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Plant breeding programs and a wide range of plant science applications would greatly

benefit from the development of in-field high throughput phenotyping technologies. In this

study, a terrestrial LiDAR-based high throughput phenotyping system was developed.

A 2D LiDAR was applied to scan plants from overhead in the field, and an RTK-GPS

was used to provide spatial coordinates. Precise 3D models of scanned plants were

reconstructed based on the LiDAR and RTK-GPS data. The ground plane of the 3D

model was separated by RANSAC algorithm and a Euclidean clustering algorithm was

applied to remove noise generated by weeds. After that, clean 3D surface models of

cotton plants were obtained, from which three plot-level morphologic traits including

canopy height, projected canopy area, and plant volume were derived. Canopy height

ranging from 85th percentile to the maximum height were computed based on the

histogram of the z coordinate for all measured points; projected canopy area was

derived by projecting all points on a ground plane; and a Trapezoidal rule based

algorithm was proposed to estimate plant volume. Results of validation experiments

showed good agreement between LiDAR measurements and manual measurements

for maximum canopy height, projected canopy area, and plant volume, with R2-values

of 0.97, 0.97, and 0.98, respectively. The developed system was used to scan the whole

field repeatedly over the period from 43 to 109 days after planting. Growth trends and

growth rate curves for all three derived morphologic traits were established over the

monitoring period for each cultivar. Overall, four different cultivars showed similar growth

trends and growth rate patterns. Each cultivar continued to grow until ∼88 days after

planting, and from then on varied little. However, the actual values were cultivar specific.

Correlation analysis between morphologic traits and final yield was conducted over the

monitoring period. When considering each cultivar individually, the three traits showed

the best correlations with final yield during the period between around 67 and 109 days

after planting, with maximum R2-values of up to 0.84, 0.88, and 0.85, respectively. The

developed system demonstrated relatively high throughput data collection and analysis.

Keywords: field-based high throughput phenotyping, 3D point cloud, morphologic traits, plant growth analysis,

LiDAR
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INTRODUCTION

The global population is estimated to approach nine billion
by 2050, and demand for food and fiber crops is expected
to increase by 60% (Tilman et al., 2011; Gerland et al.,
2014). New plant breeding approaches need to be developed
to overcome these tremendous challenges. An important step
in this direction is to gain a better understanding of the
relationship between genotype and phenotype (Goggin et al.,
2015; Großkinsky et al., 2015; Rahaman et al., 2015). However,
in-field high throughput phenotyping technologies, which can
facilitate automatic measurement of phenotypic traits over the
entire growing season, are still considered to be a major
bottleneck limiting crop improvement (Furbank and Tester,
2011; Cobb et al., 2013).

Plant morphologic traits can often be used for evaluating
plant growth (Hosoi and Omasa, 2012; Taheriazad et al., 2016),
which determines plant performance in terms of final crop
biomass and yield (Dhondt et al., 2013). Several studies showed
that morphologic traits such as canopy height and leaf area
index (LAI) were strongly related to plant species, type of
cultivation, plant growth rate, and final yield (Gebbers et al., 2011;
Sharma and Ritchie, 2015; Friedli et al., 2016; Sun et al., 2017).
Importantly, plant growth and yield is dependent upon leaf area
development, the average photosynthetic efficiency of all leaves
in the plant canopy (Gardner, 1985; Krieg and Sung, 1986), and
partitioning of dry matter to the harvested portion of the crop
(Earl and Davis, 2003). Thus, plant canopy development should
provide some indication of the crop’s capacity for growth and
yield.

The traditional manual measurement of plant morphologic
traits is time consuming, labor intensive, and sometimes
destructive. Novel technologies for plant phenotyping in a non-
invasive and high throughput manner with high spatial and
temporal resolution offer improved efficiency (Furbank and
Tester, 2011; Dhondt et al., 2013; Großkinsky et al., 2015). Over
the past decade, several non-invasive approaches using sensing
technologies were developed for in-field phenotyping (Lin, 2015;
Simko et al., 2016). Computer vision was one commonly-used
technology. Usually, plant traits were extracted from color (RGB)
images. Li et al. (2016) introduced a method for in-field cotton
boll detection based on color and texture features using 2D color
images. Si et al. (2015) developed a machine vision system to
automatically recognize and locate apples; over 89.5% accuracy
was achieved. Such 2D image based methods provide potential to
conduct phenotypic measurements with a high spatial resolution,
but are limited by plant occlusion. In addition, one major
challenge with 2D digital image methods is that image quality is
significantly affected by highly variable illumination conditions
in the field, which limits automatic data processing (Li et al.,
2014).

