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The sequence of changes in crop responding to soil water deficit and related critical
thresholds are essential for better drought damage classification and drought monitoring
indicators. This study was aimed to investigate the critical thresholds of maize growth
and physiological characteristics responding to changing soil water and to reveal
the sequence of changes in maize responding to soil water deficit both in seedling
and jointing stages based on 2-year’s maize field experiment responding to six initial
soil water statuses conducted in 2013 and 2014. Normal distribution tolerance limits
were newly adopted to identify critical thresholds of maize growth and physiological
characteristics to a wide range of soil water status. The results showed that in both
stages maize growth characteristics related to plant water status [stem moisture content
(SMC) and leaf moisture content (LMC)], leaf gas exchange [net photosynthetic rate
(Pn), transpiration rate (Tr), and stomatal conductance (Gs)], and leaf area were sensitive
to soil water deficit, while biomass-related characteristics were less sensitive. Under
the concurrent weather conditions and agronomic managements, the critical soil water
thresholds in terms of relative soil moisture of 0–30 cm depth (RSM) of maize SMC,
LMC, net Pn, Tr, Gs, and leaf area were 72, 65, 62, 60, 58, and 46%, respectively,
in seedling stage, and 64, 64, 51, 53, 48, and 46%, respectively, in jointing stage. It
indicated that there is a sequence of changes in maize responding to soil water deficit,
i.e., their response sequences as soil water deficit intensified: SMC ≥ LMC > leaf gas
exchange > leaf area in both stages. This sequence of changes in maize responding
to soil water deficit and related critical thresholds may be better indicators of damage
classification and drought monitoring.

Keywords: indicators, maize, sequence of changes, soil drought, soil moisture content, critical thresholds

INTRODUCTION

Crop growth is affected by a variety of abiotic factors, such as climate, cultivation, soil fertility,
water efficiency, etc. (Meng et al., 2005; Guo et al., 2010; Alkaisi et al., 2015; Testa et al., 2016).
Many of the impacts of climate and agronomical are felt by crops through the filter of soil moisture
dynamics, because crops get their water from soil. Therefore, soil water deficit has the most
significant impact on crops (Denmead and Shaw, 1962; Porporato et al., 2001). It restricts the
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growth, development, and yield of crops worldwide,
consequently making losses exceeding the total caused by
all other adverse factors (Ray et al., 2002; Neumann, 2008; Zivcak
et al., 2008; Farooq et al., 2009; Bajgain et al., 2016; Petrov
et al., 2017). Extensive studies on plant responses to soil water
deficit at various levels (i.e., gene, cell, organ, individual) have
been reported, serving a great purpose in understanding plant’s
response mechanisms to soil water deficit (Blum, 1996; Tardieu,
1996; Lawlor, 2002; Yordanov et al., 2000; Neumann, 2008;
Ghannoum, 2009; Anjum et al., 2011; Pinheiro and Chaves,
2011). However, majority of these studies focused on qualitative
impacts of soil water deficit with certain intensities on crop
growth, based on experiments with very limited amounts of soil
water levels.

In fact, only when soil water below a critical point that
would exert significant impacts on crops (Blum, 1996; Sadras
and Milroy, 1996; Ray et al., 2002; Streck, 2004; Novák,
2009; Gholipoor et al., 2012; Ramadas and Govindaraju, 2015;
Esmaeilzade–Moridani et al., 2015). Any plant constituent
and physiological process can be altered sequentially if soil
water deficit is severe enough and lasts long enough, but
they probably respond to different critical soil water status,
namely, they have different sensitivities to soil water deficit
(Hsiao, 1973; Hsiao et al., 1976; Andersen et al., 2002; Wu
et al., 2011b). The sequence of changes in crop responding to
soil water deficit and related critical thresholds are essential
for identifying the extent of crop damage and improving
drought prevention and resistance capabilities, which have
been seldom drawn attention yet (Andersen et al., 2002).
Hsiao et al. (1976) had reviewed extensive studies and evolved
the sequence of changes of plant physiology and metabolism
occurred in minutes or hours responding to water stress. Some
studies attempted to identify critical soil water status of plant
physiological and growth traits, but they were generally confined
to certain aspects of plant growth, such as leaf expansion and
leaf transpiration, lacking a comprehensive comparison among
various levels of growth characteristics that reflect the plant
growth status in response to water stress (Nable et al., 1999;
Ray et al., 2002; Casadebaig et al., 2008; Heinemann et al.,
2011).

