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Genomic prediction is a routine tool in breeding programs of most major animal and plant

species. However, its usefulness for potato breeding has not yet been evaluated in detail.

The objectives of this study were to (i) examine the prospects of genomic prediction

of key performance traits in a diversity panel of tetraploid potato modeling additive,

dominance, and epistatic effects, (ii) investigate the effects of size and make up of training

set, number of test environments and molecular markers on prediction accuracy, and (iii)

assess the effect of including markers from candidate genes on the prediction accuracy.

With genomic best linear unbiased prediction (GBLUP), BayesA, BayesCπ , and Bayesian

LASSO, four different prediction methods were used for genomic prediction of relative

area under disease progress curve after a Phytophthora infestans infection, plant maturity,

maturity corrected resistance, tuber starch content, tuber starch yield (TSY), and tuber

yield (TY) of 184 tetraploid potato clones or subsets thereof genotyped with the SolCAP

8.3k SNP array. The cross-validated prediction accuracies with GBLUP and the three

Bayesian approaches for the six evaluated traits ranged from about 0.5 to about 0.8. For

traits with a high expected genetic complexity, such as TSY and TY, we observed an 8%

higher prediction accuracy using a model with additive and dominance effects compared

with a model with additive effects only. Our results suggest that for oligogenic traits in

general and when diagnostic markers are available in particular, the use of Bayesian

methods for genomic prediction is highly recommended and that the diagnostic markers

should bemodeled as fixed effects. The evaluation of the relative performance of genomic

prediction vs. phenotypic selection indicated that the former is superior, assuming cycle

lengths and selection intensities that are possible to realize in commercial potato breeding

programs.

Keywords: genomic prediction, tetraploid potato, Phytophthora infestans, maturity, tuber starch content, tuber

yield

INTRODUCTION

Despite the important role of potato for securing world-wide human nutrition (FAOSTAT, 2015),
potato breeding realized in the last 50 years annual gains from selection that were considerably
lower than those realized for other crop species (Douches et al., 1996). The tetraploidy and
heterozygosity of potato are considered to be reasons for that (Jansky et al., 2016). Furthermore, the
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high number of selection criteria (Barocka and Ross, 1985)
which can be evaluated in many cases only in the later
stages of the breeding program on the harvest product, the
tuber, is considered to be another factor limiting gain from
selection. Marker-assisted selection approaches, however, have
the potential to increase the gain from selection (Gebhardt,
2013). Although many quantitative trait loci (QTL) have been
identified (for review see Gebhardt et al., 2014), the impact of
marker-assisted selection for improving truly quantitative traits
in potato breeding is limited (Slater et al., 2016). This is attributed
to the low proportion of variance explained by most of the
identified QTL as well as the fact that many identified QTL
are specific to a particular phenotyping environment or genetic
background.

Genomic prediction provides an alternative method to use
genomic information in breeding decisions (Meuwissen et al.,
2001). Instead of using only significant marker-trait associations
to build up the prediction model, genomic prediction uses
all markers simultaneously (Windhausen et al., 2012). This
approach has been evaluated in most major animal and plant
species (for review see Desta and Ortiz, 2014) and is or is
becoming a routine tool in commercial and public breeding
programs. For potato, Slater et al. (2016) reported prediction
accuracies between 0.19 for yield and 0.78 for maturity. In a set of
interconnected biparental populations, Sverrisdóttir et al. (2017)
obtained cross-validated prediction correlations of 0.56 and 0.73
for tuber starch content and chipping quality. Nevertheless,
further research is needed to investigate whether such high
prediction accuracies are also observed for other traits as well as
in genetic material that was not derived from systematic crosses
of well-chosen parental clones but corresponds to a diversity
panel. Furthermore, the effect of relationship between the test
set and the validation set in potato has also not been examined
previously.

Most developments of genomic prediction methods were
initiated in dairy cattle with the aim of selecting sires with high
breeding value (cf. Meuwissen et al., 2001). Thus, prediction
models were developed to account for the contribution of
additive effects to phenotypic traits, whereas nonadditive effects
were typically not considered (de Almeida Filho et al., 2016).
However, in clonally propagated plant species that typically show
a high degree of heterozygosity, considering dominance effects
in the genomic prediction model has the potential to improve
predictions. Furthermore, epistasis potentially contributes to the
genetic variation of quantitative traits (Mackay, 2014). With few
exceptions in tree breeding (Muñoz et al., 2014; de Almeida Filho
et al., 2016), genomic selection approaches considering additive,
dominance, and epistatic effects have not been evaluated in a field
crop context.

The objectives of this study were to (i) examine the prospects
of genomic prediction of key performance traits in a diversity
panel of tetraploid potato modeling additive, dominance, and
epistatic effects, (ii) investigate the effects of size and make up
of training set, number of test environments, and molecular
markers on prediction accuracy, and (iii) assess the effect of
including markers from candidate genes on the prediction
accuracy.

