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Field-based high-throughput phenotyping is an emerging approach to quantify difficult,
time-sensitive plant traits in relevant growing conditions. Proximal sensing carts
represent an alternative platform to more costly high-clearance tractors for phenotyping
dynamic traits in the field. A proximal sensing cart and specifically a deployment
protocol, were developed to phenotype traits related to drought tolerance in the field.
The cart-sensor package included an infrared thermometer, ultrasonic transducer, multi-
spectral reflectance sensor, weather station, and RGB cameras. The cart deployment
protocol was evaluated on 35 upland cotton (Gossypium hirsutum L.) entries grown
in 2017 at Maricopa, AZ, United States. Experimental plots were grown under well-
watered and water-limited conditions using a (0,1) alpha lattice design and evaluated
in June and July. Total collection time of the 0.87 hectare field averaged 2 h and
27 min and produced 50.7 MB and 45.7 GB of data from the sensors and RGB
cameras, respectively. Canopy temperature, crop water stress index (CWSI), canopy
height, normalized difference vegetative index (NDVI), and leaf area index (LAI) differed
among entries and showed an interaction with the water regime (p < 0.05). Broad-
sense heritability (H2) estimates ranged from 0.097 to 0.574 across all phenotypes
and collections. Canopy cover estimated from RGB images increased with counts
of established plants (r = 0.747, p = 0.033). Based on the cart-derived phenotypes,
three entries were found to have improved drought-adaptive traits compared to a local
adapted cultivar. These results indicate that the deployment protocol developed for
the cart and sensor package can measure multiple traits rapidly and accurately to
characterize complex plant traits under drought conditions.

Keywords: high-throughput phenotyping, proximal sensing carts, upland cotton (Gossypium hirsutum L.), abiotic
stress, plant breeding

INTRODUCTION

Field-based high-throughput phenotyping (FB-HTP) is a novel approach to characterize complex
traits in large plant populations using proximal and remote sensing or imaging. The power of high-
throughput phenotyping (HTP) is its ability to characterize plant traits for large populations in
both time and space, which improves monitoring of dynamic genetic responses to environmental
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conditions. The development of HTP for use in plant breeding
and other programs has steadily increased over the last 10 years.
Evaluated platforms include simple manual push carts (White
and Conley, 2013), tractors (Comar et al., 2012; Andrade-Sanchez
et al., 2014; Deery et al., 2014; Barker et al., 2016), field-scanners
(Virlet et al., 2017), and unmanned aerial systems (UASs)
(Rutkoski et al., 2016; Yu et al., 2016). Sensor packages have
included non-contact spectral reflectance and acoustic sensors
(Montes et al., 2007, 2011; Andrade-Sanchez et al., 2014; Thorp
et al., 2015b), red, green, blue (RGB) digital cameras (Mendes
et al., 2016; Thorp et al., 2016; Yu et al., 2016), 3D imagers based
on light detection and ranging (LiDAR) (Sirault et al., 2013; Lin,
2015; French et al., 2016), and multispectral cameras (Rutkoski
et al., 2016; Virlet et al., 2017), among others. The ideal platform
and sensor package for a breeding program greatly depends on
program parameters and available resources, including funding,
access to reliable GPS equipment and signal correction services,
personnel that can utilize the technology and corresponding
software, target crop(s), number/diversity of field sites, and traits
under evaluation.

Proximal Sensing Carts (PSCs) are a low-cost option for
breeding programs that aim to incorporate proximal sensors or
cameras for HTP. PSCs are typically lightweight, narrow-wheeled
and relatively small, cause minimal soil compaction with repeated
sampling, and are easy to transport to multiple fields (White and
Conley, 2013). Hand pushed or motorized PSCs can be designed
to fit specific crop height and row spacing requirements, while
deploying multiple sensors (White and Conley, 2013; Bai et al.,
2016). The PSCs deployed by White and Conley (2013) and
Bai et al. (2016) were equipped with modular sensor packages
including thermal infrared radiometers (IRTs) for measurement
of canopy temperature and RGB cameras for estimating canopy
cover. Bai et al. (2016) also incorporated ultrasonic displacement
sensors and spectral reflectance sensors as part of their sensing
package, and other researchers have used similar equipment
for proximal sensing on PSCs and other FB-HTP platforms
(Comar et al., 2012; Andrade-Sanchez et al., 2014; Deery et al.,
2014; Barker et al., 2016). Well-designed and constructed PSCs
can enable the rapid and simultaneous collection of multiple
traits associated with heat and drought stress across multiple
environments and crops at reduced cost or time compared to
tractor or UAS platforms. However, additional research is needed
to understand whether data collected using the PSC platforms
can assist breeding decisions and contribute to identification
of improved genotypes as reported by the tractor or UAS
platforms.

A FB-HTP “tri-metric” sensor package, including infrared
thermometers, active spectral reflectance, and ultrasonic
displacement sensors, is particularly useful for measuring heat
and drought stress responses in field-grown crops. Including a
digital RGB camera offers further opportunities for phenotyping
via image analysis. Canopy temperature, as measured by infrared
thermometry, has long been recognized as a powerful indicator
of plant stress under water deficit (Jackson et al., 1981; Howell
et al., 1984; Fuchs, 1990). Reduced canopy temperatures are
correlated with increased yield in wheat (Triticum aestivum)
(Amani et al., 1996), cotton (Gossypium hirsutum L.) (Pauli

et al., 2016), and other crops (Chavez et al., 2002). Reduced crop
canopy temperature is also associated with improved stomatal
regulation by abscisic acid signaling (ABA) (Shinozaki and
Yamaguchi-Shinozaki, 2007; Pauli et al., 2016) and increased root
biomass (Lopes and Reynolds, 2010).

