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Department of Botany, University of Innsbruck, Innsbruck, Austria

Carbon (C) availability plays an essential role in tree growth and wood formation. We
evaluated the hypothesis that a decrease in C availability (i) triggers mobilization of
C reserves in the coarse roots of Picea abies to maintain growth and (ii) causes
modification of wood structure notably under drought. The 6-year-old saplings were
subjected to two levels of soil moisture (watered versus drought conditions) and root
C status was manipulated by physically blocking phloem transport in the stem at three
girdling dates (GDs). Stem girdling was done before the onset of bud break [day of the
year (doy) 77], during vigorous aboveground shoot and radial stem growth (GD doy 138),
and after cessation of shoot growth (GD doy 190). The effect of blockage of C transport
on root growth, root phenology, and wood anatomical traits [cell lumen diameter (CLD)
and cell wall thickness (CWT)] in earlywood (EW) and latewood (LW) was determined.
To evaluate changes in belowground C status caused by girdling, non-structural
carbohydrates (soluble sugars and starch) in coarse roots were determined at the time of
girdling and after the growing season. Although fine root mass significantly decreased in
response to blockage of phloem C transport, the phenology of root elongation growth
was not affected. Surprisingly, radial root growth and CLD of EW tracheids in coarse
roots were strikingly increased in drought-stressed trees, when girdling occurred before
bud break or during aboveground stem growth. In watered trees, the growth response
to girdling was less distinct, but the CWT of EW significantly increased. Starch reserves
in the roots of girdled trees significantly decreased in both soil moisture treatments and
at all GDs. We conclude that (i) radial growth and wood development in coarse roots of
P. abies saplings are not only dependent on current photosynthates, and (ii) blockage of
phloem transport induces physiological changes that outweigh drought effects imposed
on root cambial activity and cell differentiation.

Keywords: carbon allocation, drought, girdling, Norway spruce, root growth, wood anatomy

INTRODUCTION

Norway spruce [Picea abies (L.) Karst.] is the dominant coniferous tree species in the Central
European Alps. Natural populations of P. abies are found from the lower montane region up to the
tree line (Schmid-Vogt, 1977; Ellenberg and Leuschner, 2010), indicating its ability to acclimate to
different site and climatic conditions. However, due to the predominant occurrence of fine roots
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in the upper soil horizon (Puhe, 2003), P. abies shows high
sensitivity to drought stress, leading to reduced growth, a
shortened growing season, and early culmination of radial stem
growth in late spring (Mäkinen et al., 2001; Alavi, 2002; Pichler
and Oberhuber, 2007; Lévesque et al., 2013; Swidrak et al., 2014).
Fine roots are defined as short-lived, small-diameter (≤ 2 mm)
non-woody roots that are responsible for water and nutrient
absorption in plants (Wells and Eissenstat, 2003; Rytter, 2013). It
is well known that due to high turnover, fine roots depend heavily
on the import of new carbon (C) from the canopy (Jackson et al.,
1997; Matamala et al., 2003; Gaul et al., 2009). According to the
balanced-growth hypothesis, which suggests that the plant will
preferentially allocate biomass to the organ that is capturing the
resource limiting growth (Shipley and Meziane, 2002), plants
experiencing water shortage allocate more biomass belowground
(Mokany et al., 2006; Poorter et al., 2012; Hagedorn et al., 2016).
Although a significant increase in the root-shoot ratio in response
to periodic drought treatment was reported for P. abies seedlings
(Sonesson and Eriksson, 2003), the degree of change in the root-
shoot ratio is affected by the intensity of soil drought (Schall et al.,
2012), because suppressed root growth and increase in fine root
mortality in response to drought stress is a frequently reported
phenomenon (e.g., Gaul et al., 2008; Brunner et al., 2009; Rytter,
2013; for a review see Brunner et al., 2015).

