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Fruits of sweet orange (Citrus sinensis), a popular commercial Citrus species, contain
high concentrations of flavonoids beneficial to human health. These fruits predominantly
accumulate O-glycosylated flavonoids, in which the disaccharides [neohesperidose
(rhamnosyl-α-1,2-glucose) or rutinose (rhamnosyl-α-1,6-glucose)] are linked to the
flavonoid aglycones through the 3- or 7-hydroxyl sites. The biotransformation of
the flavonoid aglycones into O-rutinosides or O-neohesperidosides in the Citrus
plants usually consists of two glycosylation reactions involving a series of uridine
diphosphate-sugar dependent glycosyltransferases (UGTs). Although several genes
encoding flavonoid UGTs have been functionally characterized in the Citrus plants,
full elucidation of the flavonoid glycosylation process remains elusive. Based on the
available genomic and transcriptome data, we isolated a UGT with a high expression
level in the sweet orange fruits that possibly encodes a flavonoid glucosyltransferase
and/or rhamnosyltransferase. Biochemical analyses revealed that a broad range of
flavonoid substrates could be glucosylated at their 3- and/or 7-hydrogen sites by
the recombinant enzyme, including hesperetin, naringenin, diosmetin, quercetin, and
kaempferol. Furthermore, overexpression of the gene could significantly increase the
accumulations of quercetin 7-O-rhamnoside, quercetin 7-O-glucoside, and kaempferol
7-O-glucoside, implying that the enzyme has flavonoid 7-O-glucosyltransferase and
7-O-rhamnosyltransferase activities in vivo.

Keywords: sweet orange (C. sinensis), UGTs, flavonoid glycosylation, flavonoid rhamnosylation, flavonoid 7-O-
glucosyltransferase, flavonoid 7-O-rhamnosyltransferase

INTRODUCTION

Flavonoids, such as flavanones, flavones, and flavonols, are among the most widespread groups
of plant secondary metabolites and show a broad diversity of biological functions (Wang et al.,
2007, 2011). Flavonoids are supposed to be beneficial to human health because of their anti-
oxidant, anti-allergenic, and anti-inflammatory properties (Pietta, 2000; Ross et al., 2001). In
plants, many flavonoid aglycones are glycosylated with pentoses and hexoses, resulting in the
functional and structural diversity of flavonoids (Vogt and Jones, 2000; Jones and Vogt, 2001).

Abbreviations: BPI, basic peak ion; qRT-PCR, real-time quantitative reverse transcriptional-polymerase chain reaction;
UGTs, uridine diphosphate (UDP)-sugar dependent glycosyltransferases; UPLC-Q-TOF-MS, ultraperformance liquid
chromatography-quadrupole time-of-flight mass spectrometry.
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The glycan moieties present in flavonoid glycosides may play
key roles in increasing the aqueous solubility of these glycosides,
thus improving their bioavailability in humans (Hollman et al.,
1995; Hollman and Katan, 1999). Most flavonoid glycosylation
reactions depend on UDP-sugar dependent glycosyltransferases
(UGTs), which use UDP sugars as sugar donors (Dixon and
Steele, 1999; Bowles, 2002; Bowles et al., 2005; Lairson et al.,
2008) and contain a 44-amino-acid conserved sequence (the
“PSPG motif”) in their C-terminal regions that is responsible for
combining the UDP sugars (Gachon et al., 2005).

Several members of the UGT superfamily exhibit strict
regiospecificity when performing glycosylation reactions on
flavonoid substrates (Kramer et al., 2003; Cartwright et al.,
2008); WsGT from Withania somnifera, for instance, was
shown to glycosylate the 7-hydrogen sites of naringenin,
apigenin, and luteolin (Kumar et al., 2013). In contrast,
some UGTs can glycosylate substrates at multiple hydroxyl
positions, such as the flavonoid glucosyltransferase from
Dianthus caryophyllus that uses naringenin as a substrate
to produce naringenin-4′-O-glucoside and naringenin-7-O-
glucoside (Werner and Morgan, 2010). Another study has
demonstrated the role of AtUGT74F1 in glycosylating quercetin
at its 4′-, and 7-hydrogen sites (Lim et al., 2004). At present,
UGTs have been cloned and functionally characterized in many
plant species, which, based on their substrate preferences,
can be largely classified into two major types. The first
type directly adds a sugar to the aglycones of flavonoids
and their derivatives; these include Petunia hybrida PGT8
(flavonoid 3-O-glucosyltransferase) and PH1 (flavonoid 5-O-
glucosyltransferase) (Yamazaki et al., 2002), Vitis vinifera UFGT
(flavonoid 3-O-glucosyltransferase) (Ford et al., 1998), Rosa
hybrida RhGT1 (anthocyanin 3, 5-O-glucosyltransferase) (Ogata
et al., 2005), and Arabidopsis thaliana UGT73C6 (flavonol
3-O-rhamnoside-7-O-glucosyltransferase) (Jones et al., 2003).
The second type attaches a sugar to the glycogen of the
flavonoid monoglycosides to produce diglycoside; this group
includes Ipomoea nil 3GGT (anthocyanidin 3-O-glucoside-2′′-
O-glucosyltransferase) (Morita et al., 2005) and Petunia hybrida
3RT (anthocyanidin 3-O-glucoside-6′′-O-rhamnosyltransferase)
(Kroon et al., 1994).

