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The bacterium Dickeya dadantii is responsible of important economic losses in crop yield
worldwide. In melon leaves, D. dadantii produced multiple necrotic spots surrounded
by a chlorotic halo, followed by necrosis of the whole infiltrated area and chlorosis
in the surrounding tissues. The extent of these symptoms, as well as the day of
appearance, was dose-dependent. Several imaging techniques (variable chlorophyll
fluorescence, multicolor fluorescence, and thermography) provided spatial and temporal
information about alterations in the primary and secondary metabolism, as well as the
stomatal activity in the infected leaves. Detection of diseased leaves was carried out by
using machine learning on the numerical data provided by these imaging techniques.
Mathematical algorithms based on data from infiltrated areas offered 96.5 to 99.1%
accuracy when classifying them as mock vs. bacteria-infiltrated. These algorithms also
showed a high performance of classification of whole leaves, providing accuracy values
of up to 96%. Thus, the detection of disease on whole leaves by a model trained on
infiltrated areas appears as a reliable method that could be scaled-up for use in plant
breeding programs or precision agriculture.

Keywords: bacterial infection, chlorophyll fluorescence imaging, Cucumis melo, Dickeya dadantii, machine
learning, multicolor fluorescence imaging, phenotyping, thermography

INTRODUCTION

Precision agriculture is a combination of cultural and farming practices aimed to minimize human
impact on the environment, while improving the crop yield. In the last years, non-invasive imaging
sensors at several levels (from bench to remote sensing scale) have been implemented in precision
agriculture, in order to easily identify problematic areas, to follow their evolution, or to evaluate
possible losses in crop yield. This topic has generated much scientific literature, especially in recent
years, as widely reviewed by Fiorani et al. (2012), Martinelli et al. (2015), Sankaran et al. (2015),
Mahlein (2016), and Pérez-Sanz et al. (2017). The combination of imaging devices providing
information about physiological processes appears as a good approach to monitor the effect of
stress on crops (Chaerle et al., 2009; Barón et al., 2016).

Abbreviations: ANN, artificial neural network; Chl-FI, variable chlorophyll fluorescence imaging; D, distant; dpi, days post-
inoculation; F440, blue fluorescence; F520, green fluorescence; F680, red fluorescence; F740, far red fluorescence; FV/FM,
maximum quantum efficiency of photosystem II; HD, high bacterial dose; I, infiltrated; LD, low bacterial dose; LRA, logistic
regression analysis; MCFI, multicolor fluorescence imaging; N, neighboring; NPQ, non-photochemical quenching; PSII,
photosystem II; 8PSII, effective quantum yield of photosystem II; qN, non-photochemical quenching; qP, photochemical
quenching; SVM, support vector machine.
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Plant diseases induced by pathogens are responsible for
major economic losses in global agriculture. In particular, the
necrotrophic bacteria Dickeya dadantii causes great economic
losses in crops and ornamental plants worldwide (Reverchon
et al., 2016). In this work, the experimental host-pathogen system
melon-D. dadantii was monitored by thermography, MCFI, and
Chl-FI.

Thermography provides images of leaf temperature,
dependent on the transpiration rate, which is controlled by the
stomatal aperture (Jones, 1999, 2004). On the other hand, MCFI
is based on the excitation of plant tissue with long-wavelength
ultraviolet radiation (320–400 nm), which results in four
characteristic fluorescence emission bands, peaking in the blue
(F440), green (F520), red (F680), and far red (F740) regions of the
spectrum (Buschmann and Lichtenthaler, 1998). The blue and
green fluorescence are mainly emitted by phenolic compounds
produced by secondary metabolism (Cerovic et al., 1999). In
contrast, F680 and F740 are emitted by chlorophyll a (Gitelson
et al., 1998). In addition, images corresponding to fluorescence
ratios F440/F520, F440/F680, F440/F740, F520/F680, F520/F740,
and F680/F740 can be useful in the detection of biotic stress
(Buschmann and Lichtenthaler, 1998; Cerovic et al., 1999;
Buschmann et al., 2000). Finally, the photosynthetic activity
can be analyzed by variable chlorophyll fluorescence kinetics.
Indeed, Chl-FI has been widely used to study the spatial and
temporal heterogeneity of leaf photosynthesis under biotic stress,
as reviewed by Rolfe and Scholes (2010) and Barón et al. (2016).
Some of the parameters derived from Chl-FI are related to
photochemical processes. Thus, FV/FM represents the maximum
quantum efficiency of PSII; 8PSII, is the effective quantum yield
of PSII; and qP is the photochemical quenching. On the other
hand, non-photochemical quenching (as NPQ or qN) is related
to energy dissipation (Maxwell and Johnson, 2000). Other Chl-FI
parameters, although with no physiological meaning, can also
be good reporters of stress (Soukupová et al., 2003; Pineda et al.,
2008, 2011).