MATERIALS AND METHODS

Plant Material, Phenotypic Evaluation, and
Genomic Data
Our study was based on 184 tetraploid potato clones,
subsequently designated as PIN184 population, described
previously by Pajerowska-Mukhtar et al. (2009). In brief, the
population consisted of 96 clones, which were important
genitors but mainly advanced breeding clones from each of the
breeding programs of Boehm-Nordkartoffel-Agrarproduktion
OHG (Ebstorf, Germany) (BNA subset) and SaKa Pflanzenzucht
GmbH & Co. KG (Windeby, Germany) (SaKa subset). The
clones represented all market usages, but late clones with a plant
maturity score <4 were excluded. Eight clones were included
in both subsets. As described in detail by Pajerowska-Mukhtar
et al. (2009), both subsets were evaluated in 3 years each at one
location for the area under disease progress curve (AUDPC)
after Phytophthora infestans infection and for plant maturity
(PM). PM was scored from 1 to 9, where 1 indicates very late
and 9 very early maturity. For each year*location combination,
which was in the following designated as environment, trait
values for rAUDPC were calculated as the ratio of each clone’s
AUDPC and the environmental mean. As AUDPC and rAUDPC
were highly correlated, we report only results obtained for the
latter. Furthermore, from AUDPC and PM, the trait maturity
corrected resistance (MCR) was calculated (Pajerowska-Mukhtar
et al., 2009). At each of the six environments, tuber starch
content (TSC) was assessed. For the BNA subset, information
on tuber yield (TY) has been collected in three environments
which allowed together with the TSC the calculation of tuber
starch yield (TSY=TSC*TY). This assessment was performed
in an experiment, which was laid out as a randomized block
design, with one replication per environment, where each plot
had two rows with eight plants each. As described by Mosquera
et al. (2016), the PIN184 population was genotyped using the
8.3 k SolCAP potato genotyping array (Hamilton et al., 2011).
For each SNP locus, one of the five possible genotypes (AAAA,
AAAB, AABB, ABBB, or BBBB) was manually assigned to the
individuals using the GenomeStudio Software version 2011.1
(Illumina) as described by Stich et al. (2013). Furthermore, for
a total of 85 candidate loci for P. infestans resistance, one to
several amplicons have been Sanger sequenced for the PIN184
population (Gebhardt et al., 2004; Pajerowska-Mukhtar et al.,
2009; Odeny et al., 2010; Muktar et al., 2015; Mosquera et al.,
2016). The genotypic data for the 6052 SolCAP SNPs as well
as the 1,010 SNPs from the 85 candidate gens was kindly
provided by Christiane Gebhardt, MPI for Plant Breeding
Research.

In order to examine the prediction accuracy of our models
in unrelated genetic material, we included in our study 187
tetraploid clones from the potato diversity panel for which
phenotypic data are kindly provided by the SolCAP consortium
and which correspond to those evaluated by Rosyara et al.
(2016). For these clones, which were subsequently designated
as SolCAP187 population, genotypic information from the 8.3 k
SolCAP array as well as phenotypic information on vine maturity
95/120 days after planting were available.
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After removing all markers with a minor allele frequency
<0.05, the proportion of missing values was about 1% across
the two SNP data sets. Such a level warrants the imputation of
missing values by using themedian allele frequency for each SNP.

Statistical Analyses
Genetic Relationship Between Clones
The results of Slater et al. (2014) indicated the minor effect of
double reduction on heritability estimates in potato across a
range of traits and, thus, was neglected in our study. The additive
relationship matrix was calculated in accordance with method
1 of VanRaden (2008) from the SNP-clone matrix, where SNPs
were coded in an additive autotetraploid way (Slater et al., 2016).
The dominance relationship matrix was calculated according to
Nishio and Satoh (2014). Additive-additive, additive-dominance,
and dominance-dominance epistasis relationship matrices were
calculated from the Hadamard product of the respective additive
and dominance relationship matrices (VanRaden, 2008).

Associations among the clones were revealed with principal
component (PC) analyses based on allele frequency matrices
considering the allele dosage information. The number of
columns of these matrices correspond to the number of marker
loci and the number of rows to the number of clones. Clones
were grouped by k-means clustering to n = 4 and 8, where
random individuals were chosen as the initial values of the
centroids. This procedure was repeated 100 times for each
number of clusters, and the clustering that was observed with
the highest frequency was used for our analyses (Supplementary
Material). The molecular variance among and within clusters
(Gst) was assessed (Gerlach et al., 2010). Bi-locus linkage
disequilibrium (LD) was characterized by the LDmeasure r2 (Hill
and Robertson, 1968), which was calculated for all pairs of SNPs
from the SolCAP array that mapped to the same chromosome.

Variance Components and Heritability
Since eight clones were in common between the BNA and
SaKa subsets of the PIN184 population, we performed a joint
data analysis for both subsets using the following statistical
model, where each year*location combination was treated as an
environment:

yij = µ + gi + lj + eij, (1)

where yij was the entry mean for the ith clone in the jth
environment, µ was an intercept term, gi was the effect of the
ith clone, lj was the effect of the jth environment, and eij was
the residual. As the environments comprised two purposefully
selected locations, the environmental effects lj were regarded
as fixed. On the basis of best linear unbiased estimation,
adjusted entry means for each clone were derived in each set of
environments (e = 6, 5, 4, 3, or 2), applying model [1] considering
the clone effects as fixed. For estimation of variance components,
gi was considered as random. Heritability on an entry mean basis
was calculated as h2 = σ 2

g /(σ 2
g + w̄/2), where σ 2

g was the genetic
variance and w̄ the mean variance of the difference between two
adjusted entry means (Holland, 2003).

The genetic variance among and within clusters (Qst) (Prout
and Barker, 1993; Spitze, 1993) was estimated by partitioning the

clone effect in model [1] into the effect of the cluster and that of
the clone nested within the cluster.

Genomic Prediction Models
Despite the fact that PM was scored on an ordinal scale, the
QQplots of the adjusted entry means across all environments
as well as per environment did not indicate a deviation from
the normal distribution as well as the residuals were normally
distributed. Therefore, the adjusted entry mean of each clone of
the PIN184 population for PM was predicted using the same
four prediction methods as for rAUDPC, MCR, and TSC as
well as the clones of the BNA subset for TSC, TY, and TSY:
Genomic best linear unbiased prediction (GBLUP), BayesA,
BayesCπ , and Bayesian LASSO (BL). Details of these methods
were described previously (Meuwissen et al., 2001; Park and
Casella, 2008; Hayes et al., 2009; Habier et al., 2011) and will
not be listed here. GBLUP method was used as implemented
in the R package sommer (Covarrubias-Pazaran, 2016), where
the residuals assumed to be normally distributed with mean 0
and variance σ 2

r . BayesA, BayesCπ , and BL were fitted using the
R package BGLR (de los Campos and Perez-Rodriguez, 2016)
with default hyperparameter values described previously (de los
Campos et al., 2013; Pérez and de los Campos, 2014). In all,
30,000 Markov chain Monte Carlo iterations were used, of which
the first 10,000 were discarded as burn-in and every third sample
was kept for parameter estimation.