Citrus fruits are known to accumulate high concentrations
of flavonoid glycosides and have been widely used by the
food-production sector as sources of these dietary chemicals.
The biosynthetic pathway of the flavonoid glycosides is well-
characterized in the Citrus plants, and most of the structural
genes encoding the core enzymes have been identified from
model plants (Tanaka et al., 2008). Most flavonoid glycosides in
the Citrus plants are O-glycosides, in which the disaccharide is
connected to the flavonoid aglycones by oxygen, and the most
common disaccharides are neohesperidose (rhamnosyl-α-1,2-
glucose) or rutinose (rhamnosyl-α-1,6-glucose). Citrus species,
generally, have low levels of C-glycoside flavonoids, in which a
C–C bond is directly formed between the anomeric carbon of
the sugar moiety and the aromatic ring carbon of the flavonoid
aglycones, in their fruits and leaves (Franz and Grün, 1983;
Hultin, 2005). Biotransformation of the flavonoid aglycones
into O-rutinosides or O-neohesperidosides in the Citrus plants

typically consists of two glycosylation reactions involving a
series of UGTs (Vogt and Jones, 2000; Li et al., 2001; Cantarel
et al., 2009) (Figure 1). The first reaction is glucosylation
at the 3- or 7-hydrogen sites of the flavonoid aglycones
catalyzed by a 3-O- or a 7-O-glucosyltransferase, respectively
(McIntosh et al., 1990; Berhow and Smolensky, 1995), and
the subsequent reaction is catalyzed by rhamnosyltransferases,
such as 1,6-rhamnosyltransferase catalyzing flavonoid 3-O- or
7-O-glucosides to produce flavonoid 3-O- or 7-O-rutinosides,
respectively (Bar-Peled et al., 1993; Frydman et al., 2013),
whereas, 1,2-rhamnosyltransferase only metabolizes flavonoid
7-O-glucosides (and not flavonoid 3-O-glucosides) into
flavonoid 7-O-neohesperidoses (Lewinsohn et al., 1989; Frydman
et al., 2004). Although several UGTs have been functionally
characterized in the Citrus plants, their number is still relatively
low given the large abundance of the UGTs in the genomes
of these plants; for example, genome-wide analyses have
identified 120 UGTs in A. thaliana, 164 UGTs in Medicago
truncatula (Caputi et al., 2012), and 137 UGTs in Linum
usitatissimum (Barvkar et al., 2012). Thus, further identification
and characterization of these UGTs are important steps in
understanding their roles in flavonoid glycosylation, as well
as in the regulation of flavonoid accumulation in the Citrus
fruits.

Here, we identified a new UGT (“CsUGT76F1”) isolated from
the sweet orange fruits. Phylogenetic analysis suggested that
CsUGT76F1 might function as a flavonoid glucosyltransferase
and/or rhamnosyltransferase. Heterologous expression in
E. coli was employed to investigate whether the recombinant
protein functions as a flavonoid UGT, and to determine its
substrate specificity and kinetic parameters toward various
Citrus flavonoids. In addition, CsUGT76F1 was overexpressed in
tobacco to test its in vivo function.

MATERIALS AND METHODS

Plant Materials and Growth Conditions
Sweet orange trees (Citrus sinensis ‘Valencia’) were grown in
the greenhouse at the National Citrus Germplasm Repository,
the Citrus Research Institute (CRI) of the Chinese Academy
of Agricultural Sciences (CAAS), Chongqing, China. A total
of seven developmental stages were collected from the fruit-
setting period, which consisted of 10 DAB (days after full
blooming), 30, 60, 90, 120, 150, and 180 DAB. All fruit
samples were separated into two parts: peel (also called
exocarp) and pulp (called endocarp). All samples were
immediately frozen in liquid nitrogen and stored at −80◦C.
Tobacco plants (Nicotiana tabacum) used in the transgenic
experiments were grown in the growth chamber at a constant
temperature (28 ± 3◦C), and were exposed to a 12/12 h cycle
(light/dark).