Imaging techniques such as thermography and Chl-FI, are
routinely applied in precision agriculture and plant phenotyping
(Costa et al., 2013; Porcar-Castell et al., 2014; Mahlein, 2016).
However, even though MCFI has long been used in basic research
to study plant stress, the use of this technique on proximal
sensing is currently limited to few commercial devices (Cerovic
et al., 2012; Latouche et al., 2015). Unfortunately, these devices
are non-imaging sensors, limiting their applicability in high-
throughput plant phenotyping in the field.

Machine learning addresses the analysis of big data by
discovering relationships between the target output and the input
features. Models or algorithms try to learn dependencies between
these features and, based on that make predictions on new data.
Nowadays, machine learning is broadly used in many aspects
of life, such as manufacturing, computer vision, cybersecurity,
clinical decision-making, climate change and plant sciences
(Jordan and Mitchell, 2015). Common algorithms used in life
sciences are LRA, SVM, and ANN. LRA is of particularly relevant
in this field since it can be used to estimate the probability of
a dichotomous outcome (for example “healthy” vs. “diseased”)
based on one or more predictors or independent variables

(Hosmer et al., 2013). On the other hand, SVM represents
samples as points in a high-dimensional feature space, and
support vectors define a hyperplane in that space. New samples
will be predicted to belong to a certain category based on which
side of the hyperplane they fall on (Behmann et al., 2015). Finally,
ANN is a model inspired by biological neural networks that
learn from input and output data (Hill et al., 1994), which is
particularly suitable for the interpretation of information from
optical sensors (Behmann et al., 2015).

The combination of Chl-FI, MCFI and thermography,
providing information about physiological processes, followed
by the use of classifying models is a reliable method suitable
for precision disease management and plant breeding programs.
Here, the classification methods LRA, SVM and ANN, trained on
data obtained from melon leaves by the three imaging techniques,
predict new samples as for “healthy” (control plants) vs.
“D. dadantii-infected”. The classifiers obtained by this approach,
trained on data from infiltrated areas, proved to have a high
performance on whole leaves affected in a small portion of their
surface (approximately 5–7% of the total leaf area).

MATERIALS AND METHODS

Plant Material
Seeds of Cucumis melo (melon) v. Rochet Panal (Semillas Fitó,
Barcelona, Spain) were sterilized in a 20% bleach solution
during 2 min, rinsed twice in sterile water during 2 min and
allowed to germinate in darkness on sterile water-soaked filter
papers at 24◦C for 1 week. Seedlings were then placed in pots
containing 1:1 v/v coconut fiber and soil. Plants were grown
at 150 µmol m−2 s−1 photosynthetically active radiation under
16/8 h light/dark photoperiod at 22/18◦C day/night temperature
and 65% relative humidity.

Bacterial Growth and Infection
Dickeya dadantii (formerly known as Erwinia chrysanthemi)
strain 3937 was grown for 24 h at 28◦C in LB (Luria-Bertani)
plates containing 25 mg ml−1 rifampicin. Bacterial suspensions
were prepared in 10 mM MgCl2 at low or high dose: 104 (LD) or
106 (HD) colony forming units per ml, respectively.

Three weeks old plants were inoculated on the second leaf.
Four or six regions were infiltrated by pressing the bacterial
suspension into the abaxial side of the leaf using the blunt end of
a 1 ml syringe, according to Pérez-Bueno et al. (2016a). Mock-
inoculated control plants were infiltrated with 10 mM MgCl2.
The size of the sample leaves at the beginning of the experiment
was 100–120 cm2. Since each infiltration area covered about
1 cm2, the total area being infiltrated was approximately 5% of
the total leaf area.