The critical soil water thresholds were usually obtained
either by direct observation of the critical points when the
plant characteristics varied significantly or by calculating the
stagnation points of the regression models between crop growth
characteristics and their soil water status (Sadras and Milroy,
1996; Xu et al., 2010). Typical regression models included logistic
regression model (Soltani et al., 2000; Toms and Villard, 2015),
negative exponential regression model (Sadras and Milroy, 1996),
quadratic polynomial model (Xu et al., 2010), plateau regression
model (Nable et al., 1999; Wang et al., 2008; Yan et al., 2010;
Wu et al., 2011a; Meir et al., 2015), and linear spline model
(Soltani et al., 2000). However, the observed samples were usually
quite limited due to the restriction of simulation experiments
in the amounts and ranges of soil water gradients, which may
not include the critical thresholds or be unable to establish a
regression model well enough to accurately identify the critical
thresholds.

Therefore, investigations on quantitative responses of various
crop growth characteristics to a wide range of soil water
conditions were of great necessity in order to accurately identify
the sequence of changes in plant responding to soil water deficit
and related critical soil water status, which would contribute to
indicate the occurrence and development of drought and serve to
more timely drought monitoring (Thompson et al., 2007).

Maize (Zea Mays L.) is the leading crop worldwide and pivotal
to current and future global food security (Anjum et al., 2016).
Usually, maize predominates in hot, arid regions which are prone
to frequent drought and would likely be exacerbated by global
climate change (Ghannoum, 2009). In this study, a 2-years’ maize
field experiment responding to soil water deficit were conducted,
the aims were to (1) reveal the sequence of changes in maize
responding to soil water deficit, and (2) identify critical soil water
thresholds related to the sequence of changes in maize.

MATERIALS AND METHODS

Site Descriptions
The research site was at Gucheng Agrometeorological
Experimental Station of China Meteorological Administration. It
was located in Dingxing County, Baoding City, Hebei Province,
China (39◦ 08′ N, 115◦ 40′ E), belonging to the maize planting
zone across wide Northern China. The station was equipped
with an auto-rain-shelter, which covered an area of 750 m2 and
was divided into 42 trial plots, each was 2 m-wide × 4 m-long
and was isolated by 3 m-deep concrete walls to prevent soil water
exchange horizontally. The site has a typical cinnamon soil,
containing 13.67 g kg−1 organic C, 0.87 g kg−1 total N, 25.76 mg
kg−1 available P, and 118.55 mg kg−1 available K. The soil bulk
density is 1.37 g cm−3, and pH is 8.1. The average field capacity
and wilting point is 0.23 and 0.07 g g−1, respectively (Fang et al.,
2013).

Experimental Design
A 2-years’ maize field experiment responding to six initial soil
water statuses was conducted in 2013 and 2014. Zhengdan 958,
the most popular maize genotype in China was used in both years’
experiments. In 2013, the maize was sown on 27 June with a
50 cm line spacing and a 30 cm row spacing, giving a plant density
of 6.5 plants m−2. In 2014, the maize was sown on 24 June with
a 50 cm line spacing and a 25 cm row spacing, giving a plant
density of 8.0 plants m−2. Diammonium Phosphate fertilizer was
applied at 300 kg ha−1 before sowing each year, equal to the
fertilization level of local field. All other agronomic managements
were identical to the local field in both years.

A completely randomized block design with three replicate
plots was applied in both years. Irrigation was performed every
other day to ensure the relative soil moisture of 0–50 cm depth of
each trial plot is above 65%, maintaining normal growth of maize
plants before they expanded the 7th leaf (July 24th, 2013) and the
3rd leaf (July 2nd, 2014), respectively (Guo et al., 2001; Xiao et al.,
2011). Then, six different irrigations were performed. In 2013, the
irrigation amounts (named 1st–6th treatments) were 100, 80, 60,
40, 25, and 15 mm, respectively, equivalent to 125, 100, 75, 50, 30,
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and 20% of the local average precipitation in late July (80 mm),
respectively. In 2014, the irrigation amounts (named 1st–6th
treatments) were 150, 120, 90, 60, 30, and 10 mm, respectively,
equivalent to 100, 80, 60, 40, 20, and 7% of the local average
precipitation in July (150 mm), respectively. No extra irrigation
was performed thereafter. Precipitation was blocked completely
by the auto-rain-shelter during the entire growth period.

Measurements
We made one observation in the seedling stage on July 9th, 2014,
and two observations in the jointing stage on July 31st, 2013, and
August 8th, 2013, respectively. Eleven indicators involving plant
water status, leaf gas exchange, morphology and biomass of maize
were measured as candidates to investigate their responses to soil
water deficit. They are moisture content of the stem and the leaf
(LMC and SMC), net photosynthetic rate (Pn), transpiration rate
(Tr), stomatal conductance (Gs), leaf area (LA), root–shoot ratio
(R/S), dry biomass of the leaf, the stem, and the root (LDB, SDB,
and RDB), and total dry biomass of the plant (TB).