Sample Preparation and
UPLC-Q-TOF-MS Conditions
Flavonoids in sweet orange were extracted using the procedure
described by Yang et al. (2016). After drying at 40◦C for 48 h, the
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FIGURE 1 | Structure (A) and glycosylation process (B) of flavonoid aglycones in Citrus plants.

peels and pulp were powdered and filtered through a 60-mesh
screen. About 0.5 g of the powdered sample was ultrasonically
extracted with 7 mL methanol at 200 W for 30 min. After
centrifugation at 5,000 rpm for 10 min, the resulting supernatants
were collected in a 15-mL tube. The process was repeated three
times. The final volume was adjusted to make a consistent volume
of 25 mL of methanol. About 0.4 mL of the extract solution
was diluted with 0.6 mL deionized water and filtered through a
membrane with 0.2-µm pore diameter and temporarily stored at
4◦C in the refrigerator.

The tobacco flavonoid compounds were extracted by the
following method: about 0.2 g of the powdered samples were
extracted in solution (80% methanol, 19% water, 1% hydrochloric
acid) by vortexing for 20 s followed by water-bath sonication for
30 min. After centrifugation at 6,000 rpm for 10 min, the resulting
supernatants were collected and placed in a fresh 5-mL tube,

then extracted twice with chloroform to remove chlorophyll.
The extraction process was replicated three times, and the final
volume was adjusted to 5 mL. Finally, the supernatants were
filtered through a membrane with 0.2-µm pore diameter and
temporarily placed at 4◦C in the refrigerator.

Ultraperformance liquid chromatography analyses were
implemented as described by Yang et al. (2016). After separation
on an ACQUITY UPLC BEH C18 column (2.1 mm × 100 mm,
1.7 mm, United Kingdom), samples were scanned by a
photodiode array detector with the absorption spectrum set from
240 to 400 nm. Xevo G2-S Q-TOF (Waters MS Technologies,
Manchester, United Kingdom), a quadrupole, orthogonal
acceleration, time-of-flight tandem mass spectrometer was
used with an electron spray ionization source. Both positive
and negative ion modes were employed to ionize the chemical
compounds. The detection conditions were as follows: capillary
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voltage at 0.45 kV, cone voltage 40 V, source temperature
100◦C, desolvation temperature 400◦C, cone gas flow 50 L h−1,
desolvation gas flow 600 L h−1, low energy 6 V, and high energy
ramp 20–40 V. TOF-MS was set from 100 to 1000 m/z. The
scan time was 0.2 s. Data was obtained using real-time collection
(scan time 0.5 s, interval 15 s). Sample UPLC-Q-TOF-MS
data were collected and processed using the Waters UNIFI 1.7
software.

Cloning and qRT-PCR Analyses
Total RNA was extracted with the TaKaRa MiniBEST Universal
RNA Extraction Kit (Takara Bio, China). cDNA synthesis was
performed using the PrimeScript RT Master Mix Perfect Real-
Time Kit (Takara Bio, China). According to the genomic data
from Phytozome v12.1, primers were designed to obtain the full-
length cDNA and to detect the relative expression levels. All
PCR primer sequences are shown in Supplementary Table S1.
The relative expressions of the genes were determined according
to the 2−11Ct method (Livak and Schmittgen, 2001). Based
on the analysis by geNorm (Vandesompele et al., 2002), three
reference genes, citrus β-actin, SDH1-1, and GAPDH, were
used to normalize the expressions of the candidate genes.
Three replicates of the experiments were performed for each
gene.

Heterologous Expression in E. coli
The coding sequence of CsUGT76F1 was amplified by PCR
with forward and reverse primers (Supplementary Table S1),
following which the PCR product was sub-cloned into the
pMAL-c2X expression vector with a maltose-tag (New England
Biolabs, Ipswich, MA, United States). The recombinant plasmid
was introduced into E. coli NovaBlue (DE3) competent cells
(Novagen, Schwalbach am Taunus, Germany). The positive
clones were identified in 5 mL of lysogeny broth with 80 mg/L
ampicillin for 8–12 h at 37◦C. Two milliliters of E. coli culture
were transferred to 300 mL of lysogeny broth containing
80 mg/L ampicillin and shaken at 200–250 rpm until an
optical density (O.D.) of 0.6 at a wavelength of A600 was
reached. Isopropyl-β-D-thiogalactopyranoside (IPTG) was
employed to induce the expression of CsUGT76F1. After
induction at 28◦C for 48 h, the cells were precipitated by
centrifugation and then disrupted by sonication for 20–25 min.
The recombinant protein was purified via an amylose resin
affinity chromatography system (New England Biolabs,
E8201S).