The use of 3D model-based methods for plant phenotyping
are receiving increasing attention, as they permit multiple
morphologic traits such as canopy height, plant volume, and LAI

Abbreviations:CH, canopy height; PCA, projected canopy area; PV, plant volume;

3PLM, three-parameter logistic model; CI, confidence interval.

to be simultaneously extracted (Bietresato et al., 2016; Vazquez-
Arellano et al., 2016; Gibbs et al., 2017) while mitigating plant
occlusion. Moreover, 3D models have the potential to assist
growers to continuously monitor and quantify plant growth
and development, as well as plant responses to environmental
stresses. A stereo-imaging based 3D reconstruction system was
established to capture rape seedling leaf area and plant height
(Xiong et al., 2017); two identical RGB cameras were utilized
as an imaging unit. The mean error for leaf area and plant
height measurements was 3.68 and 6.18%, respectively. The
system was put in a well-designed box, in which homogenous
illumination was provided. Thuy Tuong et al. (2015) developed
a 3D reconstruction system based on 10 digital color cameras
that were mounted on a custom structure, and an illumination
system was used to enhance the visual texture of plants from
all camera viewpoints. The system produced very high quality,
dense, and complete point clouds. However, as both systems were
designed for indoor use, they would need to be modified for field
applications under natural illumination. 3D models can also be
produced by time of flight (TOF) cameras; however, similarly to
RGB image based methods, data quality would be significantly
affected by sunlight under field conditions, which limits in-field
applications. In Busemeyer et al. (2013) and Jiang et al. (2016)
the TOF cameras were mounted inside an enclosure in order to
mitigate the influence of sunlight.

Light detection and ranging (LiDAR) technology provides an
alternative approach for 3D plant model reconstruction. LiDAR
is a remote sensing technology to measure the distance between
the sensor and an object of interest by illuminating the object with
a laser and analyzing the TOF. LiDAR may be the best known
and most widely used sensor for 3D canopy reconstruction
(Deery et al., 2014; Gibbs et al., 2017). A 2D LiDAR collects two
dimensional scans in a measured plane, and a 3D model can be
obtained by moving the sensor along the perpendicular direction
to the scanning plane. Although the spatial resolution of the 3D
model produced by LiDAR is not as dense as those obtained by
camera-based methods, it is sufficient for the extraction of most
plant morphologic traits (Rosell-Polo et al., 2009; Bietresato et al.,
2016; Sun et al., 2017). In Deery et al. (2014), a LiDAR (LMS400,
SICK AG,Waldkirch, Germany) with a monochromatic red laser
light source was used to generate intensity images of several
crops including rice, wheat, and maize. It was concluded that
LiDAR is a potential alternative to image-based methods for
phenotyping morphologic traits at the plot or plant level under
field conditions. Moreover, in contrast to image based methods,
the LiDAR based method uses its own light source, mitigating
problems with highly variable illumination conditions in the
field. In addition, LiDAR can be used with a high scanning
frequency and a large scanning range (Lin, 2015). Therefore,
LiDAR has excellent potential for in-field plant phenotyping.
3D point clouds can also be generated by some other sensors
such as triangulation line scanner (Paulus et al., 2014b) and
ultrasonic sensing (Llorens et al., 2011). A very dense 3D model
can be reconstructed using a triangulation line scanner and
morphologic traits at the organ level could be extracted, however
the relatively short working distance limits its application for
large plants such as cotton.
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Growth dynamics of plant morphologic traits provide
important information toward determining plant productivity.
Tessmer et al. (2013) described a high-throughput phenotyping
platform for plant growth modeling and functional analysis
(HPGA). Plant growth curves were generated by the platform,
which were used to gain a deeper understanding of energy
distribution. Friedli et al. (2016) introduced a terrestrial 3D laser
scanner-based plant growth monitoring system which could be
used for monitoring canopy height growth for different crops
under field conditions. Paulus et al. (2014b)monitored the organ-
specific growth dynamics of cereal plants with a high precision
triangulation line laser scanner by scanning every 2–3 days. Three
morphologic traits including leaf area, stem height, and plant
volume were measured, allowing quantification of the growth
dynamics of the barley plant.

In the present study, threemorphologic traits—canopy height,
projected canopy area, and plant volume—of cotton plants were
derived based on data collected by a 2D LiDAR. Morphologic
trait data was collected and growth analysis was conducted.
Several improvements were made over previously mentioned
studies. A 1-cm accuracy level RTK-GPS was used in this study
in order to provide accurate spatial coordinates for LiDAR scans
so that a precise 3D surface model could be reconstructed,
which is important because the model is the basic dataset for
further analysis. In addition, analyses of growth dynamics and
correlation of morphologic traits with final yield were conducted
over the growing season. The system repeatedly scanned plants
over the growing season, permitting analysis of the effects of
different cultivars on the growth and final yield of cotton plants.

The overall goal of this work was to develop a high throughput
phenotyping system for morphologic traits of cotton plants using
LiDAR under field conditions. This LiDAR-based system is one
component of our broader effort to develop field-based high
throughput phenotyping (HTP) systems, and it complements
other image-based sensors such as Kinect V2, thermal camera,
and hyperspectral camera. This LiDAR-based system provides
accurate morphologic traits in a robust and fast way, and saves
storage space and computing resources compared to image-based
sensors. Specific objectives were to: (1) develop algorithms to
extract multiple morphologic traits—canopy height, projected
canopy area, and plant volume—from a 3D point cloud obtained
with a 2D LiDAR; (2) conduct 4D monitoring (3D plant
reconstructions over time) of the derived plant morphologic
traits to detect growth patterns of plants from different cultivars;
and (3) explore relationships between derived morphologic traits
and final yield.