Leaf Gas Exchange
Measurements on leaf gas exchange were performed with a Li-
6400 portable photosynthesis system equipped with a standard
leaf chamber (LI-COR , Lincoln, NE, United States). The net
Pn, Tr, and Gs were measured on the youngest fully expanded
leaf under natural light between 9:00 am and 11:00 am in clear
weather.

Leaf Area (LA)
The length (Li) and width (the widest part of the leaf, Di) of
every fully expanded leaf on the sample plants were measured.
The length of inadequately expanded leaf was measured based on
its exposed part from the last leaf, and its width was estimated
based on its original shape without being spread out. LA (m2) of
individual maize plant was obtained by Eqn. (1):

LA =
n∑
i=1

Li × Di × k (1)

Where k (=0.75) is the shape factor (Francis et al., 1969).

Biomass and Plant Water Status
The fresh mass of leaf and stem was weighed, while the root was
rinsed. They were separately put into kraft bags and dried in an
oven at 80◦C for more than 24 h until their weights were constant.
Then, biomass of leaf, stem, and root was weighed, respectively.
Stem moisture content (SMC), leaf moisture content (LMC), and
root/shoot ratio (R/S) were calculated according to the following
formulas (Peuke et al., 2002):

SMC = (SFB− SB)/SFB× 100%
LMC = (LFB− LB)/LFB× 100%
R/S = RB/(LB+ SB)

Where SFB, SB, LFB, LB, and RB were stem fresh biomass, stem
dry biomass, leaf fresh mass, leaf dry biomass, and root dry
biomass, respectively.

Soil Water Content
Soil water content was measured by oven-drying method. One
sampling point was randomly selected between two rows of
maize in a trial plot and thus three samples obtained from each
treatment in total. Soil samples of every 10 cm were collected
from each sampling point. The total depth was up to 50 cm in
2013, while it was 90 cm in 2014. The samples were weighed both
before and after they were dried up in an oven at 105◦C. The
relative soil moisture of 0–30 cm depth (RSM) was used here to
describe soil water status (Eqn. 2), because it was most closely
related to maize growth characteristics among all these measured
depths (Supplementary Tables S1–S3).

RSM =

3∑
i=1
(FSi − DSi)/

3∑
i=1

DSi

FC
× 100% (2)

Where FS and DS were fresh and dry weights of soil samples from
certain layers; I was the number of soil layer (i = 1, 2, 3 refers to
soil layer 0–10, 11–20, and 21–30 cm, respectively); FC was the
field capacity (=0.23 g g−1).

Meteorological Data
Meteorological data including temperature, relative humidity,
wind speed, and total radiation at 1 min interval was
obtained from the automatic weather station of Gucheng
Agrometeorological Experimental Station. Vapor pressure deficit
(VPD) was calculated by temperature and relative humidity.

Tipping Points of Maize Growth and
Related Critical RSM Thresholds
The tipping point of plant growth characteristic is the very point
when values of the characteristic start to deviate significantly
from those with sufficient water supply, resulting from a decline
in soil water content below a critical level (Thompson et al.,
2007; Czajkowski et al., 2009). Here, the method named as one-
side upper and lower tolerance limits for normal population
was newly adopted to identify the tipping point of each growth
characteristic.

Tolerance limit refers to either of two quantities that
specify the endpoints of a tolerance interval. A tolerance
interval is an estimated interval within which at least a certain
proportion P of the population falls at a given level of
confidence γ (ISO 16269-6, 2005; Krishnamoorthy and Mathew,
2009; Young, 2014). Their rigorous statistical definitions could
be found in Young (2014). ISO 16269-6 (2005) provides
computational formulas of tolerance intervals and limits for
different distribution populations. Given the sampling methods
of the field experiment, formulas of one-side upper and lower
tolerance limits for normal population with unknown variance
and unknown mean were used here (Eqn. 3 and 4).

U(X) = X̄ + k× S (3)

L(X) = X̄ − k× S (4)

In the above, U(X) and L(X) are one-side upper and lower
tolerance limits for normal population, respectively; X̄ is the
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sample mean and S is the sample variance; k is the tolerance
factor, varying with the sample size n, the confidence level P, and
the γ percentile of the population included, which could refer to
ISO 16269-6 (2005) or be calculated directly (Krishnamoorthy
and Mathew, 2009).