For image analysis purposes, three regions of interest were
defined for each inoculation site (Supplementary Figure S1): the
infiltrated area (I, accurately outlined using a marker pen), the
neighboring area (N), and a distant region away from the I area
(D). Measurements were taken at 3 and 7 days post-inoculation
(dpi). Four to six plants per treatment and experiment were
analyzed, and three independent experiments were carried out.
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Leaf Thermography
Infrared images of plant leaves were taken in the growth chamber
using a FLIR A305sc camera (FLIR Systems, Wilsonville, OR,
United States) vertically positioned approximately 500 mm above
the leaves, according to Pérez-Bueno et al. (2015). For each leaf
measurement, 10 thermal images were collected in the elapse of
10 s and averaged. The consequent image analysis was carried
out using FLIR R&D software version 3.4. Thermal images were
displayed using a false color scale. For further numerical analysis,
average temperature was obtained for the three regions of interest
or for whole leaf. Images correspond to standard experiments.

Multicolor Fluorescence Imaging
Multicolor fluorescence imaging was performed on the adaxial
side of mock-control and D. dadantii-infected melon leaves using
an Open FluorCam FC 800-O (Photon Systems Instruments,
Brno, Czechia), according to Pérez-Bueno et al. (2015). Images
of F440, F520, F680, and F740 were captured by the FluorCam
software version 7.1.0.3. This software also applied a false
color scale to the black and white images recorded and to
those calculated for the ratios F440/F520, F440/F680, F440/F740,
F520/F680, F520/F740, and F680/F740. Average values for all
available parameters from the three regions of interest, as well
as for whole leaf, were calculated for mock-control and infected
leaves. Images correspond to standard experiments.

Chlorophyll Fluorescence Imaging
Chlorophyll fluorescence kinetics were performed by an open
FluorCam 700MF (Photon System Instruments), according to
protocol 1 from Pineda et al. (2008). A false color scale was
applied to the black and white images using FluorCam software
version 5.0. Images corresponding to chlorophyll fluorescence
transient values (F0, FM, FP, FM

′, Ft, and F0
′) were collected.

In addition, images for the variable chlorophyll fluorescence
parameters FV, FV/FM, FM/F0, FV/F0, RFd, qP, 8PSII, and non-
photochemical quenching (as qN and NPQ) were calculated by
the same software according to the equation reviewed by Maxwell
and Johnson (2000). Means of the above mentioned parameters
were obtained for the three regions of interest previously defined,
and for whole leaf. Images correspond to standard experiments.

Data Analysis
Average values and standard errors for each of the parameters
obtained by the different imaging techniques were calculated by
Microsoft Office Excel 2010 (Microsoft Corporation, Redmond,
WA, United States) for each region of interest. Student’s t-tests
were carried out using SigmaPlot 13.0v (Systat Software, Inc.,
Richmond, CA, United States).

Machine Learning
LRAs, SVMs, and ANNs were fitted to numerical data obtained
from bacteria or mock-infiltrated leaves (labeled as “infected”
and “healthy,” respectively) using SPSS version 23.0 software
with the Essentials for R package (IBM Corporation, Armonk,
NY, United States). Among all available parameters obtained
by three different imaging techniques already described, only

16 were found to show statistically significant differences
between treatments. Those parameters were selected as predictors
for feeding the classifiers: temperature, F440, F520, F680,
F740, F440/F520, F440/F680, F440/F740, F520/F680, F520/F740,
FV/FM, FM/F0, NPQ, 8PSII, qP, and qN. The models were
performed separately for the three regions of interest, combining
the data from 3 to 7 dpi from all three experiments. Out of 358 the
samples available, two thirds were randomly selected for fitting
the models (n = 239 for LRA, n = 238 for SVM, n = 241 for
ANN). The remaining samples (n = 119 for LRA, n = 120 for
SVM, n = 117 for ANN) were used for validation of the model
performance of classification.

The binary LRAs were fitted following a standard method.
On the other hand, the applied non-linear SVMs had a degree 3
Gaussian radial basis function kernel with a γ = 0.0625 (1/number
of independent variables), cost = 1, coef0 = 0, ε = 0.1 and ν = 0.5.
Finally, the ANNs, with two classes (“healthy” and “infected”),
were based on multilayer perceptron, and the learning heuristic
applied was resilient back-propagation. The ANN offering the
best performance had one hidden layer with six neurons; an
initial λ and σ of 5 × 10−7 and 5 × 10−5, respectively;
an interval center of 0; an interval offset of ±0.5; activation
functions in input and output layers were hyperbolic tangent
and Softmax, respectively; an automatic selection of maximum
epochs and batch as a training criteria. A summary of the training
characteristics of the best classifiers is shown on Supplementary
Table S1.

