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Degreening, due to the net loss of chlorophyll (Chl), is the most prominent symptom

during the processes of leaf senescence, fruit ripening, and seed maturation. Over the

last decade or so, extensive identifications of Chl catabolic genes (CCGs) have led

to the revelation of the biochemical pathway of Chl degradation. As such, exploration

of the regulatory mechanism of the degreening process is greatly facilitated. During

the past few years, substantial progress has been made in elucidating the regulation

of Chl degradation, particularly via the mediation of major phytohormones’ signaling.

Intriguingly, ethylene and abscisic acid’s signaling have been demonstrated to interweave

with light signaling in mediating the regulation of Chl degradation. In this review, we briefly

summarize this progress, with an effort on providing a framework for further investigation

of multifaceted and hierarchical regulations of Chl degradation.
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INTRODUCTION

Chlorophyll (Chl) molecules are synthesized almost instantly upon light exposure of seedlings
for harvesting light energy to drive photosynthesis in green organs, and during the processes of
leaf senescence, fruit ripening, and seed maturation, they are degraded rapidly, a process called
degreening, to facilitate nutrient remobilization and, in some cases, vitamin biosynthesis (Christ
and Hörtensteiner, 2014; Vom Dorp et al., 2015). Chl degradation is in fact imperative to plant
development for its detoxifying the photo-toxicity of Chl molecules once they are freed from
their binding proteins (Hörtensteiner, 2006; Li et al., 2017). Over the last decade or so, the major
biochemical pathway of Chl degradation has been revealed by cloning and function analysis of
Chl catabolic genes (CCGs). Because of an important role of the pheophorbide a oxygenase (PAO)
in Chl degradation, this pathway is designated as PAO pathway (Christ and Hörtensteiner, 2014;
Figure 1).

In higher plants, there are two forms of Chl molecules, Chl a and Chl b. Chl a is the
degradable form of Chls, and, during leaf senescence, Chl b is converted to Chl a by Chl b
reductase [CBR, encoded by NON-YELLOW COLORING 1 (NYC1) and NYC1-LIKE (NOL)] and
7-hydroxymethyl Chl a reductase (HCAR) (Kusaba et al., 2007; Horie et al., 2009; Sato et al., 2009;
Meguro et al., 2011). For Chl a degradation, Magnesium is initially removed to convert Chl a to
pheophytin a (Phein a) by Magnesium-dechelatase, encoded by Mendel’s green cotyledon genes,
NON-YELLOWINGs/STAY-GREENs (NYEs/SGRs) (Armstead et al., 2007; Ren et al., 2007; Chen
et al., 2016; Shimoda et al., 2016; Wu et al., 2016). Phein a is then hydrolyzed by pheophytinase
(PPH) to produce pheophorbide a (Pheide a) and phytol (Morita et al., 2009; Schelbert et al.,
2009; Ren et al., 2010). Remarkably, the green color of Chl catabolites is completely lost when the
porphyrin ring of Pheide a is cleaved by PAO, resulting in oxidized red Chl catabolite (RCC), which
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FIGURE 1 | The PAO pathway of chlorophyll degradation.

is subsequently catalyzed by red Chl catabolite reductase (RCCR)
to generate primary fluorescent Chl catabolite (pFCC) (Wüthrich
et al., 2000; Pružinská et al., 2003; Pruzinská et al., 2007; Tanaka
et al., 2003; Yao and Greenberg, 2006). Finally, the pFCC is
modified and transported into the vacuole, and isomerized to
non-fluorescent products by acidic pH (Christ et al., 2012, 2013;
Hauenstein et al., 2016).

Phytohormones and environmental factors have long been
known to regulate Chl degradation (Lim et al., 2007); however,
the molecular mechanisms involved in these regulations remains

largely unknown. In last few years, the success in revealing
the biochemical pathway of Chl degradation has led to a

rapid progress in elucidation of the molecular mechanisms.