To be specific, according to the results of Duncan multiple test,
the growth characteristics from experimental treatments which
had received larger amounts of irrigation while had no significant
differences were thought to be still free of soil water deficit. Its
tipping point was obtained by calculating the tolerance limit of
the observed samples from these treatments. In terms of a growth
characteristic which decreases as soil moisture drops below a
certain level, its tipping point could be found by calculating the
lower tolerance limit of these observed samples. It means that
the characteristic would be unlikely lower than this tolerance
lower limit when soil water is sufficient, while values of this
characteristic would be probably lower than this limit once it
was confronted with soil water stress. Accordingly, the tipping
points of growth characteristics whose values would increase
once confronted with water stress could be found by calculating
the upper tolerance limits of observed samples that free of soil
water deficit.

Since the formulas above could be used only when the samples
normally distributed, we should first check the normality of the
samples.

The tipping points of different growth characteristics were
further quantified by their values of critical RSM thresholds,
which were calculated in terms of the tipping points and the
quadratic polynomial regression models between each growth
characteristic and RSM (Eqn. 5).

X = a× RSM2
+ b× RSM + c (5)

Where X is the observed values of a maize growth
characteristic; RSM (%) is the relative soil moisture of 0–30 cm
depth; a, b, and c are the fitting coefficients of the regression
model.

Statistical Analysis
One-way Multivariate Analysis of Variance (One-way
MANOVA) was performed on RSM and each growth
characteristic to assess their differences among treatments.
Their means of each treatment were then compared by Duncan
multiple test at 0.05 significance level. Factor analysis was used
to extract a common factor from LMC and SMC to represent
maize water status, and a common factor from net Pn, Gs, and
Tr to represent leaf gas exchange, which would be subjected
to exploratory path analysis to figure out how maize growth
characteristics respond to soil water. Normality of the observed
samples that would be subjected to the tolerant limits calculation
was examined with Shapiro–Wilk method (Razali and Wah,
2011). All statistical analyses were performed by SPSS 17.0
software (SPSS Inc., Chicago, IL, United States), except that
exploratory path analysis was performed by IBM SPSS AMOS
21.0 (SPSS Inc., Chicago, IL, United States). Figures were
plotted by Origin 8.5 (OriginLab, United States). The critical
RSM of each sensitive growth characteristic was calculated by
Matlab software (Mathworks Matlab R2010b, United States).
The data were shown as the mean ± standard deviation
(mean± SD).

RESULTS

Changes in Maize Responding to Soil
Water Deficit
Changes in Maize Responding to Soil Water Deficit in
Seedling Stage
In 2014, the first observation was conducted on 9 July, i.e.,
7 days after irrigation controls. Maize plants of six irrigation
treatments were all in seedling stage. RSM was significantly
different among treatments (Tables 1, 2). SMC of the 3rd to
6th treatments were significantly lower than those of the 1st
and 2nd treatments; LMC of the 5th and 6th treatments were
significantly lower than those of the 1st–4th treatments; net

TABLE 1 | Significant levels of differences among treatments of RSM and maize growth characteristics.

Indicators Units July 09, 2014 July 31, 2013 August 08, 2013

P P P

RSM % ∗∗∗ ∗∗ ∗∗

Leaf moisture content % ∗∗∗ ∗∗ ∗

Stem moisture content % ∗∗∗ ∗∗ ∗∗

Root-shoot ratio – 0.960 0.411 0.616

Leaf area cm2 plant−1 ∗ 0.458 ∗∗

Leaf dry mass g plant−1 0.639 0.584 0.112

Stem dry mass g plant−1 0.599 0.664 0.153

Root dry mass g plant−1 0.978 0.122 0.318

Total dry mass g plant−1 0.961 0.573 0.127

Net photosynthetic rate µmol CO2 m−2s−1 ∗∗∗ 0.348 ∗∗∗

Stomatal conductance mol H2O m−2s−1 ∗∗∗ 0.134 ∗∗

Transpiration rate mmol H2O m−2s−1 ∗∗∗ 0.278 ∗∗

∗∗∗P < 0.001, ∗∗P < 0.01, ∗P < 0.05.
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TABLE 2 | Duncan multiple test of RSM and sensitive growth characteristics of maize in seedling stage in 2014.