Uridine diphosphate-rhamnose was synthesized using the
procedure described by Shibuya et al. (2010) and Hsu et al.
(2017). Full-length cDNA of the RHM2/MUM4 gene (At1g53500)
from A. thaliana was cloned into the expression vector
pET21a and then introduced into the BL21-CodonPlus (DE3)-
RIPL. The recombinant protein was prepared according to
the method reported by Shibuya et al. (2010). The 80-µL
of cell extract prepared from the RHM2/MUM4-expressing
cells was incubated with 5 mM UDP-glucose, and 10 mM
NADPH at 37◦C for 2 h. The presence of UDP-rhamnose
in the reaction mixture was identified via comparisons with
the data in available literature (Hsu et al., 2017), and

the concentrations were calculated using UDP-glucose as a
reference.

Enzymatic Assay and Optimization of
Reaction Conditions
The standard reaction mixture for enzyme assay consisted
100 mM Tris-HCl (pH 7.5), 0.1% (v/v) β-mercaptoethanol,
2.5 mM sugar donors, 0.2 mM substrates, and 20 µg recombinant
protein in a total volume of 50 µL. Firstly, flavonoid substrates
were dissolved in dimethylsulfoxide (DMSO) to obtain a
concentration of 15 mM. For substrate specificity analysis
and to obtain optimal reaction conditions, flavonoid substrates
dissolved in DMSO were then added to the reaction mixture
with a final concentration of 0.2 mM. Although there was
the possibility of slight precipitation of flavonoid aglycones
occurring, such minor precipitation was believed to have no
significant effect on the specificity analysis and the optimal
reaction conditions that were derived from the presence or
the maximum accumulation of the glycosylated flavonoids.
A series of reaction mixtures containing different concentrations
of the substrate (0.02, 0.04, 0.06, 0.08, 0.10, and 0.12 mM)
were used to test the kinetic parameters of UGT. This selected
range of substrate concentrations was far below the solubility
of the flavonoid aglycones. The reaction was conducted at
30◦C for 1 h and terminated by the addition of 60 µL pure
methanol.

Optimal reactions were performed at varying pH and
temperatures. Enzyme assays were conducted following the
methods described above using different buffers. Three buffers
were used to control the pH levels, including acid-sodium
citrate buffer (pH 4.0–7.5), Tris-HCl buffer (pH 7.0–10.0), and
NaHCO3–Na2CO3 buffer (pH 9.0–11.0). Reaction temperatures
ranged from 10 to 70◦C, with 5◦C increments. Products from the
enzymatic activity assay were analyzed using the UPLC-Q-TOF-
MS system described above.

Development of Binary Construct and
Transformation of CsUGT76F1 into
Tobacco
The coding region of CsUGT76F1 was amplified by PCR
with forward and reverse primers (Supplementary Table S1).
The PCR product was introduced into the vector pDONR207
using the Gateway BP Clonase Enzyme mix (Invitrogen,
United States). Subsequently, CsUGT76F1 was transferred into
the expression vector pCB2004 using the Gateway LR Clonase
system (Invitrogen, United States). The recombinant pCB2004-
CsUGT76F1 plasmid was transferred into the Agrobacterium
tumefaciens EHA105-competent cells through electroporation.
The positive cells were screened on the agar-solidified medium
consisting 50 mg/L spectinomycin and 50 mg/L kanamycin,
and genetic transformation was implemented via the leaf disk
transformation method (Maiti et al., 1988). The transgenic plants
were screened on Murashige and Skoog medium containing
25 mg/L phosphinothricin, and then identified using both
genomic PCR and RT-PCR. Three lines with high transcript levels
were used in the flavonoid profiling analyses.
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FIGURE 2 | The BPI chromatograms corresponding to negative (A) and positive signals (B) of sweet orange peels at 180 DAB; The MS2 spectra of four
O-glycosylated flavonoids, including eriocitrin (C), narirutin (D), hesperidin (E), didymin (F).
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RESULTS

Identification of Flavonoids in Sweet
Orange
To identify the flavonoids and their derivatives, we employed
UPLC-Q-TOF-MS in both positive and negative ion modes
to analyze the peel and pulp extracts. The representative
chromatograms of BPI corresponding to the negative and
positive signals of sweet orange peels at 180 DAB are shown
in Figure 2. A total of 13 flavonoids and their derivatives
were detected and unambiguously characterized via comparisons
with the reference standards and literature data (Abad-García
et al., 2012; Yang et al., 2016) (MS data presented in
Supplementary Table S2). Four flavonoid-O-glycosides in the
fruit of sweet orange were identified, consisting eriocitrin (also
called eriodictyol-7-O-rutinoside, peak 4), narirutin (naringenin-
7-O-rutinoside, peak 5), hesperidin (hesperetin 7-O-rutinoside,
peak 6), and didymin (isosakuranetin-7-O-rutinoside, peak 7).
These flavonoid-O-glycosides often contain a disaccharide
(rhamnosyl-α-1,6-glucose) linked to an aglycone through the
C-7 hydroxyl group. In addition, two flavonoid-C-glycosides-