Particularly, substantial progress has been made on elucidation
of the regulatory roles of ethylene, abscisic acid (ABA), jasmonic

acid (JA), and light signaling components on Chl degradation,

and a number of regulatory factors of CCGs have been
identified by using the methods of biochemistry, genetics, and
bioinformatics (Delmas et al., 2013; Liang et al., 2014; Sakuraba
et al., 2014, 2016; Song et al., 2014; Qiu et al., 2015; Zhang
et al., 2015; Zhu et al., 2015; Gao et al., 2016; Ghandchi et al.,
2016; Li et al., 2016; Oda-Yamamizo et al., 2016; Yin et al.,
2016; Chen et al., 2017; Mao et al., 2017; Table 1). These
advances provide some valuable insight into the complexity of

the molecular mechanism of hormone- and light-regulated Chl
degradation. Here, we review recent progress in this field and
discuss important yet unresolved questions regarding the roles
and mechanisms of phytohormones and environmental factors
in Chl degradation regulation.

THE MOLECULAR MECHANISM OF
ETHYLENE SIGNALING-MEDIATED CHL
DEGRADATION

Ethylene is an important phytohormone, regulating diverse
aspects of plant growth and development, especially leaf
degreening and fruit ripening (Burg, 1973; Grbic and Bleecker,
1995; Lim et al., 2007; Qiu et al., 2015; Yin et al., 2016).
During leaf degreening, the expression of ethylene biosynthetic
genes encoding 1-Aminocyclopropane-1-carboxylic acid (ACC)
synthase (ACS) and ACC oxidase (ACO) were significantly
up-regulated, and the endogenous ethylene level increased
accordingly (van der Graaff et al., 2006; Breeze et al., 2011).
ACO1 antisense tomato plants synthesized less ethylene and
delayed leaf degreening (John et al., 1995). ACSs octuple mutant,
producing ∼10% of ethylene in WT, significantly delayed leaf
degreening in Arabidopsis (Tsuchisaka et al., 2009). Exogenous
application of ethylene could induce leaf degreening, whereas
treatment with ethylene inhibitors could delay leaf degreening
(Serek et al., 1995; Jing et al., 2005). The leaves of etr1-1,
the mutant of ethylene receptor gene ETR1, cannot respond
to ethylene treatment and shows a stay-green leaf phenotype
(Bleecker et al., 1988; Grbic and Bleecker, 1995; Chao et al.,
1997). Consistently, ectopic expression of a mutant form of
the Arabidopsis ethylene receptor gene ETR1-1 delayed leaf
Chl degradation in Nicotiana tabacum (Yang et al., 2008).
ETHYLENE INSENSITIVE 2 (EIN2) and its downstream target
EIN3 are key components of ethylene signaling, and the mutants
of both EIN2 and EIN3 exhibit a severe stay-green phenotype
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TABLE 1 | The direct regulatory factors of Chl catabolic genes (CCGs).

Species Accession numbers Regulatory factors Signaling Phenotypes of mutants Target CCGs References

Arabidopsis thaliana At3g20770 EIN3 Ethylene Stay-green during leaf senescence NYC1, NYE1, PAO Qiu et al., 2015

Arabidopsis thaliana At5g39610 ORE1 Ethylene Stay-green during leaf senescence NYC1, NOL, NYE1,

PAO

Qiu et al., 2015

Citrus sinensis Ciclev10010348m CitERF13a Ethylene NA CitPPH Yin et al., 2016

Arabidopsis thaliana At1g34180 ANAC016 Abscisic acid Stay-green during leaf senescence NYE1 Sakuraba et al., 2016

Arabidopsis thaliana At1g45249/ At4g34000/

At3g19290

ABF2/3/4 Abscisic acid Stay-green during leaf senescence NYC1, NYE1,

NYE2, PAO

Gao et al., 2016

Arabidopsis thaliana At3g24650 ABI3 Abscisic acid Stay-green during seed maturation NYE1, NYE2 Delmas et al., 2013

Arabidopsis thaliana At1g16540 ABI5 Abscisic acid Stay-green during leaf senescence NYC1, NYE1 Sakuraba et al., 2014

Arabidopsis thaliana At1g30230 EEL Abscisic acid Stay-green during leaf senescence NYC1, NYE1 Sakuraba et al., 2014

Oryza sativa Os03g0327800 OsNAPb Abscisic acid Accelerated yellowing during leaf

senescencec
OsSGR, OsNYC1,

OsNYC3,

OsRCCR1

Liang et al., 2014

Oryza sativa Os04g0460600 OsNAC2d Abscisic acid NA OsSGR, OsNYC3 Mao et al., 2017