The utility of spectral reflectance sensors to examine plant and
soil traits across environments is also well documented. Many
spectral indices, including the normalized difference vegetation
index (NDVI), have been developed to estimate biomass, leaf
area index (LAI), and chlorophyll from spectral reflectance
measurements of crop canopies (Haboudane et al., 2004; Montes
et al., 2011; Gutierrez et al., 2012; Mulla, 2013; Thorp et al.,
2015a). Abiotic stress during early canopy development can
decrease plant biomass and height, reduce leaf area, and
abbreviate green area duration (Araus et al., 2002). In cotton,
NDVI measurements at peak flower were associated with 47%
of the variation in lint yield (Gutierrez et al., 2012). While
not identified as the best index to use for prediction of lint
yield, the results suggested that NDVI is a useful indicator of
drought-associated changes in crop canopy architecture, which
subsequently affects crop yield. Used together, IRTs, multi-
spectral reflectance, ultrasonic sensors, and RGB cameras can
detect spatial and temporal plant responses to heat and drought
stress, which can assist germplasm selection and identification
of genes that underpin these complex traits (Pauli et al., 2016;
Rutkoski et al., 2016).

Since White and Conley (2013) described the initial PSC for
FB-HTP in Arizona, the team has continued to improve and
test PSC designs, resulting in several new PSC prototypes. The
primary goal of the present study was to assess performance
of a novel PSC with a specific deployment protocol for crop
improvement research, using cotton as a test case. The objectives
were to (i) describe the design and implementation of a custom
PSC that improves on previous PSC designs (ii) develop a
deployment protocol for the PSC in a cotton breeding trial under
well-watered and water-limited treatments and (iii) illustrate the
use of proximal sensing data to identify lines with drought-
adaptive traits.

MATERIALS AND METHODS

Proximal Sensing Cart (PSC) and
Phenotyping System
The PSC developed for this study (Figure 1) was designed
using similar materials and fabrication protocols as reported
by White and Conley (2013). The frame was constructed with
3.2 cm square steel tubing. The front frame was approximately
34 cm× 105 cm× 99 cm (l×w× h), which supported the sensor
package and data logger. The frame was attached to four standard
61-cm bicycle forks, which were fixed for straight tracking and
pivot turning. Approximately 5 cm of the bicycle frame was
inserted into the square tubing before welding to reinforce the
union point. A removable, extended handle was provided for
ease of pushing and maneuvering in the field. The handle was
L-shaped with the short end fitting inside the frame, and extended
122 cm from the main body of the PSC. A secondary bar was
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FIGURE 1 | Proximal sensing cart with a sensor bar, data logger, sensors, and
extended handle. Camera sensor bar and cameras are not shown.

added perpendicular to the 90◦ angle to reinforce the handle
when lifting the rear wheels to turn the cart. Frame components
were welded using a wire-feed MIG welder (Lincoln Electric,
Cleveland, OH, United States). A scaled rendering of the PSC
design is provided in Supplementary Figure S1.

The sensing package deployed on the PSC included the core
“tri-metric” sensor package (described below) for measuring
canopy height, canopy temperature, and canopy reflectance; a
modified weather station for measuring ambient air temperature,
relative humidity, and incoming radiant energy; a GPS receiver;
an altitude heading and reference system (AHRS) that included
an inertial measurement unit (IMU); and RGB cameras. A sensor
arm bar, made from 3.2-cm square tubing in a C-shape was
anchored to the front frame using U-bolts. The sensor bar can
be raised or lowered by loosening the U-bolts and sliding the bar
to a desired height. A Campbell Scientific (Logan, Utah) CR1000
data logger and enclosure were anchored to the front of the frame.
The camera arm consisted of a simple 5 cm × 5 cm square
wooden stick clamped to the top of the cart frame and extended
61 cm beyond the end of the sensor bar. For easy adjustment and
removal, sensors were attached using industrial dual lock fastener
tape (3M Scotch Brand), zip ties, or U-bolts.

Canopy height (mm) was measured with an ultrasonic trans-
ducer (UC2000-30GM-IUR2-V15, Pepperl+Fuchs, Twinsburg,

OH, United States) that had a sensing range between 80 and
2000 mm and a narrow field of view (FOV) (25◦ half-angle)
operating at 180 kHz frequency. The analog sensor output was
converted to displacement values after applying the calibration
equation supplied by the manufacturer. The sensor was attached
to the sensor bar with a U-bolt and oriented vertically downward
(nadir view).

Canopy temperature (◦C) was measured with an infrared
thermometer (IRT) sensor (SI-131, Apogee Instruments, Logan,
UT, United States) with a narrow FOV (14◦ half-angle). The
sensor output (µV) was converted to temperature values after
applying a polynomial calibration equation supplied by the
manufacturer. The IRT sensor was mounted in an insulated
shroud, attached to the sensor bar with a U-bolt, and oriented
vertically downward (nadir).

Canopy reflectance (ρ) was measured with passive spectral
reflectance sensors (SRS NDVI, Decagon Devices, Pullman,
WA, United States). The uplooking (zenith) sensor had a
hemispherical view and was mounted at the top of the sensor
bar. The downlooking (nadir) sensor had a 36◦ FOV and was
mounted at the bottom of the sensor bar. The sensor measured
light reflectance in one visible (VIS) and one near infrared (NIR)
waveband, centered at 650 nm and 810 nm with 50 nm and 40 nm
full width at half maximum, respectively. The sensor outputs
for both wavebands calculated normalized difference vegetative
index (NDVI) as follows:

NDVI =
(ρNIR−ρVIS)

(ρNIR+ ρVIS)

Weather data were collected in real-time with a pyranometer
for radiant energy (RAD) (SP-110, Apogee Instruments, Logan,
UT, United States) and a probe for air temperature and
relative humidity (Rh) (HC2S3, Campbell Scientific Logan, UT,
United States). The pyranometer had a 180◦ FOV with a spectral
range from 360 to 1120 nm. The pyranometer was mounted at the
top of the sensor bar with industrial fastener tape and oriented
in the vertical direction pointing upward (zenith). The HC2S3
probe had two parts, a PT1000 resistance temperature detector
(RTD) that measured air temperature at ±0.1◦C accuracy
and a rotronic hygrometer that measured relative humidity at
±0.8% RH accuracy. This sensor was mounted inside the cart
frame on the front left wheel support bar and close to the
canopy.