For each of the above mentioned statistical models, different
genetic models were examined: Model M1 considered only
additive effects, M2 additive and dominance effects, whereas
model M3 considered additive, dominance, and the three types
of epistatic effects (e.g., Stich and Gebhardt, 2011). We observed
in a previous study that polymorphisms in the StAOS2 locus
explained individually between 30 and 40% of the phenotypic
variance (Pajerowska-Mukhtar et al., 2009). Therefore, we
examined variants of models M1, M2, and M3 where the
diagnostic SNP691 from the StAOS2 locus was considered as
fixed or random covariable. These variants of model M∗, were
designated as M∗CF or M∗CR, respectively. Different sets of
SNPs were used for the above described genomic predictions:
(i) all 6052 SolCAP SNPs, (ii) in 100 independent runs each,
the SolCAP SNPs were stratified sampled in such a way that a
genome-wide equal distribution of SNPs was obtained with a
density of 5, 1.33, 0.67, and 0.13 Mbp−1, (iii) all SNPs from the
85 candidate genes for P. infestans resistance, and (iv) all SolCAP
SNPs and the 85 candidate genes for P. infestans resistance.

The genomic prediction of genotypic values is of interest
in our study. Therefore, we calculated the prediction accuracy
[r(ĝ, g)] as the Pearson correlation between the phenotype and
the genomic estimated genotypic values divided by the square
root of heritability h2 of the target trait evaluated in the respective
set of environments.

Genomic Prediction Cross-Validation Schemes
The standard scheme for validation of genomic prediction
was five-fold cross-validation. For this purpose, the clones of
population PIN184 or the BNA subset were randomly subdivided
into five disjoint subsets. One subset was left out for validation,
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whereas the other four subsets were used as training set. This
procedure was replicated 20 times, yielding a total of 100 cross-
validation runs.

Different analyses were performed to evaluate the effect of
different factors (F) on genomic prediction: (F1) the sample
size of the training set was varied; (F2) the number of test
environments in which the training and validation set were
evaluated was varied; (F3) the effect of “reduced” relationship
between training and validation set was examined: (F3A)
performance of one half of the clones in one cluster was predicted
based on all the clones of the remaining clusters. This procedure
was replicated 20 times. In each replication, a different set of
genotypes was placed into the two halves of the cluster. (F3B)
performance of one half of the clones in one cluster was predicted
from a combination of the clones from the remaining clusters,
and the other half of the clones in the considered cluster, where
the number of clones in the remaining clusters, was reduced by
sampling such that the total number of clones in the training set
was the same as in F3A. This procedure was repeated 20 times
as described for F3A. Due to the high computational effort of
the Bayesian methods, these analyses as well as the simulations
of different sets of SNPs, which were described above, were
performed only with the prediction method GBLUP.

If not stated differently, all statistical analyses were performed
using statistical software R version 3.3.2 (R Development Core
Team, 2016).

RESULTS

Heritability
For the PIN184 population, which consists of 184 tetraploid
elite potato clones, phenotypic information on four quantitative
traits has been assessed across six location*year combinations.
We observed for the heritability on an entry mean basis
h2 high values of 0.7 for rAUDPC and MCR and very
high values >0.9 for PM and TSC (Table 1). For the BNA
subset, which was evaluated in three environments also
for TY in addition to the above mentioned characters,
high heritabilities close to 0.8 were observed for TSY
and TY.

TABLE 1 | Means of relative area under disease progress curve (rAUDPC), plant

maturity (PM), maturity corrected resistance (MCR), tuber starch content (TSC),

tuber starch yield (TSY), and tuber yield (TY), their genetic variance (σ2
g ), and

broad-sense heritability h2 estimated for 184 tetraploid potato clones (PIN184) or

a subset of 96 clones thereof (BNA subset).

PIN184 BNA subset

rAUDPC MCR PM TSC TSC TSY TY

[rel.] [rel.] [rating 1–9] [%] [%] [dt/ha] [dt/ha]

Mean 0.37 3.9*10−3 5.5 16.8 17.7 105 599

σ2
g 7.1*10−3 4.5*10−3 1.52 7.2 8.3 296 9323

h2 0.77 0.68 0.92 0.92 0.95 0.78 0.77

Genetic Relationship and LD
In the PC analysis based on allele frequency estimates of all clones
of the PIN184 population, the first two PCs explained 5.6 and
3.5% of the molecular variance (Figure 1). PC1 and PC2 showed
a tendency to separate in two to three clusters which were in

FIGURE 1 | Principal component (PC) analysis based on the polymorphic

SolCAP SNPs for the PIN184 population (upper) and the PIN184 and

SolCAP187 populations together (lower). Numbers in parentheses refer to the

proportion of variance explained by the PC.
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some accordance with the market usage of the corresponding
potato clones (data not shown). The PC analysis of the PIN184
and the SolCAP187 population together revealed two distinct
clusters. The first cluster was mainly made up of clones from
the PIN184 population, whereas the second cluster comprised
mainly clones from the SolCAP187 population. LD and LD
decay per chromosome were estimated using the physical map
positions of the SolCAP SNPs. The proportion of pairwise r2

values >0.1 and >0.8 across all SNP pairs mapping to the same
chromosome was 1.5 and 0.01 %, respectively, in the PIN184
population. The mean r2 value of pairs of SNPs with a distance
<10kb was about 0.1 (Figure 2). The mean r2 value between
adjacent markers was 0.11. For the combined set of clones from
PIN184 and SolCAP187, the extent of LD was lower than that for
PIN184 alone.

A Comparison of Prediction Methods and
Genetic Models
When using all SolCAP SNPs for genomic prediction, in the
PIN184 population cross validated prediction accuracies around
0.8 were observed for TSC and MCR (Table 2). The prediction
accuracies for rAUDPC and PM were with 0.65 lower. For the
BNA subset, which comprised about half of the clones of PIN184,
prediction accuracies around 0.5 were observed for TSY and
TY. In contrast to the above described differences among traits,
only marginal differences were observed between the different
prediction methods, when relying on the SolCAP SNPs.