Treatments RSM LA LMC SMC Pn Tr Gs

1 96.5 ± 1.0a 121.2 ± 24.6a 85.0 ± 0.4a 90.7 ± 0.3a 36.01 ± 3.31a 10.21 ± 1.31a 0.28 ± 0.05a

2 90.8 ± 1.4b 122.0 ± 16.1a 84.4 ± 0.6a 90.2 ± 0.4ab 32.46 ± 1.42ab 9.18 ± 0.42a 0.24 ± 0.02 ab

3 83.1 ± 4.7c 107.9 ± 3.2a 84.1 ± 0.6a 89.7 ± 0.3bc 34.28 ± 0.64a 9.13 ± 0.11a 0.25 ± 0.01a

4 69.1 ± 2.6d 114.1 ± 2.4a 84.1 ± 0.9a 89.1 ± 0.4c 29.10 ± 0.57bc 7.79 ± 0.42b 0.20 ± 0.02bc

5 61.3 ± 4.5e 107.6 ± 5.6a 81.8 ± 0.4b 87.9 ± 0.2d 27.25 ± 0.90c 7.09 ± 0.36b 0.18 ± 0.02c

6 45.3 ± 1.1f 76.2 ± 3.8b 77.9 ± 1.8c 86.0 ± 0.4e 11.06 ± 2.52d 2.93 ± 0.51c 0.05 ± 0.02d

Values marked with no same letter within a column denote significant differences (P< 0.05). RSM, relative soil moisture (%); LA, leaf area (cm2 plant−1); LMC, leaf moisture
content (%); SMC, stem moisture content (%); Pn, net photosynthetic rate (µmol CO2 m−2s−1); Tr, transpiration rate (mmol H2O m−2s−1); Gs, stomatal conductance
(mol H2O m−2s−1).

Pn, Tr, and Gs of the 4th–6th treatments were significantly
lower than those of the 1st–3rd treatments; leaf area of
the 6th treatment was significantly lower than those of the
1st–5th treatments; biomass related characteristics still not
appeared any significant difference under current soil water
status (Tables 1, 2). Therefore, growth characteristics related to
plant water status (SMC and LMC), leaf gas exchange (net Pn,
Tr, and Gs), and leaf area were more sensitive to soil water
deficit among all these growth characteristics in the seedling
stage.

Changes in Maize Responding to Soil Water Deficit in
Jointing Stage
In 2013, the first observation was conducted on 31 July, 7 days
after irrigation controls. Maize plants of six irrigation treatments
were all in the jointing stage. RSM differed significantly among
treatments (Tables 1, 3). Only stem and LMCs of the 6th
treatment were significantly lower than those of the 1st–5th
treatments (Tables 1, 3). On 8 August, i.e., the 14th day after
irrigation controls, maize plants from the six treatments were
still in the jointing stage. Differences in RSM among treatments
were still significant (Tables 1, 3). LMC of the 5th and 6th
treatments were much lower than that of the 1st treatment;
SMC and Gs of the 4th–6th treatments were significantly lower
than those of the 1st treatment; net Pn and Tr of the 5th
and 6th treatments were significantly lower than those of the
1st–4th treatments; leaf area of the 5th and 6th treatments were
significantly lower than those of the 1st and 2nd treatments;
biomass-related characteristics were no apparent differences
among treatments. Thus, growth characteristics related to
plant water status (SMC and LMC), leaf gas exchange (net
Pn, Tr, and Gs), and leaf area were more sensitive to soil
water deficit among all these growth characteristics in jointing
stage.

Effects of Soil Water Deficit on Sequence
of Changes in Maize
The first common factors extracted from leaf and SMC based
on the data of July 09, 2014, July 31, 2013, and August 08,
2013 account for 95.56, 85.64, and 82.57% of total variance,
respectively. The first common factors extracted from net Pn,
Gs, and Tr based on the data of July 09, 2014, July 31, 2013,
and August 08, 2013 account for 97.94, 86.92, and 94.84% of

total variance, respectively. These common factors were subjected
to exploratory path analysis as representatives of plant water
status and leaf gas exchange. An initial exploratory path diagram
(Supplementary Figure S2a) was established to evaluate both the
direct and indirect effects of soil water on plant water status, leaf
gas exchange, leaf area, and plant total biomass. The maximum
likelihood method was adopted to calculate the regression weight
of each path and the squared multiple correlation (R2) of each
dependent variate. Insignificant paths were deleted in order
to attain the criteria of the goodness-of-fit indices. The final
path models were shown in Supplementary Figures S2b–d,
respectively. The model fit summary (Supplementary Table S4)
showed that the path analysis model generally had a reasonable
fit for all the observation data (Arbuckle, 2010). Although the
effective paths were not identical among path models based
on different data, the results generally showed that RSM had
the most significant total effects on plant water status, less
on leaf gas exchange and leaf area, and the least on plant
total biomass; besides, its effects on plant water status were
direct, while its effects on leaf area, leaf gas exchange, and
plant total biomass were major indirect. Plant water status
generally had higher total effects than RSM on leaf gas exchange,
leaf area, and plant total biomass, and its effects on leaf gas
exchange and leaf area were direct, while it affected plant
total biomass major indirectly via leaf area (Supplementary
Tables S5, S6).