MATERIALS AND METHODS

Experimental Field
The study site was located at the Iron Horse Farm (IHF)
in Greene County, GA, USA. The entire study included 128
plots arranged in 16 rows and 8 columns (Figure 1A), using a
randomized complete block design with four cultivars of cotton
and 32 replicate plots per cultivar. Four plots of each cultivar
were planted in each column. The distribution of cultivars in each
column was randomly assigned (Figure 1B). Plots were 3.05m

wide. A total of 15 seeds were sowed in each plot at spacing of
0.15m. Inter-row spacing was 1.52m, and inter-column spacing
was 1.83m. Cotton seeds were sowed on June 13, 2016.

The four cotton cultivars were GA2011158 (cultivar 1),
GA2009037 (cultivar 2), GA2010074 (cultivar 3), and UA48
(cultivar 4) which is commercialized by the private seed company
Americot. All four cultivars were developed by conventional
breeding possessing no transgenic insects or herbicides tolerant
traits. However, they have different fiber quality, growth habits,
and plant architecture due to adaptation to different production
regions. Cultivars 1, 2, and 3 are elite breeding lines developed
by the University of Georgia cotton breeding program for
adaptation to the southeastern cotton production region, bred
to have indeterminate growth habit to take advantage of the
long growing season in the southern US cotton belt. Plants from
these cultivars will continue adding vegetative growth at the same
time as the reproductive development, therefore they can grow
excessively tall and rank in high nitrogen environment or if there
are severe insects damage causing excessive square loss. Cultivar
4, on the other hand, was released by the University of Arkansas
cotton breeding program, bred to have an early maturity growth
habit for adaptation to the northern region of the US cotton
belt. It has a determinate growth habit which resulting in shorter
statured, extended sympodial branches, and shorter flowering
date.

Data Acquisition
The data collection system mainly consisted of a LiDAR (LMS
511 PRO SR, SICK AG, Waldkrich, Germany) (Figure 2A),
an RTK-GPS (Cruizer II, Raven Industries Inc., Sioux Falls,
SD, USA) (Figure 2B), and a rugged laptop as a DAQ (data
acquisition) and storage device. The LiDAR was mounted on a
tractor (Spider DL, LeeAgra, Inc., Lubbock, TX, USA) platform
at a height of 2.4m to scan cotton plots from directly above
(Figure 2C). The RTK-GPS was mounted on the roof of the
tractor, which provided the spatial coordinates during data
collection. The LiDAR and RTK-GPS receiver were aligned to the
center of the tractor (Figure 2D).

The LiDAR was developed for outdoor use, and measured in
2D radial coordinates from −5 to 185◦ with a maximum range
of 80m. Line scans could be acquired at a rate of 25–100Hz with
an angular resolution of 0.1667–1◦. The built-in filters eliminated
interference from particles of dust, raindrops, and snowflakes.
An enclosure was used to provide a controlled environment for
data acquisition. The RTK-GPS provided coordinates with 1 cm
accuracy with an update rate up to 10Hz.

Data collections were conducted in the field from July 26 to
September 30, 2016, i.e., from 43 to 109 days after planting (DAP)
(Table 1). When scanning plants, the angular resolution of the
LiDAR was configured to be 0.33◦ with a sampling frequency of
50Hz, and the echo filter and particle filter were enabled. The
update frequency of the RTK-GPS was 5Hz. The tractor scanned
the field row by row. For each row, the tractor traveled from
column 1 to column 8 with an average speed of about 0.5 m/s.
Since the first two sample dates—July 26 and 28—were close to
each other, the data for July 26 were not presented except for
growth rate analysis.
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FIGURE 1 | Experimental field layout. (A) Aerial view of the experimental field; (B) illustration of experimental design with cultivar and field layout information.

Data Processing Algorithms
After raw data was collected in the field, further processing
and analysis were performed in the lab. The data processing
and analysis program was developed and implemented in
MATLAB 2016b (The Math Works Inc., Natic, MA, USA) on
a desktop equipped with an intel I7-6700 CPU 3.40 GHz with
16 GB RAM, running on a Windows 10 Enterprise operating
system.

Two steps were executed to derive plant features (Figure 3):
3D plant surface model generation (section Generation of 3D
Model) and morphologic plant parameter extraction (section
Extraction of Morphologic Traits).

Generation of 3D Model
The 3D model for each row was reconstructed based on GPS
and LiDAR data. The GPS and LiDAR dataset was depicted by
Equation (1). The two kinds of data were synchronized using
timestamps.

PGPS =
{

PGPS0, PGPS1, · · · , PGPS(N−1)

}

FLiDAR =
{

FLiDAR0,FLiDAR1,··· ,FLiDAR(M−1)

} (1)

PGPS was the set of collected GPS data, and FLiDAR was the set of
scanned frames of LiDAR. The number of GPS points wasN, and
the number of LiDAR frames wasM.
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FIGURE 2 | Data collection platform. (A) Front view; (B) back view; (C) 3D model of data collection platform; (D) zoomed view of sensors. The consent obtained from

the depicted individual for the publication of these images was both informed and written.

TABLE 1 | Summary of data collection dates (Year: 2016).