For the GBLUP prediction method, three genetic models
with additive (M1), additive and dominance (M2), as well
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FIGURE 2 | Decay of linkage disequilibrium (LD, r2) with distance between

pairs of SNPs. LD averaged over chromosomes is given in distance bins

of 50 kb.

as a model with additive, dominance, and epistatic effects
(M3) were examined. Across the six traits, we observed the
lowest prediction accuracy for the genetic model with additive,
dominance, and epistatic effects (M3, Table 2). The prediction
accuracies observed for the model with additive effects (M1) was
only slightly lower compared to the model considering additive
and dominance effects (M2). However, especially for TSY and TY,
the difference was more pronounced than for TSC. This trend,
observed for the GBLUP prediction method, was not observed
for the three Bayesian predictionmethods examined in our study.
For BayesA, Cπ , and BL, the M2 model showed for >70 % of the
examined scenarios a lower prediction accuracy compared with
the M1 model.

Genomic Prediction for Traits With
Available Diagnostic SNPs
We observed in a previous study that polymorphisms in the
StAOS2 locus explained individually between 30 and 40% of
the phenotyic variance of rAUDPC and MCR. Therefore, we
examined the prediction of these traits not only by using the
SolCAP SNPs, but also by adding SNP 691 of the StAOS2 locus
as a covariable. Adding that SNP as a fixed or random effect
improved the prediction accuracy across all prediction methods
and traits (Table 2). For BayesCπ and BL, the consideration of
the diagnostic SNP as a fixed effect resulted in higher prediction
accuracies compared with the modeling as a random effect. For
GBLUP and BayesA, the prediction accuracies of models with a
random effect for the diagnostic SNP were slightly higher than
those with a fixed effect. The use of all SolCAP SNPs together with
the SNPs from the 85 candidate loci resulted in no improvement
of the prediction accuracy, compared to the scenario when all
SNP from the SolCAP array and the diagnostic SNP were used
(Table 2). A scenario in which the prediction was based only on
SNPs from the 85 candidate loci led only to a slight reduction
of the prediction accuracy for rAUDPC, MCR, and PM, but a
considerable reduction for TSC, TSY, and TY compared with the
scenario when all SolCAP SNPs and the diagnostic SNP were
used.

Effects of Sample Size, Number of Test
Environments and SNPs, as Well as
Relatedness on Prediction Accuracy
For the GBLUP prediction method, we observed a 10% reduction
of the prediction accuracy for the traits rAUDPC, MCR, and PM,
when reducing the size of the training set from 147 to 74, whereas
for TSC this reductionwas only 5% (Table 3). The same trendwas
observed for the genetic models M1 and M3 (data not shown).
For the scenario with a fixed effect for the diagnostic SNP, we
observed no reduction of the prediction accuracy for rAUDPC
but a 10% reduction for MCR. The reduction of the number of
test environments from 6 to 2 did not result in a reduction of the
prediction accuracy for any of the examined traits.

The number of SolCAP SNPs corresponds to a genome-wide
SNP density of 8.3 Mbp−1 that is unequally distributed across
the genome. When decreasing this density to a genome-wide
equally distributed density of 5, a reduction of the prediction
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TABLE 2 | Median and standard deviation of prediction accuracy [r(ĝ, g)] of genomic prediction in PIN184 and the BNA subset obtained with the prediction methods

GBLUP, BayesA, and Cπ , as well as Bayesian LASSO (BL) under the genetic models M1, M2, and M3, for different SNP sets across 100 cross-validation runs.

Prediction Genetic PIN184 (n = 184) BNA subset (n = 96)

method model rAUDPC MCR PM TSC TSC TSY TY

ALL SolCAP SNPs

GBLUP M1 0.66 ± 0.11 0.76 ± 0.12 0.65 ± 0.09 0.82 ± 0.06 0.86 ± 0.07 0.46 ± 0.19 0.50 ± 0.20

M2 0.69 ± 0.11 0.76 ± 0.14 0.66 ± 0.09 0.81 ± 0.07 0.86 ± 0.15 0.49 ± 0.19 0.54 ± 0.17

M3 0.68 ± 0.18 0.75 ± 0.16 0.66 ± 0.12 0.72 ± 0.37 0.39 ± 0.40 0.45 ± 0.18 0.51 ± 0.20

BayesA M1 0.69 ± 0.11 0.76 ± 0.12 0.71 ± 0.09 0.82 ± 0.05 0.87 ± 0.06 0.50 ± 0.18 0.53 ± 0.21

M2 0.68 ± 0.10 0.75 ± 0.12 0.68 ± 0.08 0.83 ± 0.05 0.84 ± 0.08 0.46 ± 0.18 0.52 ± 0.20

BayesCπ M1 0.69 ± 0.11 0.75 ± 0.11 0.66 ± 0.08 0.83 ± 0.04 0.86 ± 0.08 0.45 ± 0.20 0.54 ± 0.20