The performance of classifiers is evaluated by several
parameters: specificity and sensitivity (percentage of correctly
identified healthy or infected plants, respectively); accuracy (sum
of true healthy and infected over the sample size); and F1 score
(harmonic mean of precision and sensitivity, where precision is
the number of true healthy samples divided by the number of
true and false healthy plants). Supplementary Tables S2A, S3A
shows confusion matrices for the corresponding validations, and
the calculated statistical measures of the performance of their
classifications, respectively.

The performance of the models fitted for I areas was evaluated
on all available samples of whole leaves. LRA, SVM, and
ANN were validated for every dpi taken either together or
separately. In each case sample size was different, as is shown
in Figure 5A. The total sample size was 74. Confusion matrices
for the corresponding validations and the calculated statistical
measures of the performance of their classifications are listed in
Supplementary Tables S2B, S3B, respectively.

RESULTS

Symptoms Caused by D. dadantii in
Melon Leaves
Symptoms in the D. dadantii-inoculated melon leaves included
chlorotic spots in areas infiltrated at LD at 3 dpi and necrotic
spots surrounded by a chlorotic halo from 7 dpi (Figure 1). In
the case of HD infected leaves, the I area appeared browned with
multiple necrotic spots of very small diameter. At 7 dpi, the I
tissues were dead and the N areas appeared chlorotic. No visible
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FIGURE 1 | Evolution of symptoms caused by Dickeya dadantii in melon leaves inoculated at LD or HD (low and high dose, 104 and 106 colony forming units ml−1,
respectively). The same mock-control and bacteria infiltrated areas are displayed for the RGB and leaf temperature images, as well as for the images calculated for
FV/FM and F440/F520 ratio. The corresponding color scale for each parameter is shown. FV/FM, maximum quantum efficiency of photosystem II; F440/F520, blue
over green fluorescence; dpi, days post-inoculation.

symptoms were found in the D areas of LD or HD inoculated
leaves. From 7 dpi onward, there was no further evolution of the
infection (data not shown). At this stage, the symptoms covered
about 5–7% of the total leaf surface (in LD and HD infiltrated
leaves, respectively). It is worth noticing here that control leaves
did not develop any symptom related to the mock-infiltration
along the period of study.

Changes in D. dadantii-Infected Melon
Leaves Metabolism
Leaf temperature was affected by D. dadantii to different extent
depending upon bacterial dose (Figure 1). In LD infiltrated leaves
at 3 dpi, only the I area displayed higher temperature than the
corresponding mock-control; however, at 7 dpi, the whole leaf
was warmer relative to the control. In the case of HD infiltration,
the averaged temperature of whole leaves was higher for infected
than for mock-control leaves. This effect was more severe at 7 dpi.
This increment in temperature was higher in areas closer to the
inoculation point.

Photosynthesis is affected by D. dadantii infection, as shown
by the parameters obtained from chlorophyll fluorescence
kinetics (Figures 1, 2). The values of FV/FM and NPQ were
significantly lower relative to the corresponding areas of mock-
control leaves. This effect was found in the three regions of
interest at every dpi assayed, and was more severe upon HD
infiltration. On the other hand, I areas of infected leaves showed
lower 8PSII values relative to the control I areas. In the rest of the
leaf, slightly higher values of this parameter were found only at
3 dpi in D areas of bacteria-infiltrated leaves (LD and HD), and
also in N areas (only in the case of LD).

The activity of the secondary metabolism was analyzed by
MCFI (Figures 1, 3). In the case of HD inoculation, the whole leaf
showed a drastic increase on F520 at 3 and 7 dpi. In contrast, F440
showed a moderate increase in I areas at 3 dpi and the rest of the
leaf at 7 dpi, relative to the mock-control. On the other hand, the
MCFI parameter F440/F520 was significantly decreased across
HD inoculated leaves during the period of study. In the case of
inoculation with LD, F440 (at 7 dpi) and F520 (at 3 and 7 dpi)
showed a small but statistically significant increase but limited to
the I area. Moreover, F440/F520 only decreased significantly in I
areas in response to the infection.

Machine Learning to Classify Leaf Areas
as “Healthy” or “D. dadantii-Infected”
Among all available parameters obtained by thermography,
MCFI and Chl-FI, only 16 showed statistically significant
differences between control and infected plants in the three
regions of interest, according to Student’s t-test (p< 0.001). These
parameters (temperature, F440, F520, F680, F740, F440/F520,
F440/F680, F440/F740, F520/F680, F520/F740, FV/FM, FM/F0,
NPQ, 8PSII, qP, and qN) were the input features for LRA, SVM,
and ANN models to classify melon leaves as healthy or infected.