Measurements from each sensor were georeferenced by
simultaneously recording position from a Global Position
Satellite (GPS) receiver (A101 Smart Antenna, Hemisphere GPS,
Scottsdale, AZ, United States) using the GGA and RMC NMEA
messages, and heading from an inertial (IMU) sensor (VN-
100, VectorNav Technologies, LLC, Dallas, TX, United States).
The GPS receiver was mounted halfway up the sensor arm
with a U-bolt while the IMU sensor was fastened to the logger
enclosure. Sensor information was logged at a rate of 5 Hz
(except for the SRS); 0–5 V analog signals and serial (RS232)
data messages were captured on a data logger (CR1000, Campbell
Scientific, Logan UT, United States). The digital SRS was logged
at 0.5 Hz using SDI12 communication protocol on the same data
logger.
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Images were captured using either a Garmin VIRB XE 12.4
MP action camera with internal GPS and metadata (Garmin Ltd.,
Olathe, KS, United States) or a Canon PowerShot SX600 HS with
16.8 MP (Canon Inc., Melville, NY, United States). Cameras were
mounted to the end of the camera bar using industrial fastener
tape with a nadir view over one row of each plot. Images were
stored in JPEG format.

Field Experimental Design and Irrigation
Management
A cotton field trial was conducted in 2017 at the University of
Arizona, Maricopa Agricultural Center (33.068◦N, 111.971◦W,
360 m elevation), in Maricopa, AZ, United States. Maricopa
is located in an irrigated production area of the low desert
that receives less than 100 mm of rainfall during the cotton
growing season (April–September). Air temperatures ranged
from 11◦C nighttime lows to 48◦C daytime highs during the
cotton season. The soil type is a Casa Grande sandy loam
(fine-loam, mixed, superactive, hyperthermic Typic Natrargids).
The field was divided into six irrigation borders (basins)
with 12 columns per border; each border was 118.5 m long
and 12.2 m wide. Thirty upland cotton (G. hirsutum L.)
elite breeding lines and five commercial checks (Table 1)
were grown under well-watered (WW) and water-limited
(WL) conditions using a (0,1) alpha lattice design with three
replications per treatment. Experimental plots included two
12.1 m cotton rows with 1.02 m inter-row spacing and a
density of approximately 8.6 plants m−2. There was a 1.5 m
alley between adjacent plots on the same row. Plot boundaries
were geospatially delineated using a geographic information
system (ArcGIS v. 10.2, ESRI, Redlands, CA, United States)
to create a plot polygon map in shapefile format prior to
planting. The eastern and western most rows of each border
were planted with a commercial cotton variety (DP1549B2XF,
Monsanto, St. Louis, MO, United States) to reduce edge
effects. Likewise, a 2.02 m buffer of the commercial variety
was planted along the north and south ends of each border
(Supplementary Figure S2).

Plots were planted on May 10, 2017. To germinate
seed and establish plants, the field was furrow flooded.
On June 01, 2017, the irrigation method was switched to
microirrigation via buried drip tape (Netafim, Fresno, CA,
United States), which was installed at a 20 cm depth prior
to planting. Irrigations were scheduled from a daily crop
water use and soil water balance model based on Food
and Agricultural Organization-56 (FAO-56) methods (Allen
et al., 1998; Hunsaker et al., 2005). Meteorological data were
obtained from the Arizona Meteorological Network (AZMET)
weather station approximately 280 m from the center of
the field site1. The water-limited treatment reduced irrigation
applications to 70% of the recommended amount beginning
on July 12, 2017 after approximately 50% of plants within
all plots had flowered. Prior to this date, all plots received
equal irrigation at 100% of the recommended amount. Soil
moisture was monitored weekly using a neutron moisture

1ag.arizona.edu/azmet/index.html

meter (503E, InstroTek Inc., San Francisco, CA, United States)
with measurements collected every 20 cm to a depth of 2 m
within 5 mm steel access tubes installed after crop emergence.
Each border contained three access tubes for soil moisture
measurements, which were evenly distributed from north to
south.

Physiological and Growth Stage Notes
Four weeks after emergence, seedlings were counted in each
row of each plot to calculate the plant density. The dates on
which 50% of plants per plot showed first square (flower bud)
and first flower were recorded. After irrigation treatments were
established, pollen sterility was recorded on a scale of 1–5 from
five representative flowers per plot (July 27): “1” meant no
observed sterility and “5” meant complete sterility.

TABLE 1 | Cotton entries provided by the Regional Breeders Testing Network,
listed by the program entry number with the corresponding breeding line name
and originating state.

Entry Number Entry name State

1 LA14063046 Louisiana

2 LA14063101 Louisiana

3 LA14063038 Louisiana

4 LA14063001 Louisiana

5 LA14063083 Louisiana

6 TAM 13S-03 Texas

7 TAM WK-11L Texas

8 TAM 13Q-51 Texas

9 Tamcot G11 Texas

10 TAM 13Q-18 Texas

11 PD 2013016 South Carolina

12 PD 07040 South Carolina

13 PD 08028 South Carolina

14 PD 09084 South Carolina

15 PD 09046 South Carolina

16 Ark 0921-27ne Arkansas

17 Ark 0912-18 Arkansas

18 Ark 0921-31ne Arkansas

19 Ark 0911-13 Arkansas

20 Ark 0908-60 Arkansas

21 NM 16-13P1088B New Mexico

22 NM 13R1015 New Mexico

23 Acala 1517-08 New Mexico

24 TAM LBB130218 Texas

25 TAM LBB131001 Texas

26 AU 90098 Alabama

27 GA 2012141 Georgia

28 GA 2015032 Georgia

29 GA 2015073 Georgia

30 GA 2015090 Georgia

31 DP393 Check

32 DP493 Check

33 FM958 Check

34 UA222 Check

35 DP1549B2XF Local Check
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Proximal Sensing Cart (PSC) Field
Deployment
The PSC was deployed on June 16 (DOY 167), June 30 (DOY
181), July 14 (DOY 195), and July 28 (DOY 209). Collection
start times were 09:15 am, 10:11 am, 09:25 am, and 09:32 am,
respectively. Prior to the start of each collection, the sensor bar
was adjusted to 40 cm above the crop. The distance from soil
line to sensor bar and from plant terminal bud to sensor bar were
measured and recorded as “metanotes” over representative plants
from a single plot. The representative plants were also manually
measured for canopy height (cm) and canopy temperature (◦C) at
the start and stop of each collection. The heights were measured
with a standard 1 m ruler from the soil line to the terminal bud,
and canopy temperature was measured with a handheld IRT at
the same height as the sensor bar (MI-2K0, Apogee Instruments,
Logan, UT, United States). The soil temperature was measured
using the handheld IRT in the non-shaded furrow next to the
representative plant samples. To maintain a consistent cart speed,
the stopwatch application on a cellular phone (iPhone 6, Apple
Inc., Cupertino, CA, United States) was used to maintain a
manual pushing pace of∼2 min per 118.5 m row length.