M2 0.66 ± 0.13 0.76 ± 0.13 0.63 ± 0.10 0.81 ± 0.06 0.84 ± 0.08 0.45 ± 0.19 0.49 ± 0.20

BL M1 0.67 ± 0.11 0.75 ± 0.11 0.65 ± 0.09 0.83 ± 0.06 0.85 ± 0.07 0.50 ± 0.21 0.54 ± 0.20

M2 0.69 ± 0.12 0.77 ± 0.12 0.63 ± 0.08 0.82 ± 0.05 0.86 ± 0.07 0.40 ± 0.25 0.47 ± 0.22

ALL SolCAP SNPs AND StAOS2 SNP691 AS RANDOM EFFECT

GBLUP M1CR 0.68 ± 0.13 0.83 ± 0.13

M2CR 0.67 ± 0.12 0.83 ± 0.13

BayesA M1CR 0.86 ± 0.06 0.86 ± 0.10

M2CR 0.86 ± 0.08 0.88 ± 0.12

BayesCπ M1CR 0.70 ± 0.11 0.75 ± 0.11

M2CR 0.71 ± 0.10 0.78 ± 0.12

BL M1CR 0.72 ± 0.12 0.77 ± 0.12

M2CR 0.71 ± 0.12 0.78 ± 0.12

ALL SOLCAP SNPs and StAOS2 SNP691 AS FIXED EFFECT

GBLUP M1CF 0.67 ± 0.11 0.81 ± 0.12

M2CF 0.66 ± 0.11 0.82 ± 0.13

BayesA M1CF 0.85 ± 0.08 0.88 ± 0.07

M2CF 0.84 ± 0.08 0.88 ± 0.11

BayesCπ M1CF 0.85 ± 0.06 0.89 ± 0.10

M2CF 0.83 ± 0.08 0.89 ± 0.09

BL M1CF 0.85 ± 0.07 0.88 ± 0.11

M2CF 0.85 ± 0.08 0.87 ± 0.11

ALL SNPs FROM 85 CANDIDATE LOCI FOR P. infestans RESISTANCE

GBLUP M2 0.70 ± 0.09 0.78 ± 0.12 0.66 ± 0.11 0.71 ± 0.08 0.70 ± 0.11 0.31 ± 0.20 0.55 ± 0.20

BayesA M2 0.85 ± 0.08 0.87 ± 0.12 0.67 ± 0.09 0.81 ± 0.06 0.66 ± 0.14 0.32 ± 0.23 0.47 ± 0.21

BayesCπ M2 0.71 ± 0.11 0.79 ± 0.13 0.64 ± 0.08 0.81 ± 0.05 0.66 ± 0.12 0.29 ± 0.21 0.43 ± 0.21

BL M2 0.71 ± 0.10 0.79 ± 0.10 0.67 ± 0.08 0.83 ± 0.06 0.67 ± 0.14 0.33 ± 0.20 0.48 ± 0.21

ALL SOLCAP SNPs AND THE 85 CANDIDATE LOCI FOR P. infestans RESISTANCE

GBLUP M2 0.73 ± 0.10 0.78 ± 0.14 0.68 ± 0.08 0.80 ± 0.06 0.86 ± 0.13 0.44 ± 0.19 0.52 ± 0.19

BayesA M2 0.79 ± 0.08 0.82 ± 0.09 0.63 ± 0.09 0.72 ± 0.07 0.83 ± 0.08 0.42 ± 0.22 0.50 ± 0.21

BayesCπ M2 0.78 ± 0.10 0.85 ± 0.09 0.64 ± 0.09 0.72 ± 0.07 0.83 ± 0.08 0.44 ± 0.21 0.52 ± 0.20

BL M2 0.78 ± 0.09 0.84 ± 0.11 0.63 ± 0.09 0.63 ± 0.09 0.84 ± 0.07 0.48 ± 0.19 0.55 ± 0.18

The considered traits were relative area under disease progress curve (rAUDPC), plant maturity (PM), maturity corrected resistance (MCR), tuber starch content (TSC), tuber starch yield

(TSY), and tuber yield (TY).

accuracy of about 5% was observed (Figure 3). A linear trend of a
reduced prediction accuracy was observed down to a SNP density
of about 1 Mbp−1. For even lower SNP densities, the decrease of
the prediction accuracy became exponential.

The prediction accuracy for performance in a specific cluster
using marker effects estimated in the other clusters, ranged
between 0.31 for MCR and 0.66 for TSC with high standard
deviations (Table 4, F3A). No consistent trend across the
examined traits was observed when increasing the number of

clusters from 4 to 8. When 50% of the genotypes in the validation
set were included in the training set, the prediction accuracy
increased for all traits by about the same extent (Table 4, F3B).

Analysis of genetic variance revealed that dividing the clones
in an increasing number of clusters increased for all traits
except PM the variance among populations while minimizing
the variance within populations (Table 5, Qst). For the molecular
variance, the same trend as for the genetic variance was
observed. However, the proportion of the variance among
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TABLE 3 | Median and standard deviation of prediction accuracy [r(ĝ, g)] of genomic prediction in PIN184 obtained with the prediction method GBLUP under the genetic

models M2 (all SolCAP SNPs) and M2CF (all SolCAP SNPs and SNP691 from StAOS2 locus), with different numbers of clones (n) and environments (e) in which the

training and/or validation set were evaluated across 100 cross-validation runs.

Genetic Training set Validation set PIN184

model n e n e rAUDPC MCR PM TSC

VARIATION OF THE SAMPLE SIZE OF THE TRAINING SET—F1

M2 147 6 37 6 0.69 ± 0.11 0.76 ± 0.14 0.66 ± 0.09 0.81 ± 0.07

110 6 74 6 0.65 ± 0.08 0.71 ± 0.08 0.63 ± 0.07 0.78 ± 0.07

74 6 110 6 0.59 ± 0.07 0.64 ± 0.08 0.59 ± 0.04 0.77 ± 0.08

M2CF 147 6 37 6 0.66 ± 0.11 0.82 ± 0.13

110 6 74 6 0.67 ± 0.06 0.78 ± 0.09

74 6 110 6 0.69 ± 0.09 0.74 ± 0.09

VARIATION OF THE NUMBER OF TEST ENVIRONMENTS—F2

M2 147 6 37 6 0.69 ± 0.11 0.76 ± 0.14 0.66 ± 0.09 0.81 ± 0.07

147 5 37 5 0.71 ± 0.12 0.71 ± 0.13 0.66 ± 0.09 0.81 ± 0.06

147 4 37 4 0.67 ± 0.14 0.65 ± 0.16 0.62 ± 0.10 0.81 ± 0.08

147 3 37 3 0.62 ± 0.15 0.74 ± 0.22 0.67 ± 0.10 0.81 ± 0.09

147 2 37 2 0.73 ± 0.17 0.73 ± 0.18 0.76 ± 0.13 0.78 ± 0.12

The considered traits were relative area under disease progress curve (rAUDPC), plant maturity (PM), maturity corrected resistance (MCR), and tuber starch content (TSC).