Period P1 P2 P3 P4 P5 P6 P7 P8

Date 26 July−28 July 28 July −04 Aug 04 Aug−19 Aug 19 Aug−26 Aug 26 Aug−09 Sep 09 Sep−16 Sep 16 Sep−23 Sep 23 Sep−30 Sep

DAP 43–45 45–52 52–67 67–74 74–88 88–95 95–102 102–109

The distance between two adjacent GPS points, denoted by
1PGPS, was computed by Equation (2). f LiDAR and f GPS were
the data acquisition frequency of LiDAR and GPS, respectively.
In this study, the data acquisition frequency of GPS was f GPS
= 5Hz, and LiDAR scanning frequency was f LiDAR = 50Hz.
Therefore, there were 10 scanned frames, each containing 571
points (the aperture angle was 190◦ with angular resolution
0.33◦) between every two adjacent GPS points (Equation 3).
Assuming that the tractor was moving at a constant speed during
the interval (200ms) of two adjacent GPS points, the distance

of the two adjacent frames within two adjacent GPS points was
computed using Equation (4). Therefore, the position of each
LiDAR scanned frame was obtained using Equation (5). Doffset

was the offset between LiDAR and GPS. In this study, Doffset was
fixed during data collection in the field, and the measured point
at 0◦ scanning angle was used to depict the frame position.

{

1EPGPS(i) = PGPS(i)− PGPS(i− 1), i = 1, 2, ...N − 1

1EPGPS(0) = E0, i = 0
(2)
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FIGURE 3 | Data processing pipeline. (A) Example of 3D point cloud of one scanned row; (B) segmented 3D point cloud of a plot indicated by cuboid with solid red

lines in (A); (C) point cloud of ground plane; (D) point cloud of plants; (E) denoised point cloud of plants; (F) height profile of plants and maximum canopy height; (G)

projected canopy area; (H) plant volume.
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α =
fLiDAR

fGPS
(3)

Edi =
1EPGPSi

α
, i = 0, 1, 2, ...N − 1 (4)

fLiDAR(k) = fLiDAR(iα + j) = pGPS(i)+ j× Edi + EDoffset (5)

i = 0, 1, 2, ...N − 1, j = 0, 1, 2...9, k = 0, 1, ...M − 1

More details related to this processing can be found in Sun et al.
(2017). Figure 3A shows an example of the reconstructed 3D
model of one scanned row. A distance filter was used to remove
points hitting the enclosure. A plot level 3D model was extracted
from the 3D model of the row according to the proportions of
the field layout (Figure 3B). The standard RANSAC algorithm
was applied to cut-off points of the ground plane (Figures 3C,D).
An Euclidean clustering algorithm (Rusu et al., 2008) was used
to remove points generated by weeds that were not attached to
cotton plants (Figure 3E).

Extraction of Morphologic Traits
The maximum canopy height (CH) was measured by calculating
the distance from the ground plane to the apex of all measured
points (Figure 3F). In addition, different percentiles canopy
height—from 85th to maximum CH with steps of 3%—were
calculated based on the histogram of the z coordinate for all
measured points. The boundary points of the plant canopy were
detected by projecting all points onto the ground plane, and
the projected canopy area (PCA) and bounding box of canopy
structure (representing maximum length and width occupied by
the canopy) were extracted from boundary points (Figure 3G).
A Trapezoidal rule based algorithm was used to calculate plant
volume (PV) (Figure 3H) in order to provide an indication of
the 3D space occupied by each plot.

S denoted the line scan set for a plot (Equation 6) which
contained k line scans. For a scan si which contained nmeasured
points, the dashed line was the surface profile and the red
spots were measured points by LiDAR (Figure 4). The area
denoted as Ai under the line scan si could be estimated using the
measured points (red spots in Figure 4) based on Trapezoidal
rule (Equation 7), where (xi, yi) were the coordinates of the ith
measured point.

S = {s1, s2, · · · , sk} (6)

Ai =

n−1
∑

j=1

(

xj+1 − xj
)

(

yj+1 + yj

2

)

(7)

Therefore, the area set denoted as A for the plot was obtained
using Equation (8).

A = {A1,A2, · · · ,Ak} (8)

Similar to the area calculation process, PV was obtained with
Equation (9).

PV =

k−1
∑

i=1

(

li+1 − li
)

(

Ai+1 + Ai

2

)

(9)

FIGURE 4 | Estimated area (the area under height profile curve) using

Trapezoidal rule.

li was the position along the tractor moving direction of the ith
line scan.

Validation Experiments
To verify the accuracy of canopy height measurements
using point cloud data, 96 samples of maximum CH—the
perpendicular distance from the highest point to the ground
plane—were manually measured using a tape measure during
data collection in the field. The samples were measured on four
different days: July 28, August 04, August 26, and September 09,
2016. On those days, the average wind speeds were around 2.7,
3.4, 2.3, and 2.5 m/s, respectively.

For PCA validation experiments, eight “dummy plants” were
made with different canopy shapes using printed paper leaves and
metal wires. The dummy leaves were in three different sizes–10,
41, and 92 cm2–and there were six of each size. The leaves of
two dummy plants were arranged to be overlapped. Each dummy
plant was scanned by LiDAR and imaged by a DSLR camera
(FUJIFILM X-A10 mirrorless camera, FUJIFILM, Tokyo, Japan).
A scale bar was used to calibrate the real size of the plant. The
ground truth of PCA was computed by segmenting leaves based
on color information.