Arabidopsis thaliana At1g32640/ At5g46760/

At4g17880

MYC2/3/4e Jasmonic acid Stay-green during leaf senescence NYC1, NYE1, PAO Zhu et al., 2015

Arabidopsis thaliana At1g52890/ At3g15500/

At4g27410

ANAC019/055/072f Jasmonic acid Stay-green during leaf senescence NYC1, NYE1, NYE2 Zhu et al., 2015

Arabidopsis thaliana At2g43010 PIF4 Light Stay-green during leaf senescence NYE1 Song et al., 2014

Arabidopsis thaliana At3g59060 PIF5 Light Stay-green during leaf senescence NYE1, NYC1 Zhang et al., 2015

Arabidopsis thaliana At2g45660 SOC1g Light Accelerated yellowing during leaf

senescence

NYE1, PPH Chen et al., 2017

aTransient over-expression of AtERF17 and SlERF16, which are the homologs of CitERF13 in Arabidopsis and tomato, can lead to Chl degradation in Nicotiana tabacum leaves (Yin

et al., 2016).
bThe null mutant of AtNAP has a significant stay-green phenotype during leaf and silique senescence (Guo and Gan, 2006; Kou et al., 2012).
cThe prematurely senile 1 (ps1-D) is a gain-of-function mutant of OsNAP (Liang et al., 2014).
dOsNAC2 is a rice ortholog of ORE1/ANAC092/AtNAC2 (Mao et al., 2017).
eOver-expression of OsMYC2 significantly promote Chl degradation during leaf senescence in rice (Uji et al., 2017).
fTransient over-expression of oilseed rape BnaNAC55 (Brassica napus L.) lead to a significant decrease in Chl content in Nicotiana benthamiana leaves (Niu et al., 2016).
gSOC1 is a negative regulator of Chl degradation during leaf degreening and senescence (Chen et al., 2017).

during leaf senescence (Chao et al., 1997; Oh et al., 1997). EIN3
positively regulatesORE1 andNAP, the two important regulatory
genes of senescence, either directly or indirectly via negatively
regulating miR164, which in turn cleaves the transcript of ORE1
(Kim et al., 2009, 2014; Li et al., 2013). These reports convincingly
demonstrate that ethylene signaling regulates the pathway of Chl
degradation.

Recently, Qiu et al. (2015) reported that the expression of
NYC1, NYE1, and PAO was significantly induced by ethylene
treatment in the leaves of Arabidopsis, whereas largely repressed
in ein3 eil1 double mutant. The electrophoretic mobility shift
assay (EMSA) and dual-luciferase reporter assay demonstrated
that EIN3 protein could directly bind to the EBS (EIN3
binding site, AC/TGA/TAC/TCT) in the promoters of NYC1,
NYE1, and PAO, and enhance their promoter activity in
Arabidopsis protoplasts. Therefore, EIN3 is a positive regulator
of ethylene-mediated Chl degradation. Moreover, ORE1, the
direct target of EIN3, could bind to the promoters of NYE1,
NYC1, NOL, and PAO, and positively regulate their expression.
Intriguingly, EIN3 and ORE1 could promote NYE1 and NYC1
expression in an additive manner (Qiu et al., 2015). This
progress indicates that EIN3 and EIL1 constitute a major
regulatory node of ethylene-triggered degreening, with EIN3
either directly or indirectly regulating the expression of CCGs.
Notably, Yin et al. (2016) recently revealed that CitERF13, an

ethylene responsive factor, could bind to CitPPH promoter and
positively regulate its expression during citrus fruit degreening
(Table 1).

THE MOLECULAR MECHANISM OF ABA
SIGNALING-MEDIATED CHL
DEGRADATION

ABA can be induced by age-dependent senescence or
environmental stresses, such as drought, heat, and salt, and
the increase of endogenous ABA level or the exogenous
application of ABA accelerates chlorosis and senescence of plant
leaves (Raab et al., 2009; Yang et al., 2014; Takasaki et al., 2015;
Liu et al., 2016). ABA has therefore long been recognized as
a positive regulator of degreening during leaf senescence in
plants. It was reported that ABA accelerates leaf degreening
and senescence via an AtNAP-SAG113 (a PP2C family protein
phosphatase) regulatory module that is involved in the regulation
of the stomata movement (Zhang and Gan, 2012).