apigenin-6,8-di-C-glucoside (peak 1) and chrysoeriol-6,8-C-
glucoside (peak 3), were also identified. The polymethoxylated
flavones are found almost exclusively in the Citrus species.
Our results revealed the presence of seven polymethoxylated
flavones in the fruit of sweet orange, consisting of isosinensetin
(peak 9), sinensetin (peak 10), dihydroxy-tetramethoxyflavone
nobiletin (peak 11), 5, 7, 8, 4′-tetramethoxyflavone (peak 12),
3, 5, 6, 7, 8, 3′, 4′-heptamethoxyflavone (peak 13), 5-hydroxy-
6, 7, 8, 3′, 4′-pentamethoxyflavone (peak 14), and tangeretin
(peak 15). Overall, these four flavonoid O-glycosides described
above, viz., eriocitrin, narirutin, hesperidin, and didymin, appear
to be ubiquitously present, and consequently detected, in all sweet
orange fruit peels and pulp (with the exception of didymin in
pulp).

cDNA Cloning, Sequence Comparison,
and Phylogenetic Analysis
One hundred and seven Arabidopsis UGTs were employed as
a query for BLASTP searches against the C. sinensis genome1,

1https://phytozome.jgi.doe.gov/pz/portal.html, Phytozome 12

FIGURE 3 | Phylogenetic tree based on the full-length proteins of 10 Citrus and 12 functionally characterized UGT proteins. Gene names and accession numbers:
C12RT1 (AY048882), BpUGAT (AB190262), UGT78G1 (XM_003610115), Cs1,6Rhat (DQ119035), RhGT1 (AB201048), CGT5 (X77462), FeCGTa (AB909375),
FeCGTb (AB909376), UGT708A6 (NM_001139178), CGT (FM179712), PMAT1 (NM_123267), PMAT2 (NM_113889), AT5MAT (NM_113880). Bootstrap values are
shown above the nodes.
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which identified 123 putative UGTs sorted by e value (1e−5).
Based on previous transcriptome data sets (Wu et al., 2014;
Huang et al., 2016; Wang J. et al., 2016), 10 putative UGT genes
were found to be highly expressed in sweet orange.

To predict whether the putative Citrus UGTs are involved
in flavonoid glycosylation, an unrooted NJ phylogenetic
tree (Figure 3) was constructed based on the full-length
proteins of 10 UGTs and 12 functionally characterized
flavonoid UGTs. From the phylogenetic trees, three putative
UGTs (orange1.1g046033m, orange1.1g010093m, and
orange1.1g012735m) were clustered with C12RT1, BpUGAT,
UGT78G1, and Cs1,6Rhat (encoded by orange1.1g037721m).
These UGTs are known to function as glucosyltransferase,
glucuronosyltransferase, or rhamnosyltransferase of flavonoids.
Alignment analysis revealed the presence of a conserved PSPG
box in the C-terminus of all UGTs in this cluster (Supplementary
Figure S1).

According to the genomic data obtained from Phytozome
v12.1, PCR amplification was performed to produce the
full-length cDNA of three genes from the fruit of sweet
oranges. Only orange1.1g012735m could be obtained, however;
this gene is 1,495 bp long and contains a 3′ untranslated
region (UTR) of 41 bp, a 5′ UTR sequence of 80 bp,
and an ORF of 1,374 bp that encodes a 475-amino acid
protein. The base sequence information of orange1.1g012735m
could be retrieved from Phytozome v12.1 and the gene,
CsUGT76F1, was named according to the UGT committee
nomenclature protocols. qRT-PCR was employed to investigate
the expression abundance of CsUGT76F1 in fruit pulp and
peels during fruit development (Figure 4). Transcripts of
CsUGT76F1 had higher levels of expression in peels than in
pulp. In peels, CsUGT76F1 was downregulated during fruit
development and ripening, whereas in pulp, the transcript was
upregulated initially and then gradually decreased with fruit
ripening.

Enzymatic Assays and Product
Identification
The full-length coding region of CsUGT76F1 was transferred
into a pMAL-C2X expression vector with a maltose-binding
protein (MBP) tag and introduced into E. coli. The recombinant
CsUGT76F1 was purified by a MBP tag purification system.
Initial in vitro assays using UDP-glucose as the sugar donor
indicated that the protein could catalyze the glucosyl transfer to
the 7-hydrogen sites of hesperetin, naringenin, and diosmetin
(Figures 5A–C). The biotransformation products were verified
using UPLC-Q-TOF-MS by comparing them with reference
standards, the mass of the molecular ion, and the resulting
fragments (Supplementary Table S3). Subsequently, substrate
specificity studies for the recombinant protein with flavonols
were also conducted, including quercetin and kaempferol, the
glycosylated products of which had been previously identified
in other Citrus plants (Abad-García et al., 2012; Wang S. et al.,
2016). The results demonstrated that the recombinant UGT
was able to glucosylate quercetin at the 3- or 7-hydrogen
position (Figure 5D), but using kaempferol as substrate,

FIGURE 4 | Relative expression of CsUGT76F1 in sweet orange peels (A) and
pulp (B) during fruit development. Data represent means with standard
deviations (n = 5).

three products— kaempferol 3,7-O-diglucoside, kaempferol
3-O-glucoside, and kaempferol 7-O-glucoside, were detected
(Figure 5E).