For PV validation experiments, eight plants at different
growth stages were used, among which five were real cotton
plants, one was a shrub plant, and two were dummy plants.
The six real plants were in the leaf and canopy development
growth stage, whereas the two dummy plants were used to
mimic flowering and boll development growth stages. Each plant
canopy was divided into 50mm cylindrical discs from the top
to the bottom and the diameter of each disc was manually
measured using a tape measure. The diameter and height of each
cylindrical disc were used to estimate the volume of each disc, and
then the volume of the whole plant was obtained by summing
the volumes of each disc. Manual measures of the three traits
were plotted vs. point cloud estimates, and regression analysis
was used to compute the root mean square error (RMSE) and
coefficient of determination (R2). More information about PCA
and PV validation experiments can be found in supplementary
materials.

Plant Growth Analysis
Plant growth dynamics were obtained by monitoring plants
over the growing season when plant morphologic traits were
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extracted. Growth trends and growth rates for each morphologic
trait noted above (CH, PCA, PV) were computed and analyzed
over the monitoring period. Growth trends were determined as
the variation in measured traits over the monitoring period. The
results were given as mean values and standard deviations of
all morphologic parameters. A three-parameter logistic model
(3PLM) was used to fit growth curves of the three detected traits
for each cultivar (Tessmer et al., 2013). The model is a function
of time t as shown in Equation (10).

y (t) =
x0xn

x0 + (xn − x0)e−τ (t−T)
(10)

where t was the time which was denoted by days after planting in
this study, τ was a coefficient, y(t) was detected traits at time t,
x0, xn were the initial value and the upper horizontal asymptote
of the detected trait, respectively, and T was the first day of
data collection which was also denoted by days after planting
(in this study T = 45). x0, xn, and τ can be estimated using

non-linear least squares based on the observations of the detected
traits.

Growth rate was determined as the average change in
measured traits over a time interval. Growth rate was calculated
by Equation (11).

GR =
Pt − Pt−1t

1t
(11)

where GR was the growth rate, 1t was the time internal, and Pt
was the measured plant trait at time t.

Correlation Analysis between Morphologic
Traits and Yield
Seed cotton (mature fiber plus seeds to which it was attached)
was harvested manually on November 4, 2016, and yield was
expressed as g/plot. In order to explore the relationship between
derived morphologic traits and final yields, linear regression
analysis was conducted for each cultivar over the monitoring
period. The coefficient of determination (R2) was computed.

FIGURE 5 | Reconstructed 3D point cloud of one plot (Plot ID: row 8, column 6) and its evolution from August 19 to September 09, 2016. The first row shows 2D

color images taken from above. The second row shows the reconstructed 3D point clouds of cotton plants. The third row shows height maps of cotton plants,

obtained by projecting all points on the ground plane (color indicates height).
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RESULTS

Morphologic Traits Extraction and
Validation
Morphologic trait information of cotton plants was derived from
the reconstructed 3D point clouds. Figure 5 shows the 3D point
clouds over time compared to the 2D color images of the same
plot. The reconstructed 3D point clouds on August 19, August

26, and September 9, respectively, were obtained using 207, 256,
and 263 scans and contained 11,403, 14,379, and 14,485 points.
The cuboids indicated by solid red lines for graphs in row 2 of

Figure 5 are 3D bounding boxes and points within the cuboids
belong to plants. The rectangles indicated by red solid lines for
graphs in row 3 of Figure 5 are 2D bounding boxes, and the
dashed red lines are the detected boundaries from which PCA
was derived. Morphologic traits including CH, PCA, and PV
were extracted from the 3D point clouds.

CH-, PCA-, and PV-values derived from LiDAR data were
highly correlated with manually measured values, with R2-values
of 0.97, 0.97, and 0.98 and RMSE values of 0.03m, 0.007 m2, and
0.011 m3, respectively (Figure 6).

Figure 7A shows the side view of the point cloud of the plot
presented in Figure 5. The data was collected on August 19 and
consisted of 207 line scans. The number of measured points
for each line scan varied depending on the width of plants. A
total of 66 points were measured for the 144th scan (Figure 7B).
Points near the center were denser than points located at two
terminal areas because the inter-distance between two adjacent
points increased with increasing distance between the LiDAR and
measured points. A minimum threshold of 0.05m was applied to
remove points. Based on the proposed PV calculation method,
the area under the profile and PV were estimated: A144 = 0.52
m2, PV= 2.33 m3 (Figure 7C).

