their allele types and compared the mean
phenotypic values between the two groups. For SD, the average of
the group containing the superior alleles was significantly greater
than the group containing inferior alleles, with the exception
of the SNPs SYN35339, SYN6428, PZE-102085765, and PZE-
101121408 (Table S4). As for SBS and RPR, the group with the
superior alleles showed a significantly larger mean than the group
with inferior alleles for every common SNP (Table S4). These
results verified the reliability and significance of the common
QTNs identified by these ML-GWAS methods.

Utilization of Superior Alleles in Elite Maize
Lines
Thirty elite inbred lines from China and America that
have excellent agronomic traits and serve as the parents of
commercialized hybrid varieties were included in the maize
population, which enabled us to evaluate the utilization of the
superior alleles for maize breeding. The results indicated that the
percentage of SD superior alleles in the elite lines ranged from
27.59 to 55.17% (Table S5). The lines with >15 superior alleles
indicated a significantly higher SD phenotypic value, with an
average of 14.50 in GZ, 16.75 in WJ, and 20.72 in XSBN, whereas
the lines with 0∼10 superior alleles had average SD values of
12.78, 14.13, and 16.61 in GZ, WJ, and XSBN, respectively
(Table S5, Figure 3A). The utilization of the SBS superior alleles
in the elite lines ranged from 25.71 to 65.71% (Table S5). The
phenotypic averages of the lines with >20 superior alleles were
30.56, 53.68, and 44.83 in GZ, WJ, and XSBN, respectively,
whereas those with 15∼20 superior alleles had a lower average
of 15.14, 15.87, and 25.85 in GZ, WJ, and XSBN, respectively
(Table S5, Figure 3B). As for RPR, the elite lines contained
29.17∼66.67% of the superior alleles (Table S5). The average RPR
in the lines with >30 superior alleles were 45.06, 50.69, and 49.01
in GZ, WJ, and XSBN, respectively; however, those lines with
<20 superior alleles had average RPR values of 29.05, 32.43, and
35.97 in GZ, WJ, and XSBN, respectively (Table S5, Figure 3C).
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FIGURE 2 | Repeatability and significance of the SNPs associated with the three lodging resistance-related traits in the three environments and BLUP. The

significance threshold is LOD = 3.0. (A–C) Represent SD, SBS, and RPR, respectively.

The results suggested that these superior alleles had an additive
effect on the lodging resistance-related traits. Further analysis
indicated that only eight of the 30 elite inbred lines hadmore than
50% utilization of all the superior alleles (Table S5, Figure 4),
implying that the superior alleles were not efficiently selected
during maize breeding. In future work, integrated utilization of
the superior alleles would be an efficient approach for lodging-
resistance breeding in maize by marker-assisted selection (MAS).

Candidate Genes Associated With
Common QTNs
To further understand the molecular basis of lodging-related
traits, we focused on the candidate genes that were directly
associated with the common QTNs. As a result, 19, 17,
and 30 candidate genes around their common QTNs were
found to be associated with SD, SBS, and RPR, respectively.
The annotations for the candidate genes are displayed in
Table S3, with seven transcription factors, eight kinase-related
proteins, and four transport proteins involved. These genes
mainly participate in metabolic pathway, genetic information
processing, environmental information processing, cellular
processes, and organismal systems (Table 4).

DISCUSSION

According to previous studies, the strength of the maize stalk
depends on the tissue and morphology, and the morphology of

the stalk is largely determined by themechanical stresses inmaize
(Von et al., 2015). SD, SBS, and RPR were demonstrated to show
potential as selective breeding indexes for improving lodging
resistance (Liu et al., 2011; Xiang et al., 2016). The heritability
and genetic models vary among different studies since the
calculations depend on the experimental populations, design, and
conditions (Lynch and Walsh, 1998). The genetic architecture
of lodging resistance-related traits has been illustrated in diverse
maize populations by linkage mapping. (Kashiwagi et al., 2008;
Hu et al., 2012, 2013). However, the genetic basis and the
molecular pathways underlying lodging resistance-related traits,
as well as the major genes associated with the traits, remain
largely unknown. In this study, we interpreted the natural
variation and revealed the genetic architecture of three lodging
resistance-related traits based on 257 maize inbred lines by ML-
GWAS analysis. And identified the candidate genes and their
possible pathways for stalk lodging resistance.