In addition, the sugar-donor specificities for the
recombinant protein were also investigated, including UDP-
rhamnose, UDP-galactose, and UDP-xylose. The results
demonstrated that the recombinant UGT can only accept
UDP-rhamnose to rhamnosylate the 7-hydrogen position
of quercetin and kaempferol (Figures 5F,G), but not to
catalyze the rhamnosylation of hesperetin, naringenin, and
diosmetin. Since flavonoid-O-glycosides in the Citrus plants
often contain a disaccharide (rhamnosyl-α-1,6-glucose or
rhamnosyl-α-1,2-glucose), which is sequentially added to
the flavonoid aglycones, we further tested whether the
recombinant UGT was able to rhamnosylate flavonoid-
O-monoglycosides, including hesperetin-7-O-glucoside,
naringenin-7-O-glucoside, diosmetin-7-O-glucoside, quercetin-
3 and 7-O-glucoside, and kaempferol-3 and 7-O-glucoside.
No flavonoid O-rutinoside (rhamnosyl-α-1,6-glucose) or
O-neohesperidose (rhamnosyl-α-1,2-glucose) products were
detected. These results indicated that CsUGT76F1 in vitro could
function as flavonoid 3-O-, 7-O-, 3,7-O-glucosyltransferase, and
7-O-rhamnosyltransferase.

The optimal reaction conditions for CsUGT76F1 were
determined using naringenin and kaempferol as substrates,
and UDP-glucose and UDP-rhamnose as the sugar donors
(Figure 6). The pH and temperature of the reaction buffer ranged
from 4.0–11.0 to 10–70◦C, respectively. The maximum levels
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FIGURE 5 | UPLC chromatogram of reaction products of recombinant CsUGT76F1, using UDP-glucose as the sugar donor, toward naringenin (A), hesperetin (B),
diosmetin (C), quercetin (D), and kaempferol (E), and using UDP-rhamnose as the sugar donor, toward quercetin (F), and kaempferol (G). Peaks 1–10 indicate
enzymatic products listed in Supplementary Table S3.

of naringenin 7-O-glucoside product accumulation occurred
at pH 8.0 and a temperature of 40◦C; for kaempferol
7-O- and 3-O-glucoside, the maximum accumulations occurred
at pH 8.0 and 40–45◦C temperature, and pH 8.0–8.5 and
40◦C temperature, respectively; and for kaempferol 3,7-O-
diglucoside, the maximum accumulation occurred at pH 7.5–8.5
and temperatures of 35–45◦C. The maximum accumulation of
the kaempferol 7-O-rhamnoside product could be observed at pH
7.5 and a temperature of 35–40◦C.

The kinetic parameters of CsUGT76F1 were further
investigated on the flavonoid substrates at pH 8.0 and

40◦C (Table 1). The enzyme showed the highest affinity
toward the substrates hesperetin (Km = 15.16 µM) and
naringenin (Km = 20.41 µM) compared to that toward
diosmetin (Km = 43.27 µM), quercetin (Km = 36.78 µM),
and kaempferol (Km = 28.09 µM). However, the enzyme
used diosmetin (kcat = 1.60 s−1) most efficiently, followed by
naringenin (kcat = 0.71 s−1) and hesperetin (kcat = 0.77 s−1).
The kcat values for the quercetin and kaempferol were
0.58 and 0.46 s−1, respectively. The kcat/Km ratio was
the highest for hesperetin (kcat/Km = 50.39 M−1 s−1),
followed by that for naringenin (kcat/Km = 34.79 M−1 s−1),
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FIGURE 6 | Optimization of reaction pH and temperature of recombinant CsUGT76F1. Buffer A: acid-sodium citrate buffer (pH 4.0–7.5). Buffer B: Tris-HCl buffer (pH
7.0–10.0). Buffer C: NaHCO3–Na2CO3 buffer (pH 9.0–11.0).
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TABLE 1 | Kinetic parameters for the recombinant CsUGT76F1.