Plant Growth Analysis
Overall, the three measured morphologic traits—CH, PCA and
PV—showed similar growth trends over the monitoring period
based on the measurements from the sensor, but the actual value
was cultivar specific for each trait (Figure 8). For maximum CH,
all cultivars reached the maximum height on around day 88.
Cultivar 1 and 2 had similar average maximum heights of 1.08m,
while cultivars 3 and 4 reached the peak values of 0.96 and 0.88m,

FIGURE 6 | Comparison of three derived morphologic traits based on LiDAR data with ground-truthing. (A) Maximum canopy height; (B) projected canopy area; (C)

plant volume.
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respectively. Cultivar 1 and 2 were around 22.7% higher than
cultivar 4. PCA continued to increase until around 95DAP, which
was 7 days longer comparted to maximum CH. The maximum
PCAs of cultivars 1, 2, 3, and 4 were 2.73, 2.23, 2.47, and 2.34
m2, respectively. Cultivar 1 had much larger PCA-value than
the other three cultivars which had similar PCA. It is around
22.4% larger than cultivar 2 which had the minimum area.
Cultivar 2 showed the highest CH, but lowest PCA over the whole
monitoring period due to less horizontal canopy expansion in the
horizontal direction. For the growth curve of PV, the maximum
points for all four cultivars were reached on day 88, they were
2.75, 2.17, 2.11, and 1.59 m3 for cultivar 1, 2 3, and 4. Larger
differences among cultivars were observed for PV than PCA. The
maximum volume was around 73.0% larger than the minimum
one. In summary, cultivar 1 had the largest canopy (highest PV,
CH, and PCA) while cultivar 4 had the lowest maximum CH and
PV. Although cultivar 2 had high maximum CH, its PCA was the
lowest, making its PV in the middle range among the cultivars.
The derived values and variation of morphologic traits over time
were in good agreement with the developmental phases of cotton
(Ritchie et al., 2007).

Growth curves generated for each cultivar of all three detected
traits showed good correlation with the sensor measurements.

The date when the traits reached their upper horizontal
asymptotes and the values of their upper horizontal asymptotes
were similar to the results obtained from measured data. The
growth curve varied little after reaching the upper horizontal
asymptotes, while the sensor measurements showed a decreasing
trend which was mainly due to defoliation. Supplementary Table
1 presented estimated parameters of the 3 PLM and their 95%
confidence interval (CI).

Figure 9 shows the growth rates of maximum CH, PCA, and
PV at different periods of time. FormaximumCH, cultivars 1 and
2 had similar growth rates, and grew faster than cultivars 3 and 4
during the period from P1 to P5. The peak of GR of cultivar 1
and 2 was observed during P3 (between 52 and 67 DAP), which
was around 0.018m per day (m/d); However, it was during P2
for cultivar 3 and 4, which was around 0.015 m/d (Figure 9A).
For PCA, all four cultivars had similar GR during P2 and P3;
However, large differences emerged during the period from P3
to P6. The peak of GR for cultivar 1 and 3 was in P4, with the
values of 0.065 m2/d; while it was in P2 for cultivar 2 and 4, with
the same value of 0.054 m2/d. PCA increased until P6 (95 DAP)
and then started to decrease (Figure 9B), 21 days later than the
period when the maximum CH started to decrease. During the
PCA increasing period, cultivar 1 grew faster than the other three.

FIGURE 7 | Example of plant volume computation of a plot (plot ID: row 8, column 6, Date: August 19, 2016) using the proposed Trapezoidal rule based method.

(A) Side view of 3D point cloud; (B) estimated area under the profile of scan 144; (C) computed plant volume.
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FIGURE 8 | Growth curves for derived morphologic parameters over the monitoring period. (A) Maximum canopy height; (B) projected canopy area; (C) plant volume.

PV had a faster GR than the other three cultivars during P1 to
P4—it reached the peak in P4 with the value of around 0.1 m3/d.
Cultivar 2, 3, and 4 reached the peak of GR in P4 (0.06 m3/d), P4
(0.07 m3/d), and P3 (0.05 m3/d), respectively. In summary, the
fastest GRs for all three traits were during P2 to P4, that was from
45 to 74 DAP, which was also indicated by the growth curves in
Figure 8.

ANOVA-tests showed that cultivars had a significant influence
on the derived morphologic traits over the monitoring
period (Table 2). This allowed us to utilize regression analysis
to determine which morphologic traits and measurement
times were most closely associated with final yield for each
cultivar.

Relationship between Morphologic Traits
and Yield
A significant difference in the final yield was observed between
the four cultivars (Table 3). Cultivar 2 produced significantly
lower yields than cultivar 3 and 4.

The relationship between CH and final yield showed similar
trends using data from various CHpercentiles, especially between
the 85th and 94th percentiles. The R2-values for cultivar 1, 3, and
4 increased over the monitoring period although there existed
only slight variation, whereas cultivar 2 exhibited a decreasing
trend (Figure 10). Among the cultivars studied, cultivar 4 had
the highest R2-values (up to 0.84) from day 67 on, based on
the 85th CH to maximum CH. The variation curve of cultivar
1 was analogous to the curve for cultivar 3, both reaching the

highest R2-values between 88 and 95 DAP. In contrast, cultivar
2 demonstrated the highest correlation with yield at an early
growth stage around 52 DAP. Based on the results from this
study, percentiles from 85 to 94% of CH during the period from
67 to 109 DAP are recommended for yield estimation application
due to not only high but also stable R2-values for all four cultivars.