With an attempt of investigating the direct regulation
of CCGs, Gao et al. (2016) initially identified ABF3 as a
transcriptional regulator of NYE1 by yeast one-hybrid (Y1H)
screening. Further in vitro and in vivo analyses indicated
that ABF2/3/4 directly bind to the promoter of NYE1, and
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up-regulate its transcription. Notably, ABF2/3/4 also bind to
the promoters of NYE2, NYC1, and PAO, and up-regulate
their transcription. Under ABA treatment, detached leaves
of abf2 abf3 abf4 triple mutants exhibited an obvious stay-
green phenotype, while those of ABF4-OE transgenic lines
showed an accelerated yellowing phenotype (Gao et al., 2016).
ABI5 and EEL, two ABA signaling-related transcription factors,
were also found to positively regulate the transcription of
NYE1 and NYC1 by binding to their promoters (Sakuraba
et al., 2014). Similarly, ANAC016, a senescence-associated NAC
transcription factor, directly bind to the promoter of NYE1 and
up-regulate its transcription. Leaves of anac016 mutant showed
a stay-green phenotype, while ANAC016-OX line displayed
an early leaf yellowing phenotype. Interestingly, it indirectly
activates ABSCISIC ALDEHYDE OXIDASE3 (AAO3), an ABA
biosynthesis gene, via a mediation of NAP (Kim et al., 2013;
Yang et al., 2014; Sakuraba et al., 2016). Liang et al. (2014)
found that ABA-induced leaf yellowing and senescence were
mediated by OsNAP in rice. Unlike AtNAP, OsNAP was
specifically induced by ABA but not ethylene. OsNAP directly
bind to the promoters of OsSGR, OsNYC1, OsNYC3 (PPH), and
OsRCCR1, and up-regulated their transcription in rice. Recently,
Mao et al. (2017) reported that OsNAC2 could directly bind
to the promoters of OsSGR and OsNYC3, and activate their
expression during ABA-induced leaf yellowing and senescence
in rice.

ABA also regulates seed maturation. During the processes
of seed maturation and embryo degreening, a B3 domain
transcription factor ABI3 directly binds to the promoters
of NYE1 and NYE2, and up-regulates their transcription,
consequently promoting Chl degradation in embryos.
Intriguingly, the role of ABI3 in Chl degradation is seed-
specific, as the mutant of ABI3 (abi3-6) does not show a
stay-green leaf phenotype in the dark (Delmas et al., 2013). This
progress has shed a light on the complex molecular mechanism
underlying ABA-regulated Chl degradation (Table 1).

THE MOLECULAR MECHANISM OF JA
SIGNALING-MEDIATED CHL
DEGRADATION

Jasmonic acid is a phytohormone essential for the regulation
of multiple developmental processes, including leaf degreening
and senescence (Wasternack and Hause, 2013). Ueda and
Kato (1980) firstly found that methyl jasmonate (MeJA) could
induce leaf degreening in oats. Subsequently, this phenomenon
was confirmed in various plant species such as Arabidopsis,
wheat, rice, and maize (Beltrano et al., 1998; He et al., 2002;
Shan et al., 2011; Yan et al., 2012; Lee et al., 2015). Mutants
defective for JA synthesis exhibited delayed leaf degreening
phenotype (Castillo and León, 2008; Schommer et al., 2008;
Yan et al., 2012). COI1-JAZ complex is the co-receptor of
JA (Sheard et al., 2010), and the leaves of coi1 mutant
exhibit a stay green phenotype upon MeJA treatment (He
et al., 2002; Shan et al., 2011; Lee et al., 2015). MYC2/3/4
could interact with JAZ, acting as the transcriptional activators

in JA signaling, whereas bHLH03/13/14/17 were identified
as the transcriptional repressors, repressing JA responses.
Both MYC2/3/4 and bHLH03/13/14/17 could bind to the
promoter of SAG29, and activate or repress the expression
of SAG29 during JA-induced leaf senescence (Qi et al.,
2015).