To improve data quality with the proximal sensors, anchor
targets were deployed in the first and third row of each irrigation
border in the alley between the southernmost plots and the
northernmost plots. The first target, to the south, was a 9-L
clear storage container (20.0 cm × 36.8 cm × 15.9 cm) filled
with ice water for assessing IRT measurements. The ice bucket
was maintained at 0–4◦C during data collection as verified
by a handheld IRT measurement 5 cm above its surface. The
second target, to the north, was an empty white Styrofoam box
(26 cm × 26 cm × 20 cm) used to establish a white color for
assessing the spectral reflectance sensor data and known height
above the planted beds for assessing the ultrasonic displacement
sensor. As the target locations were geospatially known, they
also provided a visual and physical “anchor” to validate the
geospatial processing (explained below). The two targets for
spatially binning the RGB cameras included the orange stakes
used as plot markers at the southwestern corner of each plot
and the red caps of the access tubes used for soil moisture
measurements. For the first collection, only the VIRB camera was
operational, and no images were captured on the final collection
day.

Management of PSC Collected Data
The PSC data were transferred from the Campbell data logger
to a server designated for FB-HTP. The Campbell data logger
SD card was removed and inserted into a card reader; data were
then converted from binary to comma-delimited text files at
the server terminal. A similar process was used for the cameras
and captured images. The server was a dual Intel xenon 12-core
processor with the Windows Server 2012 R2 operating system.
The server had 256 GB of memory, 260 TB of storage and an
NVidia K80 Tesla graphics card. Files were organized first by
field name, year of collection, day of collection, and then sensor
type (proximal or RGB). All files followed this naming scheme for
downstream data processing and analysis. Three sensor files were

transferred from the Campbell data logger: (1) the main file which
contained the thermal, height, and weather data keyed with the
GPS and ARHS data by the logger timestamp; (2) the NDVI SRS
reflectance data keyed with the logger timestamp; and (3) a file
with all text strings from the GPS and ARHS with custom error
codes and logger timestamp. The NDVI data were merged with
the GPS and ARHS by matching timestamps in post processing.

Geospatial Data Processing of PSC
Collected Phenotypes
Two main geoprocessing steps were needed to prepare the data
for analysis: (1) “georeferencing” the sensor data by assigning
geospatial coordinates to each sensor measurement and (2)
matching sensor data to plot information using geographic
information system (GIS) tools to locate sensor data within
plot boundaries. To georeference the sensor data, the vehicle
position, vehicle heading, and the offset distances from the
GPS receiver to each sensor were required. The GPS data
provided latitude and longitude coordinates (X and Y) of the
GPS receiver position at each logger timestamp, while the
AHRS-derived yaw measurement provided information about
the orientation of the cart on the Earth’s surface (i.e., the
heading angle of the vehicle). In addition, both the forward
and lateral distances from the GPS antenna to the location of
each sensor were obtained from the design specifications of
the PSC. To facilitate geospatial data analysis based on a two-
dimensional planar coordinate system, the latitude and longitude
coordinates (units of decimal degrees) were projected to the
Universal Transverse Mercator (UTM) coordinate system (units
of meters). Projections were based on the World Geodectic
System (WGS) 1984 (WGS-84) datum. The field site was located
in UTM zone 12N. Using a set of trigonometric equations
(Wang et al., 2016) for coordinate system transformations, the
UTM position of each sensor measurement was calculated from
the vehicle position and heading data and known distances
between each sensor and the GPS antenna. Due to error
in the Hemisphere GPS positioning measurements, a 1.5 m
adjustment to the UTM easting positions was required to
align the data with the plot boundary map. The 1.5 m
adjustment was determined by comparing the known position
of the anchor targets with the calculated UTM coordinates
for the target. After UTM coordinates were calculated, each
data point located within plot boundaries was annotated using
the “Join attributes” function in Quantum GIS (QGIS2), which
connected information about the plots (e.g., entry and irrigation
treatment) with each sensor measurement. Following this step,
the georeferenced and geolocated sensor data were exported
from QGIS as comma-delimited text files (CSV) for subsequent
analysis.

Geospatial data processing was accomplishing using the “HTP
Geoprocessor” plugin (Wang et al., 2016) for QGIS. The plugin
uses Python scripts to automatically conduct the geoprocessing
tasks described previously. An instruction file was created
to instruct the GIS how to read data for each sensor type
from the logger files. Further detailed instructions on how to

2www.qgis.org
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use the “HTP Geoprocessor” plugin can be found at http://
www.fieldphenomics.org/workshops/2015-htp-workshop under
Exercise G (Supplementary File S1).

Statistical Analysis of PSC Derived
Phenotypes in Response to Water
Treatments
The SAS for Windows software v. 9.3 HPMIXED procedure (SAS
Institute, Cary, NC, United States) was used to fit a linear model
to each phenotype for outlier removal. Each model included
one of the sensed phenotypes [canopy temperature (Tc), canopy
height (h), or NDVI reflectance] as the dependent variable.
Canopy height was calculated by subtracting the soil line to
sensor bar height from the displacement data measured by the
ultrasonic sensor. The cotton entry, irrigation treatment, and
the interaction term were modeled as fixed effects; random
effects included the replicate nested within treatment and the
plot row and column designation nested within border. Outliers
were determined by setting an upper and lower limit for the
Studentized deleted residuals calculated from the collected data
with a criterion of α = 0.05 (Kutner et al., 2004). After outliers
were removed, the means for each plot were calculated using the
SAS MEANS procedure.

The crop water stress index (CWSI) and LAI were calculated
from mean plot data. CWSI was calculated by subtracting the
recorded ambient air temperature from the measured canopy
temperature (Tc – Ta) (Jackson et al., 1981). LAI was calculated
using the measured h and NDVI output following Thorp et al.
(2015a). The plot means for each phenotype were used as the
dependent variable for subsequent statistical analysis.

