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Aluminum (Al) toxicity is a key factor limiting plant growth and crop production on
acid soils. Increasing the plant Al-detoxification capacity and/or breeding Al-resistant
cultivars are a cost-effective strategy to support crop growth on acidic soils. The plasma
membrane H+-ATPase plays a central role in all plant physiological processes. Changes
in the activity of the plasma membrane H+-ATPase through regulating the expression
and phosphorylation of this enzyme are also involved in many plant responses to Al
toxicity. The plasma membrane H+-ATPase mediated H+ influx may be associated
with the maintenance of cytosolic pH and the plasma membrane gradients as well
as Al-induced citrate efflux mediated by a H+-ATPase-coupled MATE co-transport
system. In particular, modulating the activity of plasma membrane H+-ATPase through
application of its activators (e.g., magnesium or IAA) or using transgenics has effectively
enhanced plant resistance to Al stress in several species. In this review, we critically
assess the available knowledge on the role of the plasma membrane H+-ATPase in
plant responses to Al stress, incorporating physiological and molecular aspects.
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INTRODUCTION

Acid soils (pHwater < 5.5) are found worldwide, occupying up to 50% of arable land (Kochian et al.,
2015), mostly in developing countries in Africa, Asia, and South America. Aluminum (Al) toxicity
is a major factor limiting plant growth and crop yield in acidic soils. Al toxicity has been shown to
affect the plasma membrane structure, induce root cell death and inhibit nutrient uptake, thereby
leading to significant reductions in plant growth and development (Chen et al., 2011). Liming can
increase soil pH, but this is frequently neither an economic option for farmers nor an effective
strategy for alleviating subsoil acidity (Whitten et al., 2000). In contrast, increasing capacity of
plants to cope with Al toxicity by enhancing Al detoxification and/or breeding Al-resistant cultivars
is a more cost-effective way of mitigating the problem.

The plasma membrane H+-ATPase, the most abundant membrane protein as a single
polypeptide of about 100 kDa, belongs to a large superfamily of pumps termed P-type
ATPases (Palmgren, 2001; Rengel et al., 2015). Using the chemical energy of ATP, the
plasma membrane H+-ATPases extrude protons from cells to generate an electrochemical
proton gradient. The generation of this gradient has a major role in providing the energy
for secondary ion transport across the plasma membrane, enabling physiological functions
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such as nutrient uptake, intracellular pH regulation, stomatal
opening, and cell growth (Falhof et al., 2016). Additionally, the
plasma membrane H+-ATPase is involved in plant adaptation
to environmental stresses, such as salinity, P deficiency and Al
toxicity (Janicka-Russak and Kabala, 2015; Yu et al., 2015).

Aluminum toxicity affects the expression and post-translation
of the plasma membrane H+-ATPase in some plant species
(Shen et al., 2005; Chen et al., 2013, 2015; Guo et al., 2013).
In particular, modulation of the activity of this enzyme through
application of Mg, IAA or using transgenic methods can
effectively enhance Al-resistance in faba bean (Chen et al.,
2015), soybean (Wang et al., 2016), Arabidopsis (Wu et al., 2008),
and tobacco (Guo, 2013). The plant Al-resistance mechanisms,
especially those based on Al-induced organic acid anion
exudation, have been reviewed many times (Liu et al., 2014;
Kochian et al., 2015; Chen and Liao, 2016); however, a role
of the plasma membrane H+-ATPase in plant responses to
Al stress has not been well assessed. In this review, we
appraise the literature on this nascent field, paying particular
attention to physiological and molecular aspects of the plasma
membrane H+-ATPase involvement in plant responses to Al
stress.

ALUMINUM DETOXIFICATION
STRATEGIES

Plants have evolved two main Al resistance strategies, namely
avoidance and tolerance. Tolerant plants, such as buckwheat
(Ma et al., 1998), hydrangea (Ma et al., 1997), melastoma
(Watanabe et al., 1998), and tea (Morita et al., 2008) allow
Al accumulation in plant tissues, using Al sequestration in the
vacuole and/or Al detoxification via Al binding to organic acid
anions or proteins as the tolerance mechanisms. In contrast,
plants with the avoidance mechanisms decrease Al accumulation
in roots via cell wall polysaccharide modifications (Schmohl et al.,
2000; Yang et al., 2008, 2011a, 2016; Li et al., 2016) or exudation
of organic acid anions from root tips (Ma, 2000; Chen and Liao,
2016).