FIGURE 3 | Prediction accuracy within PIN184 and the BNA subset obtained

with GBLUP using additive and dominance relationship matrices (model M2)

calculated from different numbers of SNPs. Shown are the median values for

all traits obtained from 100 cross-validation runs. The considered traits were

relative area under disease progress curve (rAUDPC), plant maturity (PM),

maturity corrected resistance (MCR), tuber starch content (TSC), tuber starch

yield (TSY), and tuber yield (TY). Vertical bars depict the standard error.

clusters compared with the total variance was with values around
15% about one third to one fourth of that observed for the
phenotypic traits (Table 5, Gst).

We evaluated the accuracy of predicting vine maturity of the
SolCAP187 population using the GBLUP prediction method and
the PIN184 population as training set. The prediction accuracies
for the different genetic models were all negative and ranged from
−0.06 to−0.14.

DISCUSSION

Factors Influencing the Prediction
Accuracy in Genomic Selection
Experiments
Prediction Method
Various methods have been proposed for genomic prediction
(for review see Desta and Ortiz, 2014). With GBLUP, BayesA,
BayesCπ , and BL, four of these methods have been used in our
study for genomic prediction in tetraploid potato. We observed
only marginal differences among the prediction accuracies of
different prediction methods for the same trait when using
the SolCAP SNPs to estimate the additive and dominance
relationship matrix (Table 2). This finding is in good agreement
with earlier studies in a plant context (e.g., Lorenzana and
Bernardo, 2009; Rousselle et al., 2013).

In a previous study, we identified SNPs in the gene StAOS2
that explained between 30 and 40% of the phenotypic variance
of rAUDPC and MCR (Pajerowska-Mukhtar et al., 2009). One
of these SNPs was considered as a random covariable in
the prediction approach. In that case, the Bayesian methods,
especially BayesA, resulted in considerably higher prediction
accuracies for rAUDPC and MCR than the GBLUP method.
Our finding can be explained by the property of the Bayesian
methods that different SNPs explain different proportions of
the phenotypic variance, which is not the case for GBLUP.
Furthermore, in BayesA, the assumption of a common variance
across all marker effects, which is made by BayesCπ , is most
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TABLE 4 | Median and standard deviation of prediction accuracy [r(ĝ, g)] of genomic prediction in PIN184 obtained with the prediction method GBLUP under the genetic

model M2, for all SolCAP SNPs, with a reduced relationship between training and validation set across 100 cross-validation runs.

Clusters Training set Validation set PIN184

n n rAUDPC MCR PM TSC

PREDICTION OF 50% OF THE GENOTYPES IN ONE CLUSTER BASED ON ALL OTHER CLUSTERS—F3A

4 116–154 15–34 0.35 ± 0.17 0.31 ± 0.23 0.34 ± 0.16 0.66 ± 0.13

8 147–177 3–18 0.32 ± 0.35 0.35 ± 0.46 0.47 ± 0.32 0.51 ± 0.33

PREDICTION OF 50% OF THE GENOTYPES IN ONE CLUSTER BASED ON ALL OTHER CLUSTERS

PLUS THE OTHER 50% FROM THE SAME CLUSTER—F3B

4 116–154 15–34 0.41 ± 0.19*** 0.40 ± 0.30*** 0.37 ± 0.16*** 0.73 ± 0.17*

8 147–177 3–18 0.50 ± 0.47** 0.48 ± 0.55ns 0.47 ± 0.25ns 0.57 ± 0.30ns

The studied traits were relative area under disease progress curve (rAUDPC), plant maturity (PM), maturity corrected resistance (MCR), and tuber starch content (TSC). Prediction

accuracies for scenario F3B marked by ns or *, **, *** are non significantly or significantly (P < 0.05, 0.01, 0.001) higher than those of the corresponding comparison in scenario F3A.

TABLE 5 | Genetic and molecular variance among (σ2
p ) and within (σ2

g(p)
) clusters

in the PIN184 population and their standard deviations.

4 Clusters 8 Clusters

Qst: Genetic variance

rAUDPC

σ2
p 0.0033 ± 0.057 0.0029 ± 0.054

σ2
g(p)

0.0049 ± 0.070 0.0050 ± 0.071

σ2
p /(σ

2
g(p)

+ σ2
p ) 0.403 0.368

MCR

σ2
p 0.0027 ± 0.052 0.0029 ± 0.054

σ2
g(p)

0.0030 ± 0.055 0.0028 ± 0.053

σ2
p /(σ

2
g(p)

+ σ2
p ) 0.472 0.512

PM

σ2
p 0.63 ± 0.79 0.42 ± 0.66

σ2
g(p)

1.09 ± 1.05 1.06 ± 1.03

σ2
p /(σ

2
g(p)

+ σ2
p ) 0.376 0.288

TSC

σ2
p 2.36 ± 1.54 3.77 ± 1.94

σ2
g(p)

5.43 ± 2.33 3.44 ± 1.85

σ2
p /(σ

2
g(p)

+ σ2
p ) 0.303 0.523

Gst: Molecular variance

σ2
p 0.094 0.124

σ2
g(p)

0.973 0.972

σ2
p /(σ

2
g(p)

+ σ2
p ) 0.088 0.113

The considered traits were relative area under disease progress curve (rAUDPC), plant

maturity (PM), maturity corrected resistance (MCR), and tuber starch content (TSC).

strongly relaxed (Meuwissen et al., 2001). This finding suggests
that for oligogenic traits in general and especially when diagnostic
markers are available, the use of Bayesian methods for genomic
prediction is highly recommended.

In addition, we also observed that considering the diagnostic
SNP in the StAOS2 gene as fixed effect resulted for all
prediction methods except BayesA in the highest prediction
accuracies (Table 2). For BayesA, the difference between
considering the diagnostic SNP as fixed or random effect
was marginal. These observations are supported by results of

computer simulations of Bernardo (2014) and suggest that if
genomic prediction is applied to traits for which diagnostic
markers for major QTL are available, these markers should
be considered as fixed effects, even when Bayesian models are
chosen.