Models were fitted for every region of interest separately, using
all available data from mock, LD and HD inoculated leaves at
every dpi assayed in the three independent experiments. The
best fits were those obtained for I areas, from now on I area
models (Supplementary Table S1). In each case, the sample size
for training and for testing the models is shown in Supplementary
Table S2A, as well as the corresponding confusion matrices. The
accuracy of the best LRA, SVM, and ANN was 96.5, 98.3, and
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FIGURE 2 | Parameters obtained by variable chlorophyll fluorescence imaging in the I (inoculated), N (neighboring), and D (distant) areas of treated leaves. FV/FM,
maximum quantum efficiency of photosystem II; 8PSII, effective quantum yield of photosystem II; NPQ, non-photochemical quenching; dpi, days post-inoculation; LD
and HD, low and high bacterial dose (104 and 106 colony forming units ml−1, respectively). ∗p < 0.1, ∗∗p < 0.01, and ∗∗∗p < 0.001, according to Student’s t-test.

99.1%, respectively (Figure 4A), and their F1 score was 0.97,
0.99, and 0.99, respectively (Figure 4B). Values of specificity
and sensitivity for every model are displayed in Supplementary
Table S3A. The performance of the fitted models for N areas was
much lower, with accuracy lower than 90%. On the contrary, no
algorithm could be fitted for the data from D areas (data not
shown). Therefore, only I areas provided valuable information
that could be used by machine learning to obtain accurate
classifying models.

Machine Learning to Classify Whole
Leaves as “Healthy” or
“D. dadantii-Infected”
In order to test the applicability of the I area models to entire
leaves, a new set of data was generated by analyzing whole

leaves. Then, the I area models were validated with the data
from healthy vs. LD and HD infected leaves at 3 and 7 dpi,
separately or together. Furthermore, to better reproduce a more
realistic scenario, the models were also tested with all the data
from every treatment at every dpi assayed. The accuracy and F1
score of I area models (LRA, SVM, and ANN) applied to data
obtained from whole leaves, as well as the sample size for the
validation, are shown in Figure 5. Confusion matrices are shown
on Supplementary Table S2B and the statistical parameters of the
validations on Supplementary Table S3B.

The three models, especially the LRA and the ANN, were
most accurate when classifying HD infiltrated vs. mock-control
leaves. In that case, F1 score ranged from 0.91 to 0.96 when
classifying samples at 3 dpi and 7 dpi separately or together.
On the contrary, the ANN provided the best performance when
identifying LD infiltrated leaves vs. healthy plants. Thus, the F1
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FIGURE 3 | Parameters obtained by MCFI in the I (inoculated), N (neighboring), and D (distant) areas of treated leaves. F440, fluorescence emitted at 440 nm; F520,
fluorescence emitted at 520 nm; dpi, days post-inoculation; LD and HD, low and high bacterial dose (104 and 106 colony forming units ml−1, respectively). ∗p < 0.1,
∗∗p < 0.01, and ∗∗∗p < 0.001, respectively, according to Student’s t-test.

score was 0.79–0.80 when samples at 7 dpi alone, or 3 + 7 dpi,
were considered. However, SVM showed a lower performance,
and the LRA was not able to classify LD infiltrated vs. healthy
leaves. Moreover, the ANN outperformed the other two models
when classifying LD and HD infiltrated together vs. healthy leaves
(F1 score of 0.85, 0.94, and 0.85 when considering 3, 7, or 3 + 7
dpi samples, respectively).

DISCUSSION

Effect of D. dadantii Infection on Melon
Plant Metabolism
Dickeya dadantii infected melon plants showed alterations in
metabolism monitored by imaging sensors. An enhancement of

the secondary metabolism could be responsible for the increase
in blue and green fluorescence in N and D areas of HD leaves,
emitted mainly by phenolic compounds. Many of them, such as
precursors of lignin or phytoalexins among others, could play
important roles in plant defense against D. dadantii (Cerovic
et al., 1999; Mazid et al., 2011). It is worth noticing here that in
the particular case of I areas, changes in the optical properties of
the tissue, due to loss in water content, would also contribute to
the increase in F440 and F520 (Cerovic et al., 1999; Takács et al.,
2000).