In the course of secondary growth, trees are able to adjust
their water transport systems to changing water availability
(for a review see Fonti et al., 2010; Bittencourt et al., 2016).
For example, under drought stress xylem conduit dimensions
frequently decrease while conduit walls are reinforced (e.g.,
Dünisch and Bauch, 1994; Arnold and Mauseth, 1999; Martin-
Benito et al., 2013), i.e., smaller cells with thicker cell walls are
built to allow maintenance of an intact water transport system to
avoid downregulation of photosynthesis and/or xylem cavitation
(Hacke et al., 2001; Bréda et al., 2006; Rennenberg et al., 2006).
Wood formation is also influenced by C availability, because C
compounds provide energy for cambial activity (cell division),
produce water turgor pressure during expansive growth (cell
enlargement) and provide polysaccharides during structural
growth (cell wall thickening) (Gessler et al., 2009; Muller et al.,
2011; Simard et al., 2013; Deslauriers et al., 2016). Under
prolonged drought stress C allocation to cell wall formation
is diminished leading to formation of ‘light rings’ (Liang and
Eckstein, 2006; Martin-Benito et al., 2013; Balducci et al., 2015).
Accordingly, C and water availability influence xylem anatomy
and hydraulic function through effects on cell enlargement and
cell wall thickening. However, studies on the responses of the
water transport system in roots to changes in C and water
availability are scarce (Brunner et al., 2015).

Trees have substantial amounts of non-structural
carbohydrate (NSC) reserves (mainly starch and soluble
sugars; Hoch et al., 2003), which may be available to act as
mobilizable safety reserves for respiration, growth, and wood
formation in case of reduced photosynthetic C supply (Regier
et al., 2009; Hartmann et al., 2013). Physical blockage of C
transport through girdling immediately terminates the supply
of current photosynthates to the roots while enabling water
transport in the reverse direction through the xylem. This

manipulative type of treatment is useful to study the impact of
C availability on tree growth (e.g., Maier et al., 2010; Maunoury-
Danger et al., 2010; De Schepper and Steppe, 2011; López et al.,
2015; Oberhuber et al., 2017). Manipulation of the root C status
by disruption of phloem transport in the stem under high vs.
low soil moisture content can reveal (i) the ability of roots to
mobilize C reserves for root growth, and (ii) how it impacts
the tracheid anatomy of the new conduits formed. Girdling
applied at different phenological stages, i.e., before, during, and
after stem growth acts as a C sink, can reveal the dependency of
root growth and wood development on current photosynthates
throughout the growing season.

The focus of this study therefore was to determine the effects
of interrupted stem C flow at distinct phenological stages on
root growth and xylem anatomical traits in P. abies saplings
under different levels of soil water availability, i.e., watered vs.
drought-stressed. We hypothesized that blockage of C transport
impairs root growth (elongation and radial growth) and modifies
tracheid differentiation, resulting in a decrease in CLD and
CWT, even under non-water-stressed conditions. Furthermore,
because phloem girdling also inhibits transport of shoot-derived
growth substances (especially auxin) necessary for growth and
development of roots (Ljung et al., 2001; Fu and Harberd, 2003;
Takahashi, 2013), we expected no root growth when girdling
occurred before bud break and the onset of aboveground growth.
This study contributes to a developing understanding of the
early timing of maximum radial stem growth found in several
coniferous species exposed to drought at the start of the growing
season (Oberhuber et al., 2014), and the interaction between C
availability and drought on wood formation.

MATERIALS AND METHODS

Plant Material and Treatments
The study was conducted at the Botanical Garden of the
Department of Botany (University of Innsbruck, Austria) in 2015
using 6-year-old P. abies trees with a mean stem height and
diameter of 1.3 m and 3.5 cm, respectively. Saplings were grown
in 80-l containers that were filled with a well-draining potting
mixture fertilized with calcium ammonium nitrate containing
27% N (NAC 27 N; Borealis L.A.T., AT) and a drainage layer at
the bottom of the container. A uniform microclimate was ensured
by placing the containers in a regular polytunnel covered with
clear polythene (200 micron UV stabilized film). Before starting
the experiment, trees were allowed to recover from transplant
shock for one complete growing season (October 2013 through
March 2015).

Two levels of soil moisture were applied by irrigating trees
weekly to field capacity in the early morning (watered treatment)
or by watering in 10- to 14-day-intervals with 50% of the amount
of irrigation used for watered trees (drought treatment). Trees
were divided into the control subset (no phloem blockage) and
three subsets of phloem blockage treatment at different girdling
dates [GDs; day of the year (doy) 77, doy 138, and doy 190].
In total, 80 trees were included in the study: 2 soil moisture
treatments× 4 subsets× 10 trees per subset = 80 trees.
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Air temperature, relative air humidity, and solar radiation
(PAR) were recorded at two meters’ height within the polytunnel
throughout the study period in 2015 (CS215 temperature and
relative humidity sensor, LI-200S Pyranometer Sensor; Campbell
Scientific, Shepshed, United Kingdom). Volumetric soil water
content (SWC) and soil temperature were measured in the
uppermost 30 cm and at 10 cm soil depth, respectively, in
both soil moisture treatments (n = 10 per treatment; T 107
Temperature Probe, and CS616 Water Content Reflectometer;
Campbell Scientific, Shepshed, United Kingdom). Environmental
data were collected every minute and averaged in 30-min
intervals using a CR1000 data logger and AM 16/32 multiplexers
(Campbell Scientific, Shepshed, United Kingdom).