Genetic Basis of Lodging-Related Traits
In this study, the three lodging-related traits exhibited wide
phenotypic variation and were normally distributed. ANOVA
showed that the genetic effects and interactive effects between the
genetics and environment were both significant for these traits,
and the heritability (h2) was very high for SD, SBS, and RPR.
Previous studies on SD in different crops mainly focused on the
phenotypic correlations with stalk mechanical strength and the
identification of QTLs for SD, whereas the heritability of SD has
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FIGURE 3 | The phenotypic values in the maize elite inbred lines with different

numbers of superior alleles for SD (A), SBS (B), and RPR (C).

not been investigated (Lin et al., 2005; Kashiwagi et al., 2008). In
our study, h2 was 0.679 across the three environments for SD.
The Fmax,Mmax, and σmax can be used as tools to determine SBS
accreditation (Timoshenko and Gere, 1972). An h2 of 0.84 for
Fmax, was reported in rice, and in maize the h2 for Fmax, Mmax,
and σmax were 0.81, 0.79, and 0.75, respectively (Sun, 1987; Hu
et al., 2013). Both these estimates are in close agreement with
the estimates of SBS (h2 = 0.720) in our study (Table 3). The
h2 estimates were previously found to range from 0.81 to 0.92
for RPR in different maize populations (Flintgarcia et al., 2003;
Hu et al., 2012), which corroborates our value of 0.854 across
the three environments. In combination with previous results,
our findings suggest that all the measured lodging-related traits
showed high precision and that the three lodging resistance-
related traits generally exhibited high heritability.

Phenotypic correlations were observed among the three
lodging-related traits. For instance, the correlation coefficient
between SBS and RPR was 0.507 in GZ, 0.652 in WJ, and 0.614
in XSBN, respectively (Table S2). Meanwhile, we identified four
QTNs (PZE-101187823, SYN31353, PZE-105036664, and PZE-
107063605), all of which were associated with both SBS and RPR

(Table S3). The above results suggested that some genetic factors
were shared among these lodging resistance-related traits.

Common Candidate Genes Reveal the
Possible Molecular Basis of Lodging
Resistance
No previous studies have reported on GWAS for SD, SBS, and
RPR in maize. However, some studies have evaluated the QTLs.
Hu et al. (2013) detected two, three, and two QTLs for Fmax,
Mmax, and σmax, respectively, using 216 recombinant inbred
lines and 129 SSR markers. Among them, a QTL of σmax,

an important parameter for characterizing SBS, was located in
markers umc1993 and bulg1450. In the present research, a QTN
on Chr10 (position: 137282081 bp) for SBS locates exactly in the
interval of the σmax QTL reported by Hu et al. (2013) (Table S2).
The remaining QTNs in the present study are the first to be
reported as associated with lodging resistance-related traits in
maize.

Furthermore, we identified 63 common candidate genes
in total that were around common QTNs for lodging-related
traits. Notably, GRMZM5G856734 encodes Membrane steroid-
binding protein 1 (MSBP1) (Table S3), whose homologous gene
MSBP1 in Arabidopsis thaliana was proven to be involved in the
inhibition of cell elongation (Yang et al., 2005). Interestingly,
the candidate gene GRMZM2G116885 that encodes cyclin-
dependent kinase inhibitor 1 was associated with both SBS and
RPR. The homologous gene of GRMZM2G116885 in Arabidopsis
was reported to be involved in coordinated cell growth or cell
division (Bemis and Torii, 2007). It is generally known that
cell elongation and cell wall thickening regulate plant lodging
resistance (Fan et al., 2017). According to RNA-Seq data from
the previous study, the candidate genes GRMZM5G856734 and
GRMZM2G116885 had high expression levels in maize stems,
with the FPKM are 115.5 and 58.0, respectively (Sekhon et al.,
2012). In addition, more than 90% of the candidate genes
found in our study were expressed in maize stems, especially
the expression levels of GRMZM2G038126, GRMZM2G073934,
GRMZM2G058584, and GRMZM2G084181 were extremely high
(Table S3). The functional validation of these genes should be
addressed in future work.

Additionally, seven candidate genes were classified into
transcription factors based on their functional annotation,
including ethylene-responsive transcription factor 12, bHLH-
transcription factor 105, bHLH-transcription factor 65, GRAS
transcription factor, transcription factor VOZ1, and MYB 9
transcription factor (Table S3). Transcription factors are a group
of proteins that regulate targeted gene expression in particular
cells at a certain time, and are vital for cell division, growth,
and death (Latchman, 1997; Riechmann and Meyerowitz, 1998;
Guilfoyle and Hagen, 2007).