Plant responses to the treatment over time for each of the traits
under observation were analyzed by repeated-measures mixed-
model analysis of variance using the SAS MIXED procedure.
The plot means from each of the four collections for each
of the phenotypes (Tc, h, CWSI, LAI, or NDVI) were used
as dependent variables. The cotton entry, irrigation treatment,
day of year (DOY), and corresponding interaction terms were
fitted as fixed effects. Random effects included the replicate,
the treatment-by-DOY-by-replicate interaction, the plot row,
column designation nested within border, and the corresponding
interactions with replicate, treatment, and DOY. Corrected
degrees of freedom were obtained using the “DDFM = KR”
option in the model statement. The DOY was included in the
REPEATED statement, and a compound symmetry covariance
structure (“TYPE = CV” option of the REPEATED statement)
was used in the analysis. Least-squares means corresponding to
the entry∗treatment level of the fixed effects were compared using
the “ADJUST = DUNNETT” option of the LSMEANS statement
with the DP1549B2XF entry as the control in the corresponding
WW or WL treatment.

Broad-sense heritability [H2 = Var(G)/Var(P)] on a plot basis,
or repeatability, was calculated with the asymptotic variance-
covariance matrix (Self and Liang, 1987) for each of the
phenotypes from each of the four collections using the plot
means as the dependent variable using the SAS code provided
by Holland et al. (2003). The overall mean for each phenotype

for each DOY was the only fixed effect. Random effects included
replicate nested within treatment, entry, and the corresponding
interaction. To examine associations among traits, Pearson’s
correlation coefficients (r) were determined using the SAS CORR
procedure.

Statistical Analysis of Physiological and
Growth Stage Notes
Plant physiological data and growth stages were analyzed
by mixed-model analysis of variance using the SAS MIXED
procedure. The plot means for each of the phenotypes (stand
count, first square, first flower, and pollen sterility) were
used as dependent variables. The cotton entry, irrigation
treatment, and corresponding interaction term were fitted as
fixed effects. Random effects included the replicate, nested
within border, and the corresponding interaction replicate by
treatment. Corrected degrees of freedom were obtained using
the “DDFM = KR” option in the model statement. Least-squares
means corresponding to the entry level of the fixed effects were
compared using the “ADJDFE = ROW” option of the LSMEANS
statement.

RGB Image Analysis for Canopy Cover
Images acquired by the Garmin VIRB were automatically
georeferenced with the cameras’ internal GPS and written to
the exchangeable image file (EXIF) as metadata. To georeference
the images acquired by the Cannon camera, images were
spatially binned by manually designating the plot row assignment
using the anchor targets. Images were then assigned the plot
boundary associated UTM coordinates and ARHS data (yaw,
pitch, and roll) by timestamp. Because the timestamp from
the camera and Campbell logger were not synchronized, the
anchor targets were used to determine the time offset. Images
were aligned and orthomosaics were generated using Agisoft
Photoscan Professional software v. 1.3.2 (St. Petersburg, Russia)
following the online orthophoto protocol with no ground
control points (GCP) http://www.agisoft.com/support/tutorials/
beginner-level/. The orthomosaic for each row of each plot was
exported in standard tagged image file format (tiff) to calculate
canopy cover using Fiji Image J v. 1.51n (National Institutes of
Health, United States). Originally created in RGB color space,
each orthomosaic was then converted to the hue, saturation,
and brightness (HSB) color space using the “HSB-Stack” and
“Stacks to Images” options in Image J, which produced a 3-band
HSB image with 8 bits per band (i.e., HSB was represented with
integers from 0 to 255). Segmentation (i.e., spatial partitioning)
of plant material in each orthomosaic was accomplished by
thresholding the hue band at integer 44: pixel values less than
44 were soil and pixel values greater than 44 were plant. This
resulted in a binary image (i.e., a one-band image with pixels
equaling either 0 or 255) where “255” represented the green
pixels and “0” represented all other pixels in the orthomosaic.
The percent canopy cover was initially calculated as the fraction
of pixels segmented as green plant material and the total pixels
in the orthomosaic using the “Analyze” and “Measure” options
in Image J. However, because the orthomosaics focused mainly

Frontiers in Plant Science | www.frontiersin.org 6 April 2018 | Volume 9 | Article 507

http://www.fieldphenomics.org/workshops/2015-htp-workshop
http://www.fieldphenomics.org/workshops/2015-htp-workshop
http://www.agisoft.com/support/tutorials/beginner-level/
http://www.agisoft.com/support/tutorials/beginner-level/
https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-09-00507 April 19, 2018 Time: 15:57 # 7

Thompson et al. Deploying Proximal Sensing Carts

on the crop row while ignoring the inter-row area, the percent
canopy cover calculations were adjusted to reflect the true area of
the plot row in cm2 based on the area of each pixel as calculated
by Agisoft and the known length and width of each plot row.
The corrected canopy cover measurements were compared to
the other PSC and physiological measurements using the SAS
CORR procedure as above. Further detailed instructions on how
to calculate canopy cover from an image can be found at http://
www.fieldphenomics.org/workshops/2015-htp-workshop under
Exercise H (Supplementary File S2).

RESULTS

Assessed Performance of the PSC and
Sensors
The method workflow for the FB-HTP data acquisition,
processing, and analysis is illustrated in Figure 2. The field
experimental design was planned and polygons to delineate plot
boundaries were developed. The PSC and field were prepared
for data collection, including sensor bar adjustments, anchor
targets, and “metanotes” were recorded. The collected data were
transferred from the Campbell logger to the HTP server via
the terminal and converted to comma-delimited text files for
processing. The data were georeferenced and geolocated within
plot boundaries using QGIS and the “HTP Geoprocessor” plugin.

Processed data were tested for outliers prior to statistical analysis
to determine treatment and entry differences.