Manipulation of C Availability by Phloem
Blockage
To accomplish blockage of C transport from leaves to roots,
we applied double girdling by detaching two 1- to 2-cm-wide
bands of bark (extending to the xylem) at stem heights of
c. 5 and 15 cm (cf. De Schepper et al., 2010; Oberhuber et al.,
2017). Dehydration of xylem tissue was prevented by covering
girdling zones with aluminum foil. Based on phenological stages
determined in a previous study (Swidrak et al., 2013), trees were
girdled (i) several weeks before bud swelling and onset of cambial
activity in mid-March (GD doy 77), (ii) during shoot growth and
earlywood (EW) formation in mid-May (GD doy 138), and (iii)
after aboveground growth of the terminal shoot ceased in July
(GD doy 190).

Determination of Root Growth and Wood
Anatomical Parameters
At the end of the study period in late October, cross-sections
with a diameter of c. 1 cm were collected from coarse roots that
had developed ≥ 5 cm below the soil surface. Radial growth was
measured on transverse sections of c. 20 µm thickness that were
cut using a rotary microtome and stained with a water solution
of 0.05% cresyl fast violet. Ring widths were measured to the
nearest 0.01 mm by applying the image analysis software ProgRes
Capture Pro (version 2.8.8, Jenoptik, Jena, Germany). Due to
the occasional occurrence of eccentric diameter growth, mean
radial root growth was calculated from 5 radii per cross-section
and 10 trees per treatment (i.e., soil moisture and GD). Dating
of the growth zones was accomplished visually by cross-dating
time series, i.e., matching year-to-year variations in ring width
among different trees (Cook and Kairiukstis, 1990). To enable
comparison of the effects of girdling between the control and
girdled trees, the radial growth of each tree was standardized
using the ring widths of the year prior to girdling (Rossi et al.,
2003). In every sample, ring widths of the previous three years
were measured and used to correct inherent differences in radial
root growth among trees. Ring width was corrected as follows:

rcwi = rwmsi × rwmi/rwsi

where rcwi = corrected ring width, rwmsi = measured ring width,
rwmi = mean ring width of previous rings of all i-samples, and
rwsi = ring width of previous rings for each i-sample.

The same transverse sections used for measuring radial root
growth were used to determine wood anatomical parameters.
CLD and CWT were measured along five separate cell rows
throughout five EW and LW cells, i.e., n = 25 cells per tree
(n = 5 trees). Mean values and standard deviations (SDs)
were calculated from n = 125 measurements per subset (GD
and soil moisture treatment). The ratio between CLD and
CWT defined the proportion of cell-wall material. Statistically
significant differences among control and girdled trees with
respect to these cell parameters were determined by applying
Student’s independent sample t-test.

Root elongation growth was determined by applying the
non-destructive minirhizotron technique (Vamerali et al., 2012),
which allows a continuous study of root growth during the
growing season. Clear acrylic tubes with an inner diameter and
length of 6.3 and 50 cm, respectively, were inserted at 45–50◦
angles in 10 containers for each environmental setting of controls
(2 treatments × 10 replications = 20 tubes) and in drought-
stressed girdled trees (three GDs × 10 replications = 30 tubes).
The aboveground end of the tube was wrapped with white plastic
tape to minimize solar heating and to prevent light from entering
the tube. The tube–soil interface was allowed to equilibrate for
one growing season before imaging to avoid artifacts (Johnson
et al., 2001). Images were collected from March (doy 77) through
October (doy 278) in 4-week intervals (CI-600, CID Bio-Science,
Inc., Camas, WA, United States), when no soil frost was recorded.