In a study of identifying the transcriptional regulators of
CCGs, Zhu et al. (2015) revealed MYC2 as a putative trans-
regulator of PAO by using the Y1H screening. MYC2 and its
two homologs, MYC3 and MYC4, were then demonstrated
to directly bind to the G-box (CACGTG) in the promoters of
PAO, NYC1, and NYE1, and up-regulate their expression during
JA-induced Chl degradation. The leaves of myc2 myc3 myc4
triple mutant showed a stay-green phenotype, whereas those
of MYC2/3/4 overexpression lines displayed an accelerated
yellowing phenotype upon MeJA treatment. Intriguingly,
ANAC019/055/072, the immediate targets of MYC2/3/4 (Bu
et al., 2008; Zheng et al., 2012), could also directly up-regulate
the expression of NYE1, NYE2, and NYC1. The triple mutant of
anac019 anac055 anac072 showed a similar stay-green phenotype
as myc2 myc3 myc4 upon MeJA treatment. Moreover, the MYC2
and ANAC019 could interact with each other, and synergistically
enhance NYE1 expression in Arabidopsis protoplasts. These
findings indicate a hierarchical and coordinated regulatory
network during JA-induced Chl degradation (Zhu et al., 2015;
Table 1).

THE MOLECULAR MECHANISM OF LIGHT
SIGNALING IN REGULATING CHL
DEGRADATION

Light is the vital environmental factor for plant growth and
development. Dark treatment, a simple and effective way for
light deprivation, is widely used for studying leaf senescence
and degreening (Ren et al., 2007; Christ and Hörtensteiner,
2014). phyB is a red light receptor (Schäfer and Bowler, 2002),
and seedlings or mature leaves of phyB mutant yellow faster,
whereas PHYB-OX plants yellow slower than those of WT
during dark incubation (Sakuraba et al., 2014). phyB represses
PIF4 and PIF5 at the post-transcriptional level (Leivar et al.,
2008; Shin et al., 2009). In the dark, leaves of pif4, pif5,
and pif1 pif3 pif4 pif5 quadruple mutants all show stay-green
phenotypes, while those of PIF4-OX and PIF5-OX lines show
early-yellowing phenotypes (Sakuraba et al., 2014). ELF3 inhibits
leaf degreening and senescence by repressing PIF4 and PIF5 at
the transcriptional level (Nusinow et al., 2011; Sakuraba et al.,
2014). After incubating in darkness, leaves of elf3 senesced
faster and leaves of ELF3-OX senesced slower than those of
WT (Sakuraba et al., 2014). These findings collectively suggest
that red light signaling is involved in the regulation of leaf
degreening and senescence, with PIF4 and PIF5 acting as key
mediators.

Both PIF4 and PIF5 associate with the promoters of ABI5
and EEL, two bZIP family transcription factors, and up-regulate
their transcription (Sakuraba et al., 2014). Interestingly, PIF4,
PIF5, ABI5, and EEL, as well as EIN3, can all activate the
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expression of ORE1, which encodes an important senescence-
promoting transcription factor, by directly binding to its
promoter. Meanwhile, ABI5 and EEL could directly activate
NYE1 and NYC1 by binding to their promoters (Sakuraba et al.,
2014). It was further demonstrated that PIF4 directly bind to the
promoter ofNYE1, and PIF5 to the promoters ofNYE1 andNYC1
to up-regulate their transcription (Song et al., 2014; Zhang et al.,
2015). Under dark treatment, endogenous ethylene level was
significantly reduced in the leaves of pif4 mutant, while elevated
in those of PIF4-OX lines. When treated with ethylene, mutants
of pif3, pif4, and pif5 showed stay-green phenotypes, suggesting
that PIF3/4/5 play roles in leaf degreening mediated by ethylene
signaling (Song et al., 2014).

Recently, in a study designed for exploring the transcriptional
regulation of PPH, Chen et al. (2017) demonstrated that
SUPPRESSOR OF OVEREXPRESSION OF CO 1 (SOC1), a
flowering pathway integrator, associates with the promoter of
PPH, and negatively regulates its transcription. Under dark
treatment, leaves of soc1-6 mutant yellowed earlier, whereas
those of iSOC1-OE lines partially stayed green, in comparison
to their respective controls. Moreover, SOC1 also negatively
regulates NYE1 and SAG113 at the transcriptional level during
dark-induced leaf degreening and senescence. Notably, SOC1 is
the only negative regulator of Chl degradation identified so far
(Table 1).