The Superiority of the New ML-GWAS
Previous studies demonstrated that the single-locus GWAS was
useful to dissect complex agronomic trait by using general linear
models (GLMs) and mixed linear models (MLMs) (Zhang et al.,
2010; Wang M. et al., 2012). High false positive rates are an
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FIGURE 4 | The superior allele SNP distributions in the 30 maize elite inbred lines. Blue and white colors represent superior and inferior alleles, respectively.
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obvious shortcoming for GLMs, because there is no kinship
among materials as covariate (Pace et al., 2015). The screening
criteria of significance for single-locus GWAS is P = 0.05/m
(m is the number of markers) (Perneger, 1998). Owning to
large number of SNPs (Gordon et al., 2016), some important
loci might be excluded under the stringent criteria in MLM.
To remedy the shortcomings of the methods mentioned above,
ML-GWAS methods have recently been explored, including
mrMLM (Wang et al., 2016), pLARmEB (Zhang J. et al., 2017),
ISIS EM-BLASSO (Tamba et al., 2017), and FASTmrEMMA
(Wen et al., 2017). Several studies have individually analyzed
published data using themulti-locusmethods, and have indicated
that these methods constituted effective approaches with high
detection power and less stringent criteria (Wang et al., 2016;
Tamba et al., 2017; Wen et al., 2017; Zhang J. et al., 2017).
In our study, a total of 126, 77, 176, and 230 significant
QTNs were detected for three lodging-related traits using
mrMLM, FASTmrEMMA, pLARmEB, and ISIS EM-BLASSO,
respectively (Figure S2, Table S2). A comparison of the four
methods showed that ISIS EM-BLASSO was more powerful than
the other three multi-locus methods in the identification of
QTNs for lodging resistance-related traits (Table S2, Figure S2).
Furthermore, some stably expressed QTNs were detected in
the multi-environment and BLUP model using multi-methods
(Tables s2, s3). Notably, the candidate genes GRMZM5G856734
and GRMZM2G116885, were proven to inhibit cell elongation
and division, which regulates lodging resistance. However, only
4, 4, and 7 SNPs were detected for SD, SBS, and RPR, respectively,
from FarmCPU (R packages FarmCPU, K and PCA calculated
by SPAGeDi software and GAPIT package, respectively. The
threshold is P-value = 0.05/48193) (Table S6). In addition, six
of these SNPs were also be detected by ML-GWAS methods.
Using GAPIT (R packages GAPIT) method, only one SD-
associated SNP was found in XSBN, which was also detected
in the ML-GWAS methods (Table S6). Our study demonstrated
that improved efficiency and accuracy could be achieved by a
combination of the new multi-locus methods for identification
of lodging resistance-related QTNs in maize.

CONCLUSIONS

SD, SBS, and RPR were used in this study to dissect the
genetic basis of stalk lodging resistance in maize using ML-
GWASmethods. Among all the significantly associated QTNs for
the three traits, 107 were commonly identified across multiple
methods or environments. Around these common QTNs,
sixty-three candidate genes were responsive for maize lodging

resistance. These QTNs provide the important information for

the marker-assisted selection, and these candidate genes should
improve our understanding of the molecular basis of maize
lodging resistance.
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Figure S1 | Population structure of the 257 maize inbred lines based on 48,193

SNP markers. (A) Plot of delta.K against putative K ranging from 1 to 12. (B)

Stacked bar plot of ancestry relationship of the natural population.

Figure S2 | Manhattan plots showing all the significant SNPs associated with

lodging resistance-related traits using four ML-GWAS methods across three

environments and BLUP. (A–C) represent SD, SBS, and RPR, respectively. Points

of different colors represent different methods and environments.

Table S1 | Pedigree information of the maize accessions used in this study.

Table S2 | ML-GWAS detected significant signals associated with SD, SBS, and

RPR across the three environments and BLUP.

Table S3 | Repetitive SNPs and their information by ML-GWAS consistently

identified in multiple methods or environments.

Table S4 | Distribution of the important SNPs superior alleles in the 257 inbred

lines.

Table S5 | Distribution and utilization percentage of the important SNPs superior

alleles in the 30 maize elite inbred lines.

Table S6 | Significant signals associated with SD, SBS, and RPR, detected by

FarumCPU and GAPIT.
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