Following collection, images were analyzed for the onset
and end of root elongation using image analysis software
(ImageJ, 1.37, National Institutes of Health, Bethesda, MD,
United States). Newly formed roots are unsuberized and have
a whitish appearance (Pallardy, 2008). Therefore, onset of root
elongation was defined when white root tips were seen for the first
time between two succeeding observation dates. Accordingly,
cessation of root elongation was determined when no change in
root elongation was seen between succeeding observation dates.
Quantitative analysis of root elongation growth was not possible
because identical placement of the observation tube on the root
ball could not be achieved in each pot. The belowground biomass
(dry weight) of fine roots with a diameter ≤ 2 mm was measured
at the end of the experimental period (late October) for all trees
(control and girdled trees). To this end, trees were removed
from containers, the rootstock was separated and fine roots
were detached by hand. Fine roots remaining in the containers
were collected by sieving. Due to coverage of the soil surface
with plastic film, fine roots of herbaceous species were not
present. Dead fine roots, which were assessed by color, elasticity,
and toughness, were discarded. Total live fine root biomass of
each tree was weighed ( ± 0.01 g) after drying at 65◦C for
72 h.

Determination of Non-structural
Carbohydrates (NSCs)
Measurements of starch and soluble sugars (sucrose, glucose,
fructose) were performed on watered and drought-stressed trees
(n = 10 trees per treatment) using bark samples collected from
coarse roots at the end of the study period. This approach
was justified because (i) bark samples contain up to 10-fold
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higher NSC concentrations compared to xylem (Landhäusser
and Lieffers, 2003; Gruber et al., 2013), (ii) a close coupling of
phloem and xylem NSC reserves exists (Van Bel, 1990), and (iii)
we were primarily interested in changes in NSC content and
composition caused by blockage of phloem C transport rather
than determination of total root NSC reserves. The samples
were collected in the morning to minimize the effects of diurnal
NSC changes and were denatured within 1 h by heating in a
microwave at 600 W for 90 s (Hoch et al., 2003). Thereafter, the
samples were dried at 60◦C to a constant weight and ground into
powder (Tissuelyser II, Qiagen, Germany). Polyvinylpyrrolidone
(PVP, 0.5 mg) was added to c. 40 mg of finely ground plant
material to bind phenolic substances. Ethanol (40% v/v, 15 min
at 60◦C) was used to extract soluble carbohydrates from the
samples. Enzymatic conversion of the soluble carbohydrates
and photometric determination of NSCs were performed using
a semiautomatic system for photometric testing (Rida Cube
Scan analyzer, R-Biopharm, Darmstadt, Germany) and the
corresponding enzymatic kits (for further details see Oberhuber
et al., 2017).

RESULTS

The mean daily soil temperature during April through October
was 18.4 ± 5.3◦C (both soil moisture treatments; Figure 1A).
Mean daily air temperature and relative humidity during
the study period were 18.1 ± 5.6◦C and 65.5 ± 12.8%,
respectively, and the mean daily maximum solar radiation
was 1005 µmol m−2 s−1 (data not shown). At the study’s
commencement, the volumetric SWC averaged 0.14 ± 0.02
and 0.15 ± 0.02 m3 m−3 in the watered and drought-stressed
treatments, respectively, and the mean growing season SWC
values were 0.09 ± 0.02 m3 m−3 in the drought-stressed and
0.18± 0.04 m3 m−3 in the watered containers (Figure 1B).

In response to girdling, the fine root biomass (≤ 2 mm) in both
soil moisture treatments was significantly reduced compared to
controls irrespective of GD, except in drought-stressed trees at
GD doy 190 (Figure 2). The fine root biomass of the control
and girdled trees did not differ significantly among soil moisture
treatments (P > 0.05).

The drought-stressed treatment control and girdled trees
showed onset and end of root elongation growth between May
19 and June 18, and August 13 and September 4, respectively (for
example root scan images see Supplementary Figure S1). Time
of girdling had no effect on the phenology of root elongation
growth in drought-stressed trees. In watered trees (controls),
root growth started earlier (between April 21 and May 19) and
ended later (between September 4 and October 5). In response
to girdling before growth onset (GD doy 77), all girdled trees
died between late August and mid-September, irrespective of
water availability. Although all drought-stressed trees girdled
in mid-May (GD doy 138) had died by the end of September,
watered trees girdled on the same date were less affected (only
four trees showed intensive needle browning in October). No
tree mortality was observed in controls and trees girdled in July
(GD doy 190).

FIGURE 1 | (A–B) Soil temperature (A) and soil water content (B) during the
growing season 2015 in watered (black lines) and drought-stressed trees
(gray lines). For soil water content, daily means (thin lines) and 10 days moving
averages (thick lines) are shown.