Critical RSM Thresholds of Maize
Responding to Soil Water Deficit
Samples of all these sensitive growth characteristics distributed
normally (P > 0.05) (Table 4), and they all decreased due
to soil water stress (Figures 1, 2). Thus, their tipping points
were identified by calculating the lower tolerance limits of the
observed samples at 0.95 lower confidence level and including
95% percentile of the population (γ = 0.95, P = 95%) (Eqn. 4;
Tables 5, 6). The values of critical RSM were further calculated.
The critical RSM threshold was about 72% for SMC, about
65% for LMC, about 62, 60, 58, and 46% for Tr, net Pn,
Gs, and leaf area, respectively, in seedling stage (Figure 1
and Table 5). In jointing stage, the critical RSM was about
64% for both stem and LMC, about 53, 51, 48, and 46%
for net Pn, Tr, Gs, and leaf area, respectively (Figure 2 and
Table 6).
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TABLE 4 | Shapiro–Wilk normal test for stress-free samples of maize growth
characteristics.

Sensitive growth
characteristics

Seedling stage (2014) Jointing stage (2013)

Sample size P Sample size P

SMC 12 0.451 15 0.696

LMC 22 0.923 12 0.727

Tr 18 0.321 12 0.982

Pn 18 0.356 12 0.440

Gs 18 0.152 12 0.798

LA 24 0.086 12 0.320

SMC, stem moisture content (%); LMC, leaf moisture content (%); Pn, net
photosynthetic rate (µmol CO2 m−2s−1); Gs, stomatal conductance (mol H2O
m−2s−1); Tr, transpiration rate (mmol H2O m−2s−1); LA, leaf area (cm2 plant−1).

Comparison on Meteorological
Conditions
The three performed observation days were identically clear days,
and their daily dynamics of temperature, total radiation, wind
speed were quite close, except that VPD of July 9th, 2014 was
relatively higher than that of July 31st, 2013 and August 8th, 2013
(Supplementary Figure S1).

DISCUSSION

Critical Soil Water Thresholds of Maize
A threshold response of plant growth to soil or plant water
status had been observed, that is, plant growth or physiological
traits would remain almost constant until the water status
was lower than a critical point (Blum, 1996; Sadras and
Milroy, 1996; Ray et al., 2002; Novák, 2009; Gholipoor et al.,
2012). In this study, maize growth characteristics appeared no
significant difference among treatments with relatively higher
soil moisture despite their soil water status were apparently
different, however, they diverted significantly only in treatment(s)
with lower soil moisture which was (were) below a certain
level (Tables 1–3), implying their threshold responses to soil
water status. Besides, the treatment differences were not identical
among maize growth characteristics (Tables 2, 3), suggesting that
they may have diverse critical soil moisture thresholds, namely,
different sensitivities to soil water deficit. In both stages, growth
characteristics related to plant water status (stem and LMC),
leaf gas exchange (net Pn, Tr, and Gs), and leaf area varied at
relatively higher soil moisture and thus were more sensitive to
soil water deficit, while biomass-related characteristics appeared
no significant difference under such wide soil water status
(Tables 2, 3).

The results showed that the critical soil moisture thresholds
were not identical either among growth characteristics or
between stages (Tables 5, 6). In general, the critical soil moisture
thresholds of maize growth characteristics in the seedling stage
were higher than that in the jointing stage except that the critical
soil moisture thresholds of leaf area were almost identical in
both stages. The possible reason was that, in the seedling stage,
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FIGURE 1 | Regression models (solid lines) of RSM and sensitive growth characteristics of maize in the seedling stage in 2014. (A) Stem moisture content (%); (B)
leaf moisture content (%); (C) transpiration rate (mmol H2O m−2s−1); (D) net photosynthetic rate (µmol CO2 m−2s−1); (E) stomatal conductance (mol H2O
m−2s−1); (F) leaf area (cm2 plant−1). Closed squares refer to observed values; dashed lines refer to the tipping point of the growth characteristic.

compared to the jointing stage, the leaf water potential was higher
(Sengupta and Majumder, 2014), the root was shallower, and
leaves were smaller, which would result in weaker transpiration
and poorer capability of soil water absorption (Kang and Liu,
1993). Thus, more abundant soil moisture was required to
maintain high soil water potential to reduce the resistance of
water absorption and to ensure water supply in the seedling
stage (Ishida et al., 1992; Ying et al., 2015; Zhang et al.,
2015).