In the first two HTP collections, the cart speed was
approximately 0.75 m s−1 and required just over 2.5 h to cover
the 0.87 ha experiment including turns. The last two collections
were faster with speeds up to 0.86 m s−1, requiring just over 2 h
to complete (Table 2). The average number of measurements per
plot for each sensor after outliers were removed was 123, 122,
128, and 13 for the IRT, displacement, weather station, and SRS,
respectively. Total data amounts averaged 50.7 MB per collection.
The average number of images per plot was 131. The collected
images required 45.7 GB of storage per collection. The amount of
image data tripled from Run1 to Run 2 and 3 because both the
Cannon and VIRB cameras were operational during Run No. 2
and 3 (Table 2).

To georeference plot measurements, GPS outputs as NEMA
RMC and GGA strings were used. In this study, there were
intermittent instances where only one of the two NEMA strings
was recorded due to logger coding errors. To address the issue,
the two NMEA strings were post-processed to select the most
appropriate time and positional data which was aided by the use
of the anchor targets.

The IRT sensor performed within estimated bounds as
established by the hand measurements before and after each
run and the target anchor points, except for the first collection.
In the first collection, the average Tc values were ∼10◦C above

FIGURE 2 | A general workflow for field-based, high-throughput phenotyping using a proximal sensing cart equipped with multiple non-contact sensors and RGB
cameras to assess cotton responses to water deficit used in this paper. The workflow starts with experimental and field preparation (A) then deployment of the cart
for data collection (B) followed by data processing (C) and ending with data analysis (D). Verbal and written informed consent was obtained for (B) from the
depicted individual for the publication.

TABLE 2 | Proximal sensing carts (PSC) data collections listed by the run number and day of year (DOY) of the collection.

Run Number DOY IRT ULT Weather SRS Total data
(MB)

Images Total data
(GB)

Speed
m s−1

Start time Stop time Total time

1 167 117.5 117.4 139.6 12.7 60.0 116 25 0.731 9:15 11:59 2:44

2 181 139.8 137.0 139.6 14.0 55.8 138 78 0.764 10:11 12:48 2:37

3 195 119.6 118.9 121.9 12.3 45.6 138 72 0.875 9:25 11:42 2:17

4 209 114.6 114.9 110.9 11.8 41.4 n/a n/a 0.914 9:33 11:44 2:11

Average 122.9 122.1 128.0 12.7 50.7 131 46 0.822 9:36 12:03 2:27

Included are the average number of data points per plot after outlier detection and removal for the infrared thermometer (IRT), ultrasonic transducer (ULT), weather station,
spectral reflectance sensor (SRS), and the corresponding amount of data collected in meta-bytes. Images include those from both RGB cameras and total amount of
data collected in giga-bytes. The rate of travel, collection start and stop time and total time of each collection are included.
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FIGURE 3 | Proximal sensing carts (PSC)-derived phenotypes split out by
irrigation treatment for each collection day. The data represent the average of
each phenotype for the designated treatment and day of year. (A) The
normalized difference vegetative index (NDVI), crop water stress index (CWSI),
and leaf area index (LAI) data are presented as calculated index units with
corresponding error bars. (B) The canopy temperature (Tc) and canopy height
(h) with the corresponding error bars. (C) The weather data presented in each
respective unit of measurement for ambient air temperature (Ta), relative
humidity (Rh), and radiant energy (RAD) with corresponding error bars.

anticipated values, due to small plant size and soil interference in
the sensor field of view. The increased Tc influenced the CWSI
calculations (Tc-Ta), making the plants appear more stressed
earlier in the season as compared to the water-limited treatment
later in the season. This result is also apparent to a lesser extent in
the second collection (Figure 3).

The ultrasonic displacement sensor, overall, returned h values
within the estimated boundaries; however, a negative value would
occasionally occur. These values were deemed “impossible” and
removed prior to outlier detection and removal. The negative
values were attributed to deviations in the plant bed height as

compared to the one-time measurement of distance from soil to
sensor bar with the metric ruler from the pre-measured soil to
sensor bar height. In fact, plant bed heights were not uniform
throughout the field, and h could vary by 5 cm due to bed
height variation that originated at the time of bed shaping. Bed
height can continue to vary during the growing season due to
soil compaction, rain events, and irrigation leaks that erode the
planting beds.

The canopy spectral reflectance sensor (SRS) performed
within the manufacturer specifications, and no deviations from
the estimated boundaries were detected. Note that considerably
fewer measurements were available for this sensor due to the
decreased logging rate. As a result, the anchor target was only
captured at one–twelfth the rate as the other sensors. The LAI
calculations were likely influenced by any deviations in h due
to bed height variability; however, they fell within the expected
range for cotton plants in early-mid season growth (Figure 3).

The Garmin VIRB white balance setting was non-functional
on the camera used in this study. As a result of the intense sun
and changing sun angles found in Maricopa, Arizona, the image
gains changed both within and between plots. These gain changes
made image alignment and orthomosaic generation difficult; this
also prevented consistent threshold values to be set for canopy
cover estimates (data not shown). For these reasons, the VIRB
images were not used for analysis. The Canon camera produced
better images in this environment, but because the camera did
not possess an internal GPS, extra steps were required to locate
the images within plot boundaries. Due to time restrictions, only
the first eight plots (both rows) from the June 30 (DOY 181)
collection were fully processed for canopy cover.

Irrigation Treatments and Sensor
“Tri-Metric” Detection
Two of the collections, June 16 (DOY 167) and June 30 (DOY
181), were before the irrigation treatment began on July 12 (DOY
193), while the remaining collections, July 14 (DOY 195) and
July 28 (DOY 209), were post irrigation treatment initiation.
The neutron moisture readings, averaged to a depth of 140 cm,
showed that deviation in percent soil moisture between the
irrigation treatments was not detectable until July 17 (DOY
198) (Figure 4). Due to the delayed soil moisture deficit, the
treatment effect over time was not significant (P-value > 0.05)
for any of the PSC derived or physiological phenotypes observed
(Supplementary Table S1). The weather station data collected
with each run also showed that the Ta and RAD decreased
between the first run and the last, while the Rh increased
(Figure 3). These environmental factors would also contribute
to undetectable treatment differences over time but added value
to determine how soil moisture and other environmental factors
affected the sensor values.