CONCLUSION AND PERSPECTIVES

Chl degradation is an active and progressive process which
is regulated by diverse developmental and environmental
clues, and mainly mediated by phytohormones’ signaling. In
Arabidopsis, ethylene signaling promotes leaf degreening through
the transcriptional regulation of major CCGs by both EIN3 and
ORE1, while in citrus fruits by CitERF13 (Qiu et al., 2015; Yin
et al., 2016). The severe stay-green phenotype of the mutants
of both EIN3/EIL1 and ORE1 implies that ethylene signaling
is likely the major signaling pathway in regulating degreening
during developmental leaf senescence (Kim et al., 2009; Li
et al., 2013). ABA signaling mediates Chl degradation at the
transcriptional level mainly by ABI3 during seed maturation,
whereas, during leaf senescence, by ABI5, EEL, and ABF2/3/4 as
well as ANAC016 in Arabidopsis, and by OsNAP and OsNAC2
in rice (Delmas et al., 2013; Liang et al., 2014; Sakuraba et al.,
2014, 2016; Gao et al., 2016; Mao et al., 2017). Interestingly,
these transcription factors have long been known to regulate
drought stress/circadian clock (Sanchez et al., 2011), indicating
that ABA signaling might be mainly involved in the regulation of
leaf degreening-triggered by abiotic stresses. JA signaling directly
regulates leaf degreening by MYC2/3/4 and ANAC019/055/072
(Zhu et al., 2015). Considering that the MYCs and ANACs are
also involved in the regulation of defense responses, JA signaling
likely mediates the degreening process incurred by biotic stresses.
Light signal, on the other hand, inhibits leaf degreening by
both maintaining the transcription of SOC1 and repressing
the transcription of PIFs/reducing PIFs protein accumulation

(Sakuraba et al., 2014; Song et al., 2014; Zhang et al., 2015; Chen
et al., 2017). Intriguingly, major hormones share their signaling
components with light, as loss-of-function mutations of major
hormone signaling components (EIN2, EIN3/EIL1, ABI5, EEL,
NAP, ORE1, etc.) block light signaling in regulating degreening,
causing stay-green phenotypes upon light deprivation, whereas
loss-of-functions of major light signaling components, PIFs,
also interfere major hormone (e.g., ethylene) signaling in the
promotion of degreening (Oh et al., 1997; Guo and Gan, 2006;
Li et al., 2013; Kim et al., 2014; Sakuraba et al., 2014; Song et al.,
2014).

Although, substantial progress has beenmade in exploring the
molecular regulation of Chl degradation, numerous issues still
await to be addressed. (1) There appears to be a “developmental
window” for hormone-induced Chl degradation. Ethylene, for
example, cannot readily induce leaves to degreen at their young
age, and only after a certain developmental stage will leaves allow
ethylene to induce their degreening (Jing et al., 2005). What is the
molecular basis for the “window effect”? (2) As an inhibitor of Chl
degradation, light signal is present during ethylene-, ABA-, and
JA-induced or age-dependent leaf degreening (Qiu et al., 2015;
Zhu et al., 2015; Gao et al., 2016), but how ethylene, ABA, or JA
signaling antagonize light signaling to trigger Chl degradation?
(3) There are enormous cross-talks among different hormone
signaling pathways which are interweaved with light signaling
in the regulation of Chl degradation. It was reported that ein3
exhibited a stay-green phenotype during MeJA treatment (Li
et al., 2013), and jaz7 showed an early yellowing phenotype
under dark treatment (Yu et al., 2016). More work need to be
done to elucidate those cross-talks. (4) In addition to ethylene,
ABA, and JA, other phytohormones are also found to be involved
in the regulation of Chl degradation, with salicylic acid and
brassinolide acting as promoters (Morris et al., 2000; Jeong
et al., 2010), whereas cytokinin and gibberellic acid as repressors
(Fletcher and Osborne, 1966; Lara et al., 2004; Kim et al.,
2006). Yet, their regulatory pathways or networks are largely
unexplored. (4) Thus far, studies on Chl degradation regulation
mainly focus on the transcriptional level. Further investigations
need to be extended to post-transcriptional levels, including the
translational regulation and post-translational modification. It
has been reported that PAO could be interconverted between
phosphorylated and dephosphorylated status (Chung et al.,
2006).
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