On the other hand, a drastic increase in temperature of whole
leaves in response to the infection is indicative of activation of
stomatal closure, which decreases the transpiration rate across
those leaves. Stomatal closure, triggered by the detection of
pathogen associated molecular patterns, is part of a plant innate
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FIGURE 4 | Results of the validation of the I area models used to classify
healthy and D. dadantii-infected I areas. Classifiers were trained and tested
combining data from the mock-control, LD, and HD infiltrated areas, at every
day post-inoculation assayed. (A) Accuracy of the models. (B) F1 score of the
classifiers. ntest = 119 for LRA, 120 for SVM, and 117 for ANN.

immune response to restrict pathogen entry (Melotto et al., 2008;
Zeng et al., 2010).

Concomitantly with the enhancement of secondary
metabolism and the induction of stomatal closure,
photosynthesis was impaired in the infected plants. The
extent of this impairment also correlated positively with
the pathogen dose. The bacteria-infiltrated areas showed a
decrease in FV/FM, 8PSII, and also in NPQ, suggesting a loss
in functionality of the thylakoid and a severe decrease in the
photosynthetic activity, particularly in the HD leaves. This effect
preceded the development of necrosis in the infiltrated tissue.
Bacterial challenge has been previously shown to cause a decrease
in photosynthesis in the inoculation sites, as part of the plant
defense program to limit carbon source availability for pathogens
and/or to redirect carbon into secondary metabolism (Bolton,
2009; Barón et al., 2016).

On the contrary, the photosynthetic activity in N areas of
LD infected leaves and D areas of LD and HD inoculated
leaves appeared to be enhanced at 3 dpi, relative to the mock-
control. Increase of photosynthesis rate in uninfected tissues
surrounding the infection site is characteristic of some virulent
pathogens (Chou et al., 2000; Berger et al., 2004; Rojas et al.,
2014). This increment in the efficiency of PSII could contribute
to cover the great metabolic demand of energy necessary to

trigger the defense response (Bolton, 2009; Murchie and Lawson,
2013).

Use of Mathematical Tools to Identify
Infiltration Sites on Melon Leaves as
“Healthy” or “D. dadantii-Infected”
The data obtained by thermography, Chl-FI, and MCFI were
used to feed classifying algorithms for each region of interest.
The high accuracy and F1 score of the I area models (LRA,
SVM, and ANN) when classifying such area are comparable to
those obtained by other authors. Berdugo et al. (2014) applied
a general linear model to classify cucumber leaves fully infected
by either fungal or viral pathogens, and obtained accuracies from
85 to 100%. On the other hand, tomato leaves infected with
the fungus Oidium neolycopersici were classified with 60–90%
accuracy (Raza et al., 2015). The same host plant species infected
with the fungus Phytophthora infestans could be classified with
an accuracy up to 100% using extreme learning machine (Xie
et al., 2015). A method based on radial-basis function network
classified resistant and tolerant cultivars of sugar beet infected
with Cercospora beticola with accuracies ranging from 69.4 to
99.9% (Arens et al., 2016). In contrast with the study here
presented, these works considered leaves or plants completely
invaded by the pathogen, corresponding to a very advanced stage
of the infection.

Use of Mathematical Tools to Classify
Whole Leaves as “Healthy” or
“D. dadantii-Infected”
In a similar study, ANNs and LRAs were fitted to numerical data
obtained by MCFI and thermography from regions of interest
in zucchini leaves infected by D. dadantii (Pérez-Bueno et al.,
2016b). These classifiers were only valid for the corresponding
areas of zucchini and melon leaves. The applicability of models
based on symptomatic areas relies on a prior identification of
areas presenting visual symptoms. Moreover, even when this
recognition process could be automated using computer vision
(Camargo and Smith, 2009; Raza et al., 2015), the whole method
of diagnosis could presumably be more time consuming and less
reliable, particularly in the case of weak symptoms or early phases
of the infection. Therefore, a model valid for whole leaves or
plants, even at early stages of the infection, when symptoms were
weak and/or covered a small portion of the tissues, would be more
easily implemented. In contrast to Pérez-Bueno et al. (2016b),
the models presented here (ANN, LRA as well as SVM) showed
a very high performance when classifying, not only I areas, but
most importantly when classifying whole leaves. This is due to the
use of Chl-FI parameters as predictors together with those from
MCFI and thermography.