Genetic Architecture of the Trait
As described in detail for various crops, the prediction accuracies
differed considerably among traits (e.g., Rousselle et al., 2013;
Sverrisdóttir et al., 2017). However, when the heritability on
an entry mean basis, calculated from the same number of
plots, is used as a proxy variable for the genetic complexity
of the traits under consideration (cf. Schön et al., 2004),
only a weak correlation between the genetic complexity and
the realized prediction ability (data not shown) or prediction
accuracy for a trait was observed (Tables 1, 2). For example,
the heritability for PM was among the highest observed,
whereas the prediction accuracy was one of the lowest.
This is consonant with the observation that for PM the
relationship between expected (Daetwyler et al., 2010) and
observed prediction accuracy was especially low (data not
shown). One explanation for this finding is that genetic main
or interaction effects (López-Fanjul et al., 2003), structural or
epigenetic variants exist which cannot be well predicted with the
available SNPs. The reason for this might be that the SolCAP
SNPs have been discovered in elite North American potato
germplasm.

Another finding that supported this explanation is that in
the analysis of molecular variance, the ratio between the genetic
variance among and within clusters calculated from phenotypic
data (Qst) was three to four times higher than that calculated
based on molecular marker data (Gst) (Table 5). This can be
because the SNPs used in our study represent only a small
part of the entire genotypic variability in the potato genome.
In addition to SNPs, other genomic variants such as structural
or epigenetic variants contribute as well to phenotypic diversity.
Furthermore, these genomic variants are not necessarily in LD
with the available SNPs. Strong discrepancies between Qst and
Gst were also observed for other plant species (Porcher et al.,
2004; Windhausen et al., 2012; Volis et al., 2015) but were the
strongest for potato. This aspect warrants further research.
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Genetic Model
Potato is currently bred as a clonal species that is highly
heterozygous, which allows dominance effects to contribute to
phenotypic variation. In order to quantify that contribution,
we examined genetic models for genome-wide prediction that
considered additive and dominance effects. On average across
all traits, the prediction accuracies observed for such a model
were moderately higher than for the model considering additive
effects alone (M1&2, Table 2). However, for traits with a high
expected genetic complexity, such as TSY and TY, the difference
was more pronounced than for traits with a low expected genetic
complexity, such as TSC or PM. This finding illustrates the
importance of including dominance effects in prediction models
when selecting clones for their per-se performance as commercial
products. However, as dominance effects cannot be transmitted
to the next generation, only additive effects should be considered
when making decisions about the utility of clones to be used as
parents of new segregating populations.

Another non-additive component potentially influencing the
genotypic value of genotypes is epistasis. We examined a
genetic model that considered, besides additive and dominance
effects, the three types of epistatic interactions. Across the six
traits, we observed the lowest prediction accuracy for that model
(M3, Table 2). The results of He et al. (2017) indicated a
small increase in prediction accuracy when comparing a model
considering epistatic interactions with one neglecting such effects
in a set of winter wheat inbred lines. One potential explanation
for that discrepancy is that the study of He et al. (2017) examined
a diploid, autogamous species which shows a slower decay of LD
compared with the rapid decay observed in this study (Figure 2).
Furthermore, the population size used in our study was smaller
compared with that evaluated in the study of He et al. (2017).
Both factors led to a reduced estimation of epistatic variances
and a lower prediction of the corresponding epistatic effects
(Lorenzana and Bernardo, 2009) in our study compared with
that of He et al. (2017). Therefore, in the following sections,
the results of the model considering epistatic effects will not be
further discussed.

Size and Make up of the Training Set
The size of the training set is expected to influence the prediction
accuracy (cf. Riedelsheimer et al., 2013). This trend was also
observed in our study (Table 3). However, the observed rate of
reduction of the prediction accuracy with reduced size of the
training set was extraordinarily low. We observed a reduction
of only 5% when bisecting the size of the training set. The
reason for this insensitivity of the prediction accuracy to the
size of the training set could be the low genetic complexity
or the high extent of genotypic variance for the traits under
consideration. As this is not necessarily the case for other
potato germplasm, we do recommend planning future genomic
prediction experiments with larger population sizes than used in
our study.

Besides the size of the training set, the degree of relatedness
or differentiation between training and validation set also
matters. We observed a 10–15% higher prediction accuracy
when predicting half of the genotypes of one cluster based

on a training set that also included the other half of that
cluster compared with a scenario where these related clones
were not included in the training set (Table 4). However,
compared with previous studies (e.g., Windhausen et al., 2012),
that increase was small. This observation was unexpected, as
the partitioning of genetic variance among and within clusters
in the PIN184 populations revealed similar or even higher
Gst and Qst values compared with that of Windhausen et al.
(2012). One explanation is that despite differences in mean
trait values among clusters, the loci that cause phenotypic
variation in the different clusters are the same. In summary,
the results indicate that even when using a germplasm set of
tetraploid potato that comprises clones representing different
market usages as training set for genomic prediction, the level
of population differentiation is low enough to provide high
prediction accuracies for validation sets of clones from other
market usages.

We observed negative prediction accuracies when predicting
vine maturity of the SolCAP187 population from the PM
genomic prediction model of the PIN184 population. This
finding can be explained by the higher differentiation between
PIN184 and SolCAP187 compared with the differentiation
between clusters of the PIN184 population. However, a more
likely reason is that the environments in which vine maturity
was assessed for the SolCAP187 population belong to a
different mega-environment and, thus, reveal a very different
genotype*environment pattern from the environments in which
the PIN184 population was evaluated.