Cotton Entries and Sensor “Tri-Metric”
Detection
All the observed phenotypes differed among cotton entries
(p < 0.05). Despite a non-significant treatment effect, the entry
by treatment interactions were significant (p ≤ 0.05) for all
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FIGURE 4 | Average volumetric soil moisture content to a depth of 140 cm
among sample locations for well-watered (WW) and water-limited (WL)
treatments.

the PSC phenotypes collected except for NDVI (Supplementary
Table S1), indicating germplasm can be differentiated by the
phenotypes characterized under these environmental conditions.
In comparisons of the lsmeans of Tc with the locally adapted
control (DP1549B2XF), 17 entries were different (p < 0.05) for
the WL treatment (Figure 5 and Supplementary Table S2). Of
these entries, three had Tc values lower than the control while
two (#s 6 and 16) had reduced CWSI values. For the WW
treatment, entry #16, also had lower Tc and CWSI values than the
control (p < 0.05) along with increased LAI values under both
treatments (p < 0.05), indicating this entry was more drought
tolerant (Figure 5 and Supplementary Table S2). Entry #16 was
the earliest to flower, indicating this line might be avoiding the
accumulative effects of drought via faster development, whereas
entry #6 flowered later, suggesting a difference in drought
tolerance mechanisms (Supplementary Table S3). Compared to
the control, Entry #14 had higher Tc and CWSI and lower h,
NDVI, and LAI values (p < 0.05) for both irrigation treatments
(Supplementary Table S2). This entry had poor emergence and
stand establishment (Supplementary Table S3). Low plant stand
was associated with reduced canopy cover and hence, increased
soil interference in the sensors’ fields of view, meaning that
reported phenotypes for this entry are likely biased.

The broad-sense heritability estimates for each PSC-derived
phenotype over the four collections ranged from 0.097 to
0.574 (Supplementary Table S4). Estimates for NDVI and LAI
were the lowest overall, ranging from 0.284–0.489 to 0.211–
0.382, respectively. Estimates for h were the highest overall,
ranging from 0.211 to 0.574. Estimates calculated from the
second and third collections (DOY 181 and DOY 195) were
higher and most consistent between collections (Supplementary
Table S4). The broad-sense heritability values from the last
collection (DOY 209) were the lowest, which is likely due to the
increased environmental variation (Ta, Rh, and RAD) during that
collection (Figure 3).

Correlations among the PSC phenotypes found significance
(p ≤ 0.05) between all traits characterized across the irrigation
treatments (Supplementary Table S5). The treatments were

not assessed separately, because there was no treatment effect.
Analysis with the physiological and growth stage measurements
resulted in negative correlations between plant stand count with
Tc (r = −0.695, p = 0.0001) and CWSI (r = −0.834, p = 0.0001),
while positive correlations were found between plant stand count
with h (r = 0.316, p = 0.008), NDVI (r = 0.862, p = 0.0001),
and LAI (r = 0.635, p = 0.0001) (Supplementary Table S4).
No significant correlations were found between PSC phenotypes
and the other physiological and growth stage measurements
(Supplementary Table S5). While not significant, a low positive
correlation (r = 0.224, p = 0.062) was found between pollen
sterility and first flower, indicating some of these lines might
have heat avoidance mechanisms (i.e., faster growth means less
accumulated stress).

A method workflow for the image analysis is illustrated in
Figure 6A. The captured RGB images were aligned to generate
an orthomosaic in Agisoft Photoscan. The color space of the
orthomosaic was converted from RGB to HSB using Fiji Image
J. A binary image of plant (green) pixels was obtained by
segmenting the orthomosaic using a thresholding approach with
the hue band. The canopy cover was calculated as a ratio of the
area of green pixels from image segmentation and the total plot
area from known plot length and width.

The canopy cover analysis for the first 8-plots only, on DOY
181, and corresponding PSC and physiological measurements,
found cover was positively correlated (r = 0.747, p = 0.033) with
plant stand count indicating the hue threshold values accurately
captured plant (green) pixels (Figure 5B and Supplementary
Table S6). Similar to plant stand count, negative correlations were
found between canopy cover with Tc (r = −0.789, p = 0.020) and
CWSI (r = −0.788, p = 0.020), and positive correlations were
found between canopy cover with h (r = 0.864, p = 0.006) and LAI
(r = 0.721, p = 0.043) (Figure 6B and Supplementary Table S6).
Unlike the correlations among the whole dataset, significant
correlations (p ≤ 0.05) were found between PSC phenotypes and
the physiological and growth stage measurements, particularly
with first flower (Supplementary Table S6). This is likely due to
the very small dataset, which could also be influencing the other
correlations.

DISCUSSION

This paper describes the development and deployment protocol
of a low-cost proximal sensing cart (PSC) and sensor package
(SP) to characterize drought-adaptive traits in cotton germplasm
grown under well-watered and water-limited conditions. The
developed protocol provides several advantages to previous cart
deployments including: methods to confirm geospatial alignment
of data to experimental plots with the anchor targets; methods
to assess quality and accuracy of the sensor value returns
with the hand measurements and anchor targets; real-time
environmental data to clarify environmental interactions; and a
number of physiological notes to assess significant differences
between genotypes. The PSC and SP reliably quantified plant
characteristics related to drought tolerance in cotton by following
the developed protocol. The results of this work include a new
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FIGURE 5 | Proximal sensing cart-derived phenotypes split out by irrigation treatment for each of 18 selected cotton entries. The data represent the lsmeans of each
phenotype from the repeated measure analysis for the designated treatment and cotton entry. (A) The NDVI, CWSI, and LAI data are presented as calculated index
units with corresponding error bars. (B) The canopy temperature (Tc) and canopy height (h) with the corresponding error bars. Entry number 35, the local check, was
used as the control for all statistical comparisons.

PSC design and SP, a deployment protocol for accurate data
capture of canopy temperature, height, and spectral reflectance,
and the identification of two cotton entries that showed improved
drought-adaptive characteristics compared to the locally adapted
control under irrigation treatments and changing environmental
conditions.

The new PSC design is smaller than the previous model
(White and Conley, 2013), which reduced the cost and weight.