Achieving high sensitivity and therefore low false negatives
rate is most important when detecting diseased plants (Sankaran
et al., 2013), in this particular case D. dadantii-infected classified
as healthy. Having this into account, ANN outperformed the
other two models when classifying whole leaves. Moreover,
this algorithm provided the best accuracy and F1 score when
classifying the complete dataset for whole leaves (3+ 7 dpi of LD
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FIGURE 5 | Results of the validation of the I area models used to classify whole leaves as healthy and D. dadantii-infected. Classifiers were trained with data from all
available I areas and tested on the data set for whole leaves. (A) Accuracy of the models. (B) F1 score of the classifiers. dpi, days post-inoculation; LD and HD, low
and high bacterial dose (104 and 106 colony forming units ml−1, respectively). ntest is specified in (A).

and HD vs. control), followed by the SVM. Both ANN and SVM
are particularly suitable for the interpretation of data from optical
sensors because the included noise factors can be compensated
by a sufficient amount of representative training data (Behmann
et al., 2015). Nonetheless, ANN is currently applied in many
complex real-world problems. The use of ANN in the field
of image processing and remote sensing has increased rapidly
because of the ability of this algorithm to handle large volume
of complex data for processing and classification (Hahn, 2009).
On the other hand, LRA is a very flexible and robust method,
but requires many more data to achieve stable, meaningful results
(Hosmer et al., 2013). This could explain why the LRA provided
the poorest results when classifying whole leaves.

Only few works have addressed the classification of plants
with patchy symptoms by training models on data obtained
from whole leaves or plants. For example, Calderón et al.
(2015) analyzed Verticillum wilt severity in olive trees by
high-resolution thermal and hyperspectral imagery in a crop
field. When classifying initial and low severity levels, a linear
discriminant analysis reached an accuracy of 71.4 and 75.0%,

respectively. Whole leaves of oilseed rape partly infected with
Alternaria were analyzed by thermal and hyperspectral imaging
providing an ANN model with 90% accuracy (Baranowski et al.,
2015). The degree of severity of symptoms produced by the
grapevine leafroll disease in entire trees could be detected with
an accuracy of 75–94.4% when using an ant colony clustering
algorithm to multispectral imaging data (Hou et al., 2016).
Similarly, SVM applied to data derived from thermography and
reflectance images, provided an accuracy of about 87% when
classifying citrus presenting a few huanglongbing symptomatic
leaves (Sankaran et al., 2013). On the other hand, algorithms
based on parameter derived from F520/F680 histograms from
whole leaves were used for the identification of infected zucchini
leaves (Pineda et al., 2017). In that case, an ANN rendered
the highest accuracy when identifying zucchini leaves infected
by bacteria or fungus. In contrast to these works, the use of
MCFI, thermography, and Chl-FI to fit models for the I areas
improved the performance of such models for the classification of
whole leaves. Particularly, the ANN showed similar or even better
performance than those models discussed above. This result is
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especially relevant considering that only 5–7% of the total leaf
surface was affected by infection. Consequently, this strategy
could be especially suitable for application on plant phenotyping
or precision agriculture.
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Pineda, M., Soukupová, J., Matoŭs, K., Nedbal, L., and Barón, M. (2008).
Conventional and combinatorial chlorophyll fluorescence imaging of
tobamovirus-infected plants. Photosynthetica 46, 441–451. doi: 10.1007/s11099-
008-0076-y

Porcar-Castell, A., Tyystjärvi, E., Atherton, J., Van Der Tol, C., Flexas, J., Pfündel,
E. E., et al. (2014). Linking chlorophyll a fluorescence to photosynthesis for
remote sensing applications: mechanisms and challenges. J. Exp. Bot. 65,
4065–4095. doi: 10.1093/jxb/eru191

Raza, S., Prince, G., Clarkson, J. P., and Rajpoot, N. M. (2015). Automatic detection
of diseased tomato plants using thermal and stereo visible light images. PLOS
ONE 10:e0123262. doi: 10.1371/journal.pone.0123262

Reverchon, S., Muskhelisvili, G., and Nasser, W. (2016). Virulence program of a
bacterial plant pathogen: the Dickeya model. Prog. Mol. Biol. Transl. Sci. 142,
51–92. doi: 10.1016/bs.pmbts.2016.05.005

Rojas, C. M., Senthil-Kumar, M., Tzin, V., and Mysore, K. (2014). Regulation
of primary plant metabolism during plant-pathogen interactions and its
contribution to plant defense. Front. Plant Sci. 5:17. doi: 10.3389/fpls.2014.
00017