In the drought-stressed treatment, blockage of phloem
C-transport induced a significant increase in radial root growth
[EW width, latewood (LW) width and total ring width] compared
to controls at all GDs, whereas in watered trees only girdling
before growth onset (GD doy 77) induced a significant increase
of EW width and total ring width (Figure 3). Ring width and
EW width of the non-girdled trees differed significantly among
soil moisture treatments (P ≤ 0.01). The annual increments and
anatomical parameters of coarse roots in the year before the
experiment were not significantly different among the subsets,
except for LW width in the drought-stressed subset girdled at GD
doy 77 in the experimental year (Supplementary Table S1).

Analyses of wood anatomical parameters in coarse roots
primarily revealed that CWT in watered trees and CLD in
drought-stressed trees were significantly larger in EW in response
to girdling (Table 1). Correspondingly, the ratio of CLD: CWT
in EW was significantly decreased at GD doy 138 and doy 190
in watered trees and significantly increased at GD doy 77 and
doy 138 in drought-stressed trees compared to controls. The
anatomical parameters of the LW did not significantly respond
to girdling, except for an increase in CWT after GD doy 77 under
drought (P≤ 0.05) leading to a significant decrease in CLD: CWT
(P ≤ 0.01) compared to controls.

The main outcome of girdling on the NSC content in
coarse roots was a highly significant decrease in starch content
irrespective of soil moisture treatment and GD, whereas soluble
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FIGURE 2 | Fine root mass (diameter ≤ 2 mm) of watered and
drought-stressed trees (filled and open circles, respectively) at the end of the
study period. Significant effects of girdling within a soil moisture treatment are
indicated by different letters (P ≤ 0.01; Student’s independent sample t-test).
Bars indicate standard deviations.

sugars were nearly always not significantly different from controls
in both soil moisture treatments (Figure 4). Total NSCs were
significantly different from controls at all GDs in both soil
moisture treatments (P ≤ 0.001). The NSC content (starch and
soluble sugars) of the control and girdled trees did not differ
significantly among soil moisture treatments (P > 0.05).

DISCUSSION

Effects of Drought and Modified C
Availability on Radial Root Growth and
Tracheid Differentiation
The main objective of this work was to study the effects of phloem
blockage at different phenological stages on root growth and
wood anatomy in P. abies saplings exposed to different soil water
availability. Several authors reported accumulation and depletion
of NSC above and below the girdling zone, respectively, leading to

FIGURE 3 | (A–B) Radial growth of coarse roots in response to girdling in
watered (A) and drought-stressed trees (B). Bars indicate standard
deviations. Asterisks indicate statistically significant differences between
girdled trees and controls (∗P ≤ 0.05; ∗∗P ≤ 0.01; ∗∗∗P ≤ 0.001; Student’s
independent sample t-test). Note that the axes have different scales.

stimulation (above girdling) and cessation of radial stem growth
(below girdling; Noel, 1970; Högberg et al., 2001; Daudet et al.,
2005; Maunoury-Danger et al., 2010; De Schepper and Steppe,
2011; Oberhuber et al., 2017).

Contrary to our expectations, we observed a significant
increase in radial growth in coarse roots in response to girdling
(Figure 3) at the expense of starch reserves (Figure 4). These
results indicate that girdling triggers degradation of starch to
support radial root growth particularly under drought. Similarly,

TABLE 1 | Wood anatomical parameters of earlywood (EW) and latewood (LW) in coarse roots in controls and watered and drought stressed girdled trees (CWT = cell
wall thickness; CLD = cell lumen diameter).

watered control GD doy 77 GD doy 138 GD doy 190 drought control GD doy 77 GD doy 138 GD doy 190

CWT (µm)

EW 2.8 ± 0.2 3.3 ± 0.2∗∗ 3.2 ± 0.1∗∗ 3.4 ± 0.2∗∗ 3.5 ± 0.3 3.7 ± 0.1 3.2 ± 0.2 3.8 ± 0.3

LW 4.3 ± 0.4 4.8 ± 0.5 4.7 ± 0.6 4.9 ± 0.5 4.3 ± 0.6 5.7 ± 0.5∗ 4.6 ± 0.4 4.8 ± 0.4

CLD (µm)