The narrow wheel spacing fits within the bed of a pickup truck,
negating the need for light-weight trailers to transport the PSC
to different field sites as previously reported. The decreased
weight and extended handle allowed for easier maneuverability
in the field by lifting up the back end of the cart, which
permitted pivoting on two wheels during turns and negated
the need for four swivel wheels as suggested by White and
Conley (2013). Required improvements to the cart design include
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FIGURE 6 | (A) Image workflow to calculate canopy cover from RGB images collected for each 12.1 m row of each plot, including an orthomosaic from Agisoft
Photoscan software, a hue band calculated from RGB data, and the inverse of the binary image from segmentation of green hue as outputted by Fiji Image J
software. (B) Correlation between the RGB-derived canopy cover and PSC-derived normalized difference vegetative index (NDVI), LAI, and canopy height (h) values
for the first eight plots on one collection day. The index units are to the left, canopy height units are to the right. The dashed line indicates the excel generated
trendline.

the capability to increase the cart height above 99 cm. If
collections had continued to the end of the cotton season,
the tops of the cotton plants would have hit the frame of
the cart potentially causing damage to the plants. Motorized
steering and drive control would improve the consistency at
which data is collected and reduce the effort of the cart
operator.

The sensor package deployed on the PSC increased the
number of traits that could be observed or calculated at one
time compared to the previous cart model. These traits included
canopy height and NDVI which enabled the LAI to be calculated.
The addition of the weather station sensor enabled a CWSI to be
calculated and monitor the effects of environmental conditions
on the cotton entries in real-time. The addition of these traits
enables the discovery of potential mechanisms underpinning the
drought-adaptive characteristics. For example cotton entry #6
had a reduced canopy temperature and CWSI compared to the
control under water-limited conditions indicating a difference in
stomatal regulation and water use efficiency between these two
entries. The addition of more sensors with appropriate validation
could further enhance the ability to determine drought tolerant
mechanisms.

The broad-sense heritability estimates (repeatability)
reported in this study are somewhat lower than those

reported by Andrade-Sanchez et al. (2014) utilizing the
high-throughput phenotyping, high clearance tractor. The
reduced estimates were likely due to the earlier season
measurements with smaller canopies in the first collection
and the variation in the environmental conditions in the last
collection. The lowest estimates calculated were from the
last collection which illustrates the environmental influence
on these traits. While not explored in this study, future
analysis incorporating the weather data would enhance
estimates of plant characteristics and improve understanding
of plant response to environmental change on a small
time-scale.

The canopy cover pipeline utilized in this study, while
accurate, was not efficient enough to determine cover for all
experimental plots in a timely fashion. Future improvements
will include the addition of GPS enabled cameras with white
balance calibration. This will ensure quality images and negate
the need for timely spatial binning to geolocate images to plots.
The processing pipeline would be further enhanced by either
“batching” the HSB threshold steps or utilizing another software
program that can automate the HSB threshold steps. Utilizing
images in high-throughput phenotyping will increase the number
of traits that can be assessed and enhance the ability to develop
heat and drought tolerant cultivars in a changing environment.
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While the sensor package and proximal sensing cart described
in this paper are not necessarily new, the detailed protocol
for deployment has not been heavily emphasized in previous
cart, tractor, or UAV papers. How the HTP platforms and
sensor packages are deployed can have a profound effect on
the data captured. If corresponding agronomy and physiology
measurements are not also recorded and taken into consideration
when evaluating the captured data, researchers run the risk
of developing the wrong conclusions, but this information is
frequently left out of FB-HTP papers to date. As an example, the
suppositions regarding the significant differences seen between
lines #6, 14, and 16 would not be supported (or likely even
made) had the soil moisture, real-time weather, and physiology
data not been captured. Also, less emphasis was given to the
CWSI values captured in this study because the corresponding
weather data and soil moisture measurements did not support
the captured trends. The detail described in this paper regarding
the deployment of the cart is an attempt to emphasize the
importance of “metadata” to interpret HTP data and set data
capture standards.

The protocol developed in this study describes how to build
and deploy a low-cost proximal sensing cart and sensor package
for characterizing drought-adaptive traits in upland cotton. Next
steps will include improving the cart design and automation of
the image processing protocol. Future work will also include
exploring statistical approaches that incorporate the real-time
weather data to enhance trait estimates and repeatability.

CONCLUSION

The proximal sensing cart design is relatively simple and
inexpensive; the materials can be purchased from hardware
stores and online retailers. The deployment protocol is relatively
easy to execute, and the majority of software for data analysis
is open source (QGIS, Python, Image J). Accurate and low-
cost detection of plants in the field was achieved by utilizing
a modified proximal sensing cart design and sensor package
to detect spatial and temporal plant responses under drought
conditions.
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FIGURE S1 | The specifications of the PSC developed for this study. The
drawings were rendered in AutoCAD software where (A) indicates side views and
(B) indicates top-down views of the cart.

FIGURE S2 | The QGIS schematic of the experimental field showing plot
boundaries (yellow), buffer rows (purple), alley ways (white), and neutron soil
moisture reading locations (white circles).

TABLE S1 | The outputs for each trait assessed from the repeated-measures
mixed-model analysis for cart derived traits or from the mixed-model analysis from
the hand measured traits. Each table contains the effects included in the model
along with the corresponding degrees of freedom (DF) calculated F values and
associated P-value. Model effects were considered significant at 0.05.

TABLE S2 | The mixed-model DUNNETTs comparison with the local check output
for each of the cart derived traits. The comparisons are split out by each cotton
entry and irrigation treatment assessed. The table includes the calculated lsmeans
value for the cart derived trait, the standard error (SE) and the associated P-value.
Comparisons were considered significant at 0.05.

TABLE S3 | The lsmeans and standard error (SE) derived from the mixed-model
analysis for each of the hand collected traits. These values were used for the
subsequent trait association analysis.

TABLE S4 | The calculated broad-sense heritability estimates and standard error
(SE) for each of the cart derived traits for each day of year (DOY) collection.

TABLE S5 | Pearson correlation coefficients (above) and P-values (below) showing
relationships between the cart and hand collected measurements from all
collections and across treatments. Correlations were considered significant at
0.05.

TABLE S6 | Pearson correlation coefficients (above) and P-values (below) showing
relationships between the cart and hand collected measurements as well as the
image derived canopy cover from the eight plots assessed across treatments.
Correlations were considered significant at 0.05.
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