Number and Type of Molecular Markers
Across all traits, we observed a linear decrease of the prediction
accuracy when decreasing the SNP density from 5 to about
1 Mbp−1 (Figure 3). Such a linear decrease is expected only for
marker densities where the relationship between the LD measure
r2 and the distance betweenmarkers is approximately linear. This
explanation is in agreement with the observed low extent of LD
in the PIN184 population (Figure 2). These findings suggest that
the prediction accuracy realized in our study is only to a small
proportion due to LD between markers and QTL and mostly due
to the modeling of relatedness. This explanation is supported by
the observation of a 10–15% higher prediction accuracy when
predicting half of the genotypes of one cluster based on a training
set that also included the other half of that cluster compared
with a scenario where these related clones were not included in
the training set (Table 4). Furthermore, this is also supported by
the finding, that the highest prediction accuracy was observed
for the original SNP density of 8.4 Mbp−1 which is more than
10 times lower than the distance in which for 98.5% of the loci
pairs, the r2 value drops below 0.1. Therefore, we expect that
by increasing the marker density to a level so that the mean r2

values between adjacent markers reaches values >0.20 (Calus
et al., 2008; Habier et al., 2010) the prediction accuracy for traits
such as TSY and TY can be increased considerably compared
with the levels observed in our study. Based on the observed
decay of LD in potato in the PIN184 population, we estimate
that in the order of 200–500,000 SNPs equally distributed across
the genome are required to realize such levels of r2 for diverse
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germplasm sets. These numbers are considerably higher than
those estimated by D’hoop et al. (2010). For genomic prediction
within segregating populations or across connected segregating
populations (e.g., Sverrisdóttir et al., 2017), a lower SNP density
might be sufficient.

For the prediction of rAUDPC, MCR, and PM based on
the SNPs from 85 candidate loci for P. infestans resistance,
we observed a higher accuracy than for the prediction only
based on the SolCAP SNPs (Table 3). This observation is
due to the fact that the candidate genes were very well
selected as functional and positional candidates for P. infestans
resistance and its interplay of this trait with maturity.
However, for the traits TSC, TSY, and TY, the opposite trend
was observed. Furthermore, the combination of SNPs from
candidate genes and the SolCAP SNPs resulted in the highest
prediction accuracy. Both findings illustrated the importance
of representing the entire genome in genomic prediction
experiments.

Number of Test Environments
We observed approximately the same prediction accuracies,
regardless of the number of test environments used for
the evaluation of training and validation set. Our finding
suggests that the decrease in prediction ability due to a
reduced number of environments is compensated by a reduced
heritability. This illustrates that if the target population of
environments can be represented by a lower number of
environments, this leads to an increase of the relative efficiency
of genomic selection which is calculated as the ratio of prediction
accuracy and phenotypic accuracy (the square root of the
heritability).

Potential Uses of Genomic Prediction in
Tetraploid Potato Breeding
In the context of quantifying the potential advantage of genomic
prediction versus phenotypic selection, the former can be viewed
as an indirect selection method, whereas the latter is considered
as a direct selection method. The relative merit of indirect
selection to direct selection per unit time can be calculated as the
indirect selection response (CRX) divided by the direct selection
response (RX) (Falconer and Mackay, 1996). This ratio can be
arranged to the inequality:

LY <
iY rA

iXhX
LX , (2)

where iY is the selection intensity of the indirect selection
and iX the selection intensity of the direct selection. LY and
LX are the lengths of the indirect and direct selection cycles,
respectively. rA is the genetic correlation between the indirect
trait ind the direct trait and corresponds in the context of
genomic prediction to the prediction accuracy. hX is the square
root of the heritability of the direct trait. Genomic prediction is
superior to phenotypic selection, if this ratio is >1. Assuming the
same selection intensities for genomic prediction and phenotypic
selection (iX = iY ) and considering the h2 estimates and the
prediction accuracies of our study, the maximum relative cycle

length of indirect selection can be calculated for which identical
selection gains are realized with direct and indirect selection.
These maximum relative cycle lengths of indirect selection were
103% (MCR), 98% (rAUDPC), 85% (TSC), 73% (PM), and
60% (TSY and TY). Therefore, genomic prediction for MCR is
already superior to phenotypic selection even without reducing
the length of one cycle, whereas for the other traits, one cycle
of genomic predictions needs to have maximally the above
mentioned length relative to phenotypic selection to result in
the same gain of selection. These are very promising figures,
compared with the results reported for other crop species (cf.
Heffner et al., 2010).

As a clonally propagated crop species, potato has a low
propagation coefficient. This, however, leads to restrictions in
reducing the length of one breeding cycle by skipping a single
or several stages of a standard breeding scheme (Table 6) using
genomic prediction. Therefore, in the context of potato breeding,
we expect that the increase of iY is more promising than reducing
LY . After the availability of sufficiently sized training sets, it
will be possible to shift resources that were previously used for
phenotyping toward the creation and genotyping of considerably
more clones than under phenotypic selection. This in turn
allows to increase iY , if ultra-low cost genotyping techniques are
available.

The costs of current genotyping techniques are high compared
with the low phenotyping costs at year 2 and 3 (V. Prigge,
SaKa Pflanzenzucht GmbH & Co. KG, personal communication)
of a standard potato breeding scheme (Table 6). Therefore, we
consider the improvement of the selection efficiency by selecting
A clones (year 4) based on genomic predictions for traits that
are typically used for selection at that stage as highly relevant.
However, even more interesting is the selection of A clones
based on genomic predictions for traits that are typically not
possible to reliably evaluate at that stage due to the need of a high
number of tubers, e.g., bruising, P. infestans resistance, yield. The
concrete allocation of resources which optimize the genetic gain
of a potato breeding program using genomic selection warrants
further research.

In conclusion, our results indicate that the application
of genomic prediction in breeding programs for tetraploid

TABLE 6 | Standard potato breeding scheme and dimensioning (V. Prigge, SaKa

Pflanzenzucht GmbH & Co. KG, personal communication).

Year Stage/activity No. of No. of tubers per clone in

clones trials and multiplication

1 Cross

2 Pot seedling 140,000 1

3 Field seedling 90,000 1

4 A clone 5,000 10

5 B clone 600 60

6 C clone 100 300

7 D clone 30 1,200

8 Official trials 1 8 6,000

9 Official trials 2 4 20,000
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potato has a high potential for increasing the gain from
selection.
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