Overall, the R2-values between PCA and final yield increased
over the monitoring period for all four cultivars (Figure 11A).
The R2-values for cultivars 2, 3, and 4 on each data collection
day were similar, while cultivar 1 exhibited lower R2-values.
Compared to CH parameters, a major difference was that cultivar
2 had an opposite variation trend. The highest R2-values for
all four cultivars were reached between 88 and 109 DAP, and
they were 0.65, 0.83, 0.87, and 0.88 for cultivars 1, 2, 3, and 4,
respectively. This indicated that PCA was more closely related to
final yield than CH. For both CH and PCA, cultivar 4 showed the
strongest correlation with final yield among the four cultivars.

For PV, the difference in R2-values between the four cultivars
became smaller over the monitoring period compared to CH
and PCA, especially between 88 and 102 DAP (Figure 11B). The
maximum R2-values were 0.77, 0.85, 0.84, and 0.83 on 95, 67, 74,
and 74 DAP for cultivars 1, 2, 3, and 4, respectively, which were
similar to the values for PCA, and better than CH. This indicated
that PV was a more stable trait than CH and PCA and could
feasibly be used to predict cotton final yield.

PCA and PV had higher R2-values than CH over the
monitoring period (Figure 12) when combining all cultivars. The
R2-values increased steadily to a final value of 0.72 for PCA. PV
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FIGURE 9 | Growth rates for derived morphologic parameters at different time frames during the monitoring period. (A) Maximum canopy height; (B) projected

canopy area; (C) plant volume.

TABLE 2 | Effects of cultivars on derived parameters over the monitoring period (Year: 2016).

July 28 (DAP 45) Aug 04 (DAP 52) Aug 19 (DAP 67) Aug 26 (DAP7 4) Sep 09 (DAP 88) Sep 16 (DAP 95) Sep 23 (DAP 102) Sep 30 (DAP 109)

Max CH <0.001** <0.001** <0.001** <0.001** <0.001** <0.001** <0.001** <0.001**

PCA 0.003** 0.003** 0.034* 0.005** 0.001** 0.001** 0.002** 0.006**

PV 0.002** 0.001** <0.001** <0.001** <0.001** <0.001** <0.001** <0.001**

*Significant at the 0.05 probability level, **Significant at the 0.01 probability level.

TABLE 3 | Differences in final yield between four cultivars.

Cultivar Mean yield (g/plot)

Cultivar1 928.51AB

Cultivar2 781.58B

Cultivar3 954.18A

Cultivar4 937.22A

p < 0.05. Different letters indicate significant differences between cultivars.

reached the highest R2-value (0.56) on 67 DAP—although the
PV R2-values were less than those of PCA from 67 to 109 DAP,
they were more stable than those of PCA. The lowest correlation
was found between CH and final yield. A decreasing trend was
observed from 45 to 109 DAP which was mainly due to cultivar 2.

DISCUSSION

We have demonstrated that 3D point clouds reconstructed
based on data collected by a 2D LiDAR and an RTK-GPS, and
associated data processing methodology, accurately estimated
specific morphologic traits from cotton plants under field
conditions. The precise 3D point cloud, which was the basic
dataset for analysis, was critical for the successful extraction
of plant morphologic traits (Paproki et al., 2012; Paulus et al.,
2014b; Duan et al., 2016). The reconstructed 3D model visually
represented plant canopy structures (Figure 5). The CH, PCA,
and PV derived by our system were highly correlated (the slopes
were close to one) with those measured manually (Figure 6).

The system demonstrated great potential for high-throughput
phenotypic analysis. The number of points for each plot varied
from 2,000 to 20,000 over the monitoring period, depending on
the plant size. The tractor was driven in the field at a speed of
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FIGURE 10 | Correlation analysis results between different percentiles of canopy height and yield by days after planting for each cultivar.

around 0.5 m/s for data collection, taking about 6 s to scan one
plot that contained 15 plants. Thus, one could anticipate scanning
about 600 such plots per hour. The average time consumed for
3D reconstruction and parameter extraction was around 5.27 s
per plot so about an hour for the aforementioned 600-plot field.
Therefore, both data acquisition and data analysis speeds are
suitable for application to field experiments of the sizes used in
many breeding programs. The system also has great potential to
implement online data analysis with faster computing power in
the future, which is particularly useful for large field applications.

The high throughput phenotypic analysis by a LiDAR-
based method has several advantages compared to image-
based methods. Paproki et al. (2012) conducted cotton
plant morphologic trait analysis using an image-based 3D
reconstruction method, requiring about 7min to collect images
for each plant and an average processing time of 15min for 3D

reconstruction work of each plant. Additionally, image quality
could be significantly affected by highly variable illumination
conditions (Nuske et al., 2014), which limited its in-field
applications. In contrast, LiDAR is more versatile in a wide range
of light conditions since it is equipped with its own light source.
For manual operation, ∼30min were required for a typical
analysis per plant depending on the size and complexity, and
destructive harvests were often required (Paproki et al., 2012).

The high throughput of the proposed system and its non-
invasive features permit data acquisition repeatedly over the
growing season, opening the door to acquisition of plant growth
rate variation, which is valuable for a wide range of applications
such as building plant growth models (Tessmer et al., 2013;
Weraduwage et al., 2015), exploring factors influencing growth
processes (Rahaman et al., 2015; Awlia et al., 2016), genomics-
assisted crop breeding (Watanabe et al., 2017), and QTL analysis
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FIGURE 11 | Correlation analysis results between (A) projected canopy area and yield, and (B) plant volume and yield by days after planting for each cultivar.