Substrate Km (µM) kcat (s−1) kcat/Km (M−1 s−1)

Hesperetin 15.16 ± 6.280 0.77 ± 0.079 50.39 × 103
± 13.12 × 103

Naringenin 20.41 ± 3.568 0.71 ± 0.033 34.79 × 103
± 4.72 × 103

Diosmetin 43.27 ± 2.114 1.60 ± 0.068 36.98 × 103
± 2.77 × 103

Quercetin 36.78 ± 4.316 0.58 ± 0.071 15.77 × 103
± 8.90 × 103

Kaempferol 28.09 ± 3.742 0.46 ± 0.029 16.38 × 103
± 12.36 × 103

Data are the means ± SD of three independent experiments.

diosmetin (kcat/Km = 36.98 M−1 s−1), quercetin
(kcat/Km = 15.77 M−1 s−1), and kaempferol
(kcat/Km= 16.38 M−1 s−1).

Heterologous Expression in Tobacco
In order to clarify whether CsUGT76F1 functions as a
rhamnosyltransferase, the coding region of CsUGT76F1 under
the 35S promoter was introduced into tobacco plants, with the
positive transgenic plants identified using antibiotic selection and
flavonoid compounds extracted from the leaves of transgenic
and control tobacco. Compared with control tobacco, one new
flavonol glycoside (Figure 7, peak 11) was produced in transgenic
tobacco, and two other flavonol glucosides were significantly
higher (peak 12 and peak 13). Based on the results of both
the UPLC-Q-TOF-MS analysis and previous studies, the peak
11 product was identified as quercetin 7-O-rhamnoside, peak
12 was quercetin 7-O-glucoside, and peak 13 was kaempferol

7-O-glucoside (Supplementary Table S3). Higher accumulation
of quercetin 7-O-rhamnoside, quercetin 7-O-glucoside and
kaempferol 7-O-glucoside in the transgenic plants demonstrated
that CsUGT76F1 had flavonoid 7-O-glucosyltransferase and 7-O-
rhamnosyltransferase activities in vivo.

DISCUSSION

Flavonoid O-neohesperidosides, such as poncirin, naringin,
neoeriocitrin, and neohesperidin, were previously found in peels
and juices of sweet orange (Gattuso et al., 2007; Wang et al., 2008;
Khan et al., 2010). High concentrations of naringin were found
in the sweet orange fruits (Destani et al., 2013; Luengo et al.,
2013). Moreover, extremely high concentrations of the flavonoid
neohesperidin were detected in the peel and juice of Liucheng
[C. sinensis (L.) Osbeck] and Murcott (C. reticulata× C. sinensis)
(Wang et al., 2007). However, we detected only the four flavonoid
7-O-rutinosides (eriocitrin, narirutin, hesperidin, and didymin)
in the fruit of sweet orange (Figure 2), whereas, the flavonoid
7-O-neohesperidosides were all found at concentrations below
the detectable levels by UPLC-Q-TOF-MS. These four flavonoid
O-rutinosides were found to exist in the sweet orange fruit peels
and pulp (with the exception of didymin in pulp).

In plants, UGTs appear to be the central players in determining
the chemical diversity of flavonoids. Thus, understanding the
biochemical features of UGT enzymes is crucial for both
crop genetic improvement and the production of recombinant
enzymes for the biosynthesis of desired flavonoids that

FIGURE 7 | UPLC chromatogram of flavonoid glycosides extracted from transgenic (A) and control (B) tobacco. Peaks 11–13 indicate enzymatic products listed in
Supplementary Table S3.

Frontiers in Plant Science | www.frontiersin.org 10 February 2018 | Volume 9 | Article 166

https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-09-00166 February 13, 2018 Time: 15:54 # 11

Liu et al. A Citrus Flavonoid Glycosyltransferase

have medicinal and nutritional application. The biochemical
properties of several UGTs have been characterized from Citrus
species over the past several years. For example, in transgenic
tobacco, by feeding with flavonoid aglycones, C12RT1 from
pummelo and Cs1,6Rhat from sweet orange showed functions
as rhamnosyltransferases that add rhamnose to flavanone-7-
O-glucosides (Bar-Peled et al., 1993; Frydman et al., 2004).
Ohashi et al. (2016) further conducted direct enzyme kinetic
studies and determined substrate preference in vitro. The
results demonstrated that Cs1,6Rhat appeared to be somewhat
promiscuous with respect to substrate preference. But the
number of functionally characterized UGTs is still relatively low
given the large abundance of UGTs in the genomes of Citrus
plants.