Sadras and Milroy (1996) reviewed soil water thresholds
(quantified by plant available water, PAW) of leaf expansion
and leaf gas exchange among different species obtained under
diverse experimental conditions. The average PAW threshold of
leaf water potential was 0.61 ± 0.09, Gs was 0.37 ± 0.05, and
leaf expansion was 0.56. Schmidt et al. (2001) found the tipping
point of Gs of maize when PAW was 0.36. Ray et al. (2002)
verified that the critical PAW of transpiration varied from 0.3
to 0.4 under different VPD. In our study, the PAW thresholds
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FIGURE 2 | Regression model (solid lines) of RSM and sensitive growth characteristics of maize in the jointing stage in 2013. (A) Stem moisture content (%); (B) leaf
moisture content (%); (C) transpiration rate (mmol H2O m−2s−1); (D) net photosynthetic rate (µmol CO2 m−2s−1); (E) stomatal conductance (mol H2O m−2s−1); (F)
leaf area (cm2 plant−1). Closed squares refer to observed values; dashed lines refer to the tipping point of the growth characteristic.

(converted from soil moisture) for SMC, LMC, Tr, net Pn, Gs, and
leaf area were 0.58, 0.48, 0.43, 0.40, 0.37, and 0.19, respectively,
in the seedling stage, while they were 0.46, 0.46, 0.27, 0.30, 0.22,
and 0.19, respectively, in the jointing stage. The thresholds of
Tr and Gs of this study were quite close to those from previous
studies, in particular, those in the seedling stage almost coincided
with the above results. However, these might merely coincidence,
because these thresholds may vary dramatically among plant
species, genotypes, phonology, soil property (i.e., soil texture and

soil bulk density), root distribution, evaporative environment,
growing conditions, and may also be influenced by regression
models used and variations in determining the lower limit of
PAW (Doorenbos and Kassam, 1980; Sadras and Milroy, 1996;
Thompson et al., 2007; Casadebaig et al., 2008; Wu et al., 2011a;
Schoppach and Sadok, 2012; Andrianasolo et al., 2016). For
instance, PAW thresholds of maize could range from 0.27 to 0.85
for leaf expansion, and from 0.07 to 0.85 for leaf transpiration
(Sadras and Milroy, 1996).
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TABLE 5 | The critical thresholds and critical RSM of sensitive growth characteristics of maize in the seedling stage in 2014.

Sensitive growth characteristics Parameters of regression models R2 Critical thresholds Critical RSM

a b c Estimated values 95% confidence interval

SMC −0.001 0.248 77.187 0.936 89.18 72% [69%, 75%]

LMC −0.002 0.468 62.734 0.886 82.63 65% [62%, 68%]

Tr −0.002 0.459 −12.595 0.686 6.76 62% [56%, 67%]

Pn −0.012 2.108 −59.197 0.711 24.60 60% [55%, 64%]

Gs −6.461E-5 0.013 −0.382 0.670 0.148 58% [51%, 63%]

LA −0.029 4.732 −74.822 0.495 82.1 46% [39%, 52%]

SMC, stem moisture content (%); LMC, leaf moisture content (%); Pn, net photosynthetic rate (µmol CO2 m−2s−1); Gs, stomatal conductance (mol H2O m−2s−1); Tr,
transpiration rate (mmol H2O m−2s−1); LA, leaf area (cm2 plant−1).

TABLE 6 | The critical thresholds and critical RSM of sensitive growth characteristics of maize in the jointing stage in 2013.

Sensitive growth
characteristics

Parameters of regression models R2 of regression
models

Critical
thresholds

Critical RSM

a b c Estimated values 95% confidence interval

SMC 0.002 0.439 71.986 0.661 89.96 64% [60%, 68%]

LMC 0.002 0.452 65.133 0.544 83.06 64% [59%, 68%]

Tr −0.006 0.871 −25.219 0.607 4.83 51% [44%, 55%]

Pn −0.044 6.014 −168.289 0.702 28.60 53% [50%, 56%]

Gs −3.053E-4 0.048 −1.505 0.719 0.109 48% [40%, 52%]

LA −2.769 363.320 –10264.4 0.530 616.9 46% [41%, 50%]

SMC, stem moisture content (%); LMC, leaf moisture content (%); Pn, net photosynthetic rate (µmol CO2 m−2s−1); Gs, stomatal conductance (mol H2O m−2s−1); Tr,
transpiration rate (mmol H2O m−2s−1); LA, leaf area (cm2 plant−1).