Rolfe, S. A., and Scholes, J. D. (2010). Chlorophyll fluorescence imaging of plant-
pathogen interactions. Protoplasma 247, 163–175. doi: 10.1007/s00709-010-
0203-z

Sankaran, S., Khot, L. R., Espinoza, C. Z., Jarolmasjed, S., Sathuvalli, V. R.,
Vandemark, G. J., et al. (2015). Low-altitude, high-resolution aerial imaging
systems for row and field crop phenotyping: a review. Eur. J. Agron. 70, 112–123.
doi: 10.1016/j.eja.2015.07.004

Sankaran, S., Maja, J. M., Buchanon, S., and Ehsani, R. (2013). Huanglongbing
(citrus greening) detection using visible, near infrared and thermal imaging
techniques. Sensors 13, 2117–2130. doi: 10.3390/s130202117

Soukupová, J., Smatanová, S., Nedbal, L., and Jegorov, A. (2003). Plant response
to destruxins visualized by imaging of chlorophyll fluorescence. Physiol. Plant.
118, 399–405. doi: 10.1034/j.1399-3054.2003.00119.x

Takács, Z., Lichtenthaler, H. K., and Tuba, Z. (2000). Fluorescence emission
spectra of desiccation-tolerant cryptogamic plants during a rehydration -
desiccation cycle. J. Plant Physiol. 156, 375–379. doi: 10.1016/s0176-1617(00)
80076-0

Xie, C. Q., Shao, Y. N., Li, X. L., and He, Y. (2015). Detection of early blight and late
blight diseases on tomato leaves using hyperspectral imaging. Sci. Rep. 5:16564.
doi: 10.1038/srep16564

Zeng, W., Melotto, M., and He, S. Y. (2010). Plant stomata: a checkpoint of
host immunity and pathogen virulence. Curr. Opin. Biotechnol. 21, 599–603.
doi: 10.1016/j.copbio.2010.05.006

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2018 Pineda, Pérez-Bueno and Barón. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with these
terms.

Frontiers in Plant Science | www.frontiersin.org 10 February 2018 | Volume 9 | Article 164

https://doi.org/10.1093/jexbot/51.345.659
https://doi.org/10.1146/annurev.phyto.121107.104959
https://doi.org/10.1093/jxb/ert208
https://doi.org/10.3389/fpls.2015.01209
https://doi.org/10.3389/fpls.2016.01790
https://doi.org/10.1111/ppl.12237
https://doi.org/10.1093/gigascience/gix092
https://doi.org/10.1016/j.jplph.2011.06.013
https://doi.org/10.1071/FP16164
https://doi.org/10.1007/s11099-008-0076-y
https://doi.org/10.1007/s11099-008-0076-y
https://doi.org/10.1093/jxb/eru191
https://doi.org/10.1371/journal.pone.0123262
https://doi.org/10.1016/bs.pmbts.2016.05.005
https://doi.org/10.3389/fpls.2014.00017
https://doi.org/10.3389/fpls.2014.00017
https://doi.org/10.1007/s00709-010-0203-z
https://doi.org/10.1007/s00709-010-0203-z
https://doi.org/10.1016/j.eja.2015.07.004
https://doi.org/10.3390/s130202117
https://doi.org/10.1034/j.1399-3054.2003.00119.x
https://doi.org/10.1016/s0176-1617(00)80076-0
https://doi.org/10.1016/s0176-1617(00)80076-0
https://doi.org/10.1038/srep16564
https://doi.org/10.1016/j.copbio.2010.05.006
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles

	Detection of Bacterial Infection in Melon Plants by Classification Methods Based on Imaging Data
	Introduction
	Materials and Methods
	Plant Material
	Bacterial Growth and Infection
	Leaf Thermography
	Multicolor Fluorescence Imaging
	Chlorophyll Fluorescence Imaging
	Data Analysis
	Machine Learning

	Results
	Symptoms Caused by D. dadantii in Melon Leaves
	Changes in D. dadantii-Infected Melon Leaves Metabolism
	Machine Learning to Classify Leaf Areas as "Healthy" or "D. dadantii-Infected"
	Machine Learning to Classify Whole Leaves as "Healthy" or "D. dadantii-Infected"

	Discussion
	Effect of D. dadantii Infection on Melon Plant Metabolism
	Use of Mathematical Tools to Identify Infiltration Sites on Melon Leaves as "Healthy" or "D. dadantii-Infected"
	Use of Mathematical Tools to Classify Whole Leaves as "Healthy" or "D. dadantii-Infected"

	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