EW 18.0 ± 1.4 19.5 ± 1.3 17.9 ± 1.5 17.2 ± 0.8 14.7 ± 1.5 22.0 ± 1.5∗∗∗ 20.4 ± 1.5∗∗∗ 15.5 ± 1.5

LW 6.2 ± 0.8 5.6 ± 2.0 5.6 ± 0.9 4.2 ± 1.0 6.1 ± 1.4 4.5 ± 0.5 6.6 ± 1.2 5.2 ± 1.4

CLD:CWT

EW 6.6 ± 0.7 5.9 ± 0.8 5.6 ± 0.5∗ 4.5 ± 0.4∗∗∗ 4.2 ± 0.8 6.0 ± 0.4∗∗ 6.4 ± 0.4∗∗∗ 4.1 ± 0.7

LW 1.4 ± 0.2 1.2 ± 0.3 1.2 ± 0.2 0.8 ± 0.2∗∗ 1.4 ± 0.2 0.8 ± 0.1∗∗ 1.4 ± 0.2 1.1 ± 0.2

Asterisks indicate significant effects of girdling within a soil moisture treatment (∗P ≤ 0.05; ∗∗P ≤ 0.01; ∗∗∗P ≤ 0.001).
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FIGURE 4 | Mean concentration of starch (black bars) and soluble sugar
(open bars) at the end of the study period in the coarse root of watered and
drought-stressed trees. Significant effects of girdling within a soil moisture
treatment are indicated by different letters (Mann–Whitney U-test; lower case
letters: starch, P ≤ 0.001; upper case letters: soluble sugar, P ≤ 0.01). Bars
indicate standard deviations.

Jordan and Habib (1996) reported NSC depletion in roots of
young peach trees due to girdling and Hartmann et al. (2013)
found that reduced phloem function caused by lethal drought
led to carbohydrate depletion in P. abies roots. The mean age
of C used to grow new roots in temperate forests was found
to be < 1–2 years (Gaudinski et al., 2009; Endrulat et al.,
2010) indicating that phloem blockage provokes utilization of
stored C reserves for radial root growth. Overall, growth data
determined below the girdling zone revealed that aboveground
(cf.Winkler and Oberhuber, 2017) and belowground cambia (this
study) located below the girdling zone responded differently to
physical blockage of phloem transport. Whereas shoot-derived
auxin transported through the phloem with the sap flow might
be necessary for radial stem growth to occur, it was not required
for the initiation of root growth in girdled trees (Supplementary
Figure S1).

The consistently measured low NSC content in coarse roots at
the end of the growing season in dead girdled trees is consistent
with findings of Jordan and Habib (1996) and Bhupinderpal-
Singh et al. (2003), i.e., that phloem girdling does not deplete NSC
in roots completely. This finding supports the view put forward
by Millard et al. (2007) and Li et al. (2015) that some NSCs may
represent C sequestration rather than storage. Limitation of C
remobilization in roots was also found in Populus tremuloides
seedlings exposed to complete darkness, i.e., under severe C stress
(Wiley et al., 2017). That fine root biomass was not significantly
different among soil moisture treatments (Figure 2) is consistent
with the findings of several authors (e.g., Cudlin et al., 2007;
Ostonen et al., 2007; Brunner et al., 2009) and the observation of
Joslin et al. (2000) that forests maintain a relatively constant fine
root biomass over the long-term. These findings indicate that due
to rapid turnover fine roots have a high priority for within-tree C
allocation and are a substantial sink for plant C (Nadelhoffer and
Raich, 1992; Jackson et al., 1997).

In accordance with reports of numerous studies that soil water
deficit limits cell division and cell enlargement (Hsiao, 1973;
Zweifel et al., 2006; Rossi et al., 2009; Muller et al., 2011; Pantin
et al., 2013; Balducci et al., 2015), radial root growth and tracheid
diameter in the drought-control treatment were significantly
reduced compared to watered trees (Figure 3, Table 1). The
period of root elongation growth was also shortened when low
water availability prevailed (Supplementary Figure S1), which is
in line with several other studies that root growth ceases under
severe drought (for a review see Brunner et al., 2015). However,
after girdling root radial growth and CLD of EW was not
significantly different among soil moisture treatments indicating
that blockage of phloem C transport induced physiological
changes that outweighed drought effects imposed on root cambial
activity and cell differentiation.