FIGURE 12 | Correlation analysis results between derived parameters and

yield with all cultivars combined by days after planting.

(Bac-Molenaar et al., 2015; Cui et al., 2017). In this study,
all plants in the experimental field were scanned from 43 to
109 DAP. Plant growth curves were generated and correlation
between derived parameters and the final yield were explored,
which could be used for yield prediction (Sharma et al., 2015)
and species identification (Remagnino et al., 2016). Thus, the
system described herein not only provides an indication of which
LiDAR-derived parameters are most closely associated with yield,
but also allows us to define the period during the growing season
in which a morphologic trait has the greatest correlation with
final yield.

While CH in the current study was highly correlated
with within-cultivar yield variation in some instances (i.e.,
cultivar 4 on later sample dates), it should be noted that
correlations between CH and yield for all cultivars combined
were substantially lower than those obtained for other derived
parameters such as PCA and PV. This is not surprising since

the cotton crop exhibits a quadratic response of yield to CH
(Sui et al., 2012), where internode elongation must often be
controlled using exogenously applied plant growth regulators
(PGRs) in real-world production scenarios (Dodds et al., 2010).
While CH may not be inherently predictive of genotypic
differences in yield, the deployment of high-throughput methods
for estimating maximum CH and rate of change in CH could
strongly influence cultivar-specific PGR management strategies.
Specifically, cultivars with rapid plant height development
typically requiremore aggressivemanagement strategies (Collins,
2013).

PCA and PV were more strongly associated with yield

than CH when considered across all cultivars, suggesting these
parameters might have greater utility as high-throughput

phenotyping tools to identify potential differences in

productivity. The impact of canopy development on yield
is easily understood when yield is expressed as the product of
total intercepted photosynthetically active radiation, radiation

use efficiency, and harvest index (Monteith and Moss, 1977;

Monteith, 1994; Earl and Davis, 2003; Stöckle and Kemanian,
2009). Within this conceptual framework, the amount of
intercepted photosynthetically active radiation during a growing
season will be strongly impacted by the length of the growing
season and the leaf area available to intercept solar radiation.
Thus, PCA may serve as a suitable proxy for leaf area magnitude
and persistence throughout the growing season. PV incorporates
both CH and PCA, which could potentially be related to
both the amount of leaf area available to intercept incoming
solar radiation and the three dimensional space available for
developing fruit. Both of these considerations are important
given the indeterminate nature of cotton. As fruit development
progresses, vegetative growth slows, and Constable and Bange
(2015) have clearly illustrated that the ability of the cotton crop
to attain high yield potential will be influenced by total leaf area
and number of fruiting sites available prior to the development
of a large fruiting load on the plant. Thus, it is not surprising
that PCA and PV were correlated with yield for much of the
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growing season. Future work should couple the aforementioned
measures with high-throughput assessment of fruit development
as fruiting dynamics can drastically impact final yield in cotton
(Constable and Bange, 2015).

The top view scan setting of LiDAR provided precise 3D
surfacemodels of plants; however, organs under the canopy could
not be reached due to plant occlusion. This does not reduce
the accuracy of CH and PCA measurements, but hinders the
estimation of PV by our system, especially when plant structure
becomes complex. Multi-view scan is a commonly used method
to reduce plant occlusion effects (Paulus et al., 2014b), and in our
future studies two side view scans could be added. In addition,
algorithms such as plant shape models (Pastrana and Rath,
2013) have been proposed to overcome plant occlusion effects.
However, when plant structure complexity increases, especially
at the mature stage with a greatly increased number and size of
leaves and stems, occlusion effects would still be present. Plant
occlusion remains a challenge for plant phenotyping, especially
under field conditions with limited inter-row spacing (Paproki
et al., 2012; Paulus et al., 2014a). Wind is another factor which
could affect the accuracy of the derived traits since it might result
in blurred point clouds. Therefore, calm weather conditions are
best for data collection. Based on the CH validation results, our
system has a certain robustness against wind influence; wind
speed under 3 m/s was feasible. Another limitation was that the
tractor speed was restricted by the scanning frequency of the
LiDAR (Sun et al., 2017), limiting throughput. While the present
system is already compatible with iterative study of thousands of
plots, 3D LiDAR technology may greatly reduce this limitation
(Weiss and Biber, 2011).

CONCLUSION

Precise 3D surface models were reconstructed by the high-
throughput phenotyping system developed in this study under
field conditions. Multiple morphologic traits at the plot level
including plant height, projected canopy area, and plant volume
were extracted simultaneously. The system could be used to scan
the field repeatedly due to its relatively high data collection and

processing capability, which was particularly useful for large field
applications. The measured morphologic traits were most highly
correlated with final yield during the period between around 67
and 109DAP. Projected canopy area and plant volumeweremore
closely correlated than plant height to final yield. Future work will
focus on involving other sensor data to extract more phenotypic
traits from the 3D point cloud. Although this system was solely
tested on cotton plants, it is expected to be applicable for use with
other crops such as wheat, rice, and soybeans.
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