Phylogenetic analysis revealed CsUGT76F1 to be most closely
clustered with C12RT1, BpUGAT, UGT78G1, and Cs1,6Rhat
(encoded by orange1.1g037721m) (Figure 3), but these enzymes
differ considerably in their substrate specificities. Of the enzymes
in this cluster, C12RT1 and Cs1,6Rhat showed in vitro rhamnosyl
transferring activities toward flavonoid-7-O-glucoside (Frydman
et al., 2004, 2013; Ohashi et al., 2016), UGT78G1 catalyzes the
glucosylation of flavonoids at the 3-O- hydroxyl site (Modolo
et al., 2007, 2009), and BpUGAT may function as an anthocyanin
glucuronosyltransferase to transfer glucuronate onto cyanidin
3-O-glucoside (Sawada et al., 2005; Osmani et al., 2008). Such
incongruence between the phylogenetic position and substrate
specificities has been found in other UGTs, including grape
VLOGT2 and onion UGT73G1 and onion UGT73J1 (Kramer
et al., 2003; Hall et al., 2011). These results support the
proposition that the functions and specificities of UGTs is
perhaps not accurately determined based on their protein
sequences alone (Dhaubhadel et al., 2008). Thus, the coupling
of phylogenetic analyses with experimental analyses is generally
regarded as the most efficient approach for identifying UGT
functions.

The recombinant CsUGT76F1 recognizes hesperetin,
naringenin, diosmetin, quercetin, and kaempferol as substrates
(Table 1). These results are is not completely consistent with
those presented by the in vivo assays demonstrating that
CsUGT76F1 prefers to catalyze the glucosylation of flavonols
(Figure 7). This is because, the relative concentrations of
the potential substrates in vivo might be one of the most
critical factors that determine this enzyme’s activity. Another
feature of the recombinant enzyme is its ability to catalyze the
transfer of glucose onto the 3-hydrogen site of quercetin and
kaempferol in vitro, but no significant increases in flavonoid-
3-O-glycosides were detected in transgenic tobacco. In plants,
glycosylation producing flavonoid compounds can occur on
individual hydroxyl groups of the aglycon, or multiple hydroxyl
groups simultaneously. Overall, only a few UGTs catalyzed
multiple hydroxyl glycosylations. In Arabidopsis, 91 UGTs
were isolated, 29 of which could glucosylate quercetin solely at
individual hydroxyl sites, whereas, only one (AtUGT88A1) could
glucosylate 3-, 7-, 3′-, and 4′-OH of quercetin simultaneously
(Lim et al., 2004). Strawberry FaGT6 has been shown to catalyze
quercetin to form 3-O-glucoside, as well as minor amounts of 7-
O-, 4′-O-, 3′-O-monoglucoside and a diglucoside (Griesser et al.,

2008); similarly, FaGT7 catalyzed quercetin to form quercetin
3-O-, 4′-O-, 7-O-, and 3′-O-monoglucoside, but not a diglucoside
(Griesser et al., 2008). In addition to the characteristics described
above, the pH optima of the recombinant enzyme seem unlikely
to be of physiological importance in vivo. But similar results
have been reported in rCsUGT75L12 and CsUGT73A20 from
tea plants, and UGT78K1 from black soybean showed high pH
optima in in vitro biochemical assays, but was demonstrated to
play significant roles in the biosynthesis of flavonoids in vivo
(Kovinich et al., 2010; Dai et al., 2017; Zhao et al., 2017). These
UGTs show significant enzyme optima; as such, they are good
candidates to engineer flavonoid diversity.

Previous works on flavonoid glycosylation in Citrus indicated
that different UGTs are responsible for the sequential transfer of
glucose and rhamnose in the formation of flavonoid diglycosides
(Jourdan and Mansell, 1982; Kleinehollenhorst et al., 1982).
Glucosyltransferases were capable of glucosylating flavonoids,
resulting in the production of flavonoid-O-glucosides, which
subsequently were converted to flavonoid-O-rutinosides by
C12RT1 or Cs1,6Rhat (Figure 1). In this study, transgenic
tobacco plants had higher concentrations of quercetin
7-O-glucoside, kaempferol 7-O-glucoside, and quercetin
7-O-rhamnoside (Figure 7), suggesting that CsUGT76F1
could function as a flavonoid 7-O-glucosyltransferase and
7-O-rhamnosyltransferase in vivo. These findings were also
supported by the findings of the in vitro assays. But it is necessary
to highlight that CsUGT76F1 only glycosylated flavonoid
aglycones, unlike C12RT1 and Cs1,6Rhat that could recognize
flavonoid monoglycosides as substrates.

CONCLUSION

CsUGT76F1 can be identified as a flavonoid 7-O-UGT.
Biochemical analysis in conjunction with in vivo data revealed
its involvement in the biosynthesis of flavonoid 7-O-glucosides
and 7-O-rhamnosides. Moreover, this enzyme exhibits broad
substrate specificity toward flavonoids, including naringenin,
hesperetin, diosmetin, kaempferol, and quercetin, present in
Citrus species. Because of its broad substrate specificity and
low regiospecificity, this recombinant enzyme promises to be an
attractive choice for the engineering of flavonoid diversity.
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