Sequence of Changes in Maize
Responding to Soil Water Deficit
The specific critical soil moisture thresholds of plant growth
characteristics were not comparable among different studies,
however, they may well reflect the sequence of changes in maize
responding to soil water deficit (Sadras and Milroy, 1996). The
critical RSM thresholds of maize showed the sequence of changes
in maize as SMC > LMC > Tr > Pn > Gs > LA in seedling
stage and SMC ≥ LMC > Pn > Tr > Gs > LA in jointing stage.
Our study verified that plant water status was one of the earliest
response to soil water deficit (Hsiao, 1973; Hsiao et al., 1976),
followed by maize growth characteristics related to leaf water
status, such as leaf water potential, leaf relative water content,
and LMC which have long been used to indicate water stress
(Hsiao, 1973; Hsiao et al., 1976; Ackerson et al., 1977; Kumar
et al., 1994). Our study also showed that stem was more sensitive
to water stress than leaf (Westgate and Boyer, 1985; McCutchan
and Shackel, 1992; Shackel et al., 1997; Naor, 2000; Intrigliolo and
Castel, 2006; Abrisqueta et al., 2015).

It has been found that stomata closed prior to decreases in Tr
and Pn when confronted with water stress (Hsiao, 1973; Hsiao
et al., 1976). However, in our study, the critical soil moisture of
Gs in both stages were slightly lower than those of Tr and Pn.
This was possibly because that Gs was quite sensitive to various
factors more than soil water. For instance, stomatal interactions
with environmental factors such as light and CO2 were complex
and appeared to be mediated by several underlying processes

(Hsiao, 1973). Increasing VPD between the leaf-air interface
would also result in stomata closure regardless of soil water
status (Farooq et al., 2009). Besides, hormones such as abscisic
acid (ABA) would regulate stomata aperture during the early
stage of drought, whereas factors such as leaf water potential,
nutrition situation, pH of sap flow and farnesyltransferase activity
could affect stomata’s sensitivity to ABA (Holbrook et al., 2002;
Medrano et al., 2002). All these factors made Gs extremely
variable, which resulted in greater variances within the samples
that were subjected to tolerant limits calculation, yielding a
broader tolerant limit and consequently lower critical RSM
(Eqn. 4).

Expansion of mesophyll cells was thought to be even more
sensitive to soil water deficit than the Gs and Pn (Hsiao, 1973;
Hsiao et al., 1976; Fischer, 1980; Lambers et al., 2008). In contrast,
our study found that leaf area responded at lower critical soil
moisture than those of leaf gas exchange characteristics. In fact,
they were not contradictory. Mesophyll cell expansion was a
physiological process and thus responded instantly to water
status, whereas leaf area was cumulative effects of soil water stress
on mesophyll cell expansion as well as a result of adaptive growth
of leaf under drought, which depended on not only expansion
of all growing leaves, but also leaf number and the senescence of
older leaves, consequently responding slower to drought (Reddy
et al., 2003; Blum, 2011; Pinheiro and Chaves, 2011; Bodner et al.,
2015).

Different sensitivities of maize growth characteristics to soil
water deficit resulted from the way soil water affected them.
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The results of exploratory path analysis showed that soil water
had the most significant total effects on plant water status, less
on leaf gas exchange and leaf area. Besides, plant water status
was directly affected by soil water, while leaf gas exchange and
leaf area were more directly influenced by plant water status.
Reductions in plant water status, especially leaf water status
would give rise to a loss in turgor, which would on one hand
reduce cell division and enlargement and consequently inhibit
leaf expansion, on the other hand, lead to stomatal closure,
consequently impeding CO2 influx and H2O outflux and thus
leaf gas exchange (Hsiao, 1973; Blum, 2011; Pinheiro and Chaves,
2011; Sanders and Arndt, 2012). It implied that variations in leaf
gas exchange and leaf area, to a greater extent, were secondary
effects of soil water stress on plant water status, and thus they
responded slower than plant water status to soil water deficit.
The results of exploratory path analysis also showed that plant
total biomass was directly influenced by leaf area, whereas soil
moisture had no significantly direct effect on total biomass, nor
had leaf water status, nor had leaf gas exchange. Plant total
biomass was an accumulation of plant growth at various levels
over a certain period, while soil moisture, plant water status, and
leaf gas exchange were all instantaneous characteristics that only
indicated water stress of the very time they were observed, so
their effects could not be instantly detected from plant biomass.
That’s why all these three characteristics appeared no significant
direct effect on plant total biomass. However, long term effects of
soil water deficit on leaf expansion and leaf gas exchange both
appeared as a reduction in leaf area at the whole plant level,
which led to decreased transpiration as well as lower intercepted
radiation, and ultimately decreased biomass production (Reddy
et al., 2003; Blum, 2011; Pinheiro and Chaves, 2011; Sanders
and Arndt, 2012). It implies that changes in plant biomass were
integrated results of all these secondary or even tertiary effects of
soil water deficit in a longer term.
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