As hypothesized, wood anatomical traits changed in response
to girdling and soil water manipulation. The significant increase
in CLD (i.e., expansive growth) in the EW of drought-stressed
trees was most likely caused by osmotically active sugars formed
during starch degradation. However, CLD of EW did not increase
in the well-watered treatment (Table 1) showing similar soluble
sugar content in the bark at the end of the growing season
(Figure 4). Most likely starch reserves in the xylem tissue, which
were not analyzed in this study, were degraded to different extent
depending on water availability. Low-molecular-weight sugars
are known to decrease osmotic potential and are a key driving
variable of cambial activity and cell enlargement in response to
girdling (Jones, 1992; De Schepper and Steppe, 2011; Sala et al.,
2012; Steppe et al., 2015). According to the Hagen–Poiseuille
law, the resulting increase in CLD: CWT ratio in combination
with striking increase in EW width enabled girdled trees to
transport more water but at higher cavitation risk (Rosner, 2013;
Hacke et al., 2015; but see Gleason et al., 2016). An increase in
tracheid lumen in the stem was also detected in pine trees in
response to drought stress (Martín et al., 2010; Eilmann et al.,
2011), which has been suggested to be an adaptation to maximize
water uptake when water supply is limited. However, our results
are in contrast with the findings of Eldhuset et al. (2013), who
reported that tracheid diameter in fine roots of drought-stressed
P. abies was significantly reduced compared to controls. These
contradictory results can be explained by the necessity to mobilize
limited C reserves in roots of girdled trees, which triggers the
production of less dense wood (increase in CLD: CWT) to reduce
formation costs per unit wood volume. The contrasting response
in cell enlargement aboveground and belowground in response to
girdling, i.e., the decrease of CLD in the tree stem above girdling
(Winkler and Oberhuber, 2017) and increase of CLD in coarse
roots below girdling (Table 1), might be related to accumulation
and shortage of some internal hormonal factor(s) above and
below the phloem blockage zone, respectively. For example, auxin
and cytokinin function as major regulators of cambial activity
and cell differentiation (Zhang et al., 2014; Immanen et al.,
2016) and are transported acropetally and basipetally through
the vascular system (Lacombe and Achard, 2016), which was
either blocked (phloem transport) or showed reduced activity
(xylem sap flow) in girdled study trees (Oberhuber et al.,
2017).
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Phenology of Aboveground and
Belowground Growth in Non-girdled
Trees
Winkler and Oberhuber (2017) reported that aboveground
growth (i.e., radial stem growth and shoot growth) of drought-
stressed P. abies saplings commenced and ceased in early April
and early June, respectively. Here, we report that in those
trees root growth in drought-stressed trees started around
end of May, i.e., at the time when aboveground growth was
largely completed (Supplementary Figure S1). On the other
hand, root growth in watered trees started after cessation
of shoot growth but continued during vigorous radial stem
growth. Because soil temperatures were consistently above
6◦C throughout duration of the experiment (Figure 1) and
lower soil temperatures were found to increasingly limit root
growth (Alvarez-Uria and Körner, 2007), our findings support
the view that xeric environmental conditions trigger an early
shift of C allocation from aboveground growth to the root
system (Gruber et al., 2010; Oberhuber et al., 2014). Our
interpretation is consistent with an evaluation of a global data
set of root to shoot ratios by Ledo et al. (2018), who reported
that comparably more biomass is invested belowground with
increasing aridity and in saplings and small trees. Furthermore,
low and high priority of C allocation to radial stem growth and
root growth, respectively (Waring, 1987; Cannell and Dewar,
1994; Ericsson et al., 1996), support our interpretation, but
changes in allocation patterns with tree size and age have to
be taken into account (Gedroc et al., 1996; Müller et al., 2000).
Several authors (Pregitzer et al., 2000; Abramoff and Finzi, 2015;
Iversen et al., 2017) have also suggested that internal controls
over C allocation are an equally, if not more important driver
of root phenology in addition to edaphic or environmental
conditions.

CONCLUSION

Although prevention of photosynthate transport toward the
roots by girdling caused a significant decrease in fine root

biomass in both soil moisture treatments, mobilization of
starch reserves provoked a striking increase in radial growth
and CLD in coarse roots particularly under drought. Hence,
we conclude that (i) radial growth and wood formation in
coarse roots of P. abies saplings are not only dependent
on current photosynthates and (ii) phloem girdling induces
physiological changes (e.g., concentration of internal growth-
regulating factors) that outweigh drought effects imposed on root
cambial activity and cell differentiation.
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