Many publications progressed the knowledge of plant
resistance to Al stress (Kochian et al., 2015; Chen and Liao, 2016).
For example, Al resistance is associated with upregulation of
the ABC transporters (ALS3 and ALS1) in Arabidopsis (Larsen
et al., 2005, 2007; Huang et al., 2009) and the bacterial-type
ABC transporters (STAR1 and STAR2) in rice (Huang et al.,
2009). The Al-induced expression of the ALMT (Al-activated
malate transporter) and MATE (multidrug and toxic compound
extrusion) transporter genes (Sasaki et al., 2004; Hoekenga
et al., 2006; Magalhaes et al., 2007) enhances root exudation
of malate and citrate, respectively. The zinc-finger transcription
factors, such as STOP1 (sensitive to proton rhizotoxicity) in
Arabidopsis (Iuchi et al., 2007; Sawaki et al., 2009) and ART1
(Al resistance transcription factor) in rice (Yamaji et al., 2009),
play central roles in regulating expression of many genes
associated with Al resistance. Additionally, activation of the
plasma membrane H+-ATPase through regulating the expression
and/or phosphorylation of this enzyme coincides with citrate

exudation and Al resistance in many plant species (Yu et al.,
2015).

FUNCTIONS AND REGULATION OF THE
PLASMA MEMBRANE H+-ATPase

Critical Functions
The plasma membrane H+-ATPases (proton pumps) are the
primary transporters that translocate positive charges (protons)
out of the cytosol using ATP as an energy source, thereby forming
a membrane potential difference across the plasma membrane
(negative on the inside). Using the proton electrical gradients
created by the plasma membrane H+-ATPase, cations (e.g.,
K+, Na+, NH4

+, Mg2+, Ca2+), anions (e.g., NO3
−, SO4

2−,
Cl−), and neutral compounds (e.g., glucose) can be taken up
across the plasma membrane via secondary carrier proteins
(Figure 1).

One of the most basic functions of the plasma membrane
H+-ATPase in plants is the involvement in auxin polar transport
and signaling. Auxin is synthesized in the plant apical growing
regions and transported to roots through the vascular and bundle
sheath tissues (Titapiwatanakun and Murphy, 2009). As protons
accumulate in the apoplast (pH∼5.5) (lower pH than in the
cytosol, Figure 1), 10–25% of IAA (pKa 4.85) is protonated
to form electrically neutral IAAH (Yang et al., 2006). IAA can
thus enter the cell by either lipophilic diffusion of protonated
IAAH along the concentration gradient or via the AUX1/LAX
influx carrier-mediated IAA−/H+ symport (Figure 1). Inside
the cell, all IAA molecules are deprotonated because the
cytosolic pH is relatively high (pH∼7.0). The efflux of IAA−
is accomplished by PIN proteins, resulting in activation of the
plasma membrane H+-ATPase (Figure 1) and acidification of
the cell wall (apoplast). For instance, activation of the plasma
membrane H+-ATPase is important in auxin-mediated cell
elongation during wheat embryo development (Rober-Kleber
et al., 2003). In Arabidopsis, auxin induces hypocotyl elongation
through phosphorylation and activation of the plasma membrane
H+-ATPase (Takahashi et al., 2012).

Regulatory Mechanisms
The plasma membrane H+-ATPase is encoded by a multigene
family and contains several isoforms. For example, 11 isoforms
of plasma membrane H+-ATPase in Arabidopsis thaliana
(AHA1–AHA11) (Palmgren, 2001), 10 genes in Oryza sativa
(OsA1–OsA10) (Arango et al., 2003), 9 genes in Nicotiana
plumbaginifolia (PMA1–PMA9) (Oufattole et al., 2000), and
5 genes in Vicia faba (VHA1–VHA5) (Neuhaus et al., 2013)
have been identified. Various genes are expressed in the same
organ or plant tissues. For example, AHA1 and AHA2 are
expressed in virtually all tissues and organs, AHA10 has been
identified during seed development (Harper et al., 1994), and
isoform AHA4 is expressed in the root endodermis, flowers
and during silique maturation (Vitart et al., 2001). In faba
bean, VHA1 and VHA2 are expressed mainly in guard cells,
but to some extent throughout the plant as well (Hentzen
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et al., 1996). The expression of genes encoding the plasma
membrane H+-ATPase is regulated by various environmental
factors, including iron deficiency (Santi et al., 2005), Al toxicity
(Yu et al., 2015), and heavy metals stress (Jemo et al., 2007).

The activity of H+-ATPase is tightly regulated by the
phosphorylation and dephosphorylation processes, although
neither the protein kinase nor the protein phosphatase directly
regulating phosphorylation of this enzyme in plant cells has
been identified. The best characterized mechanism involves
the phosphorylation of the penultimate Thr residue in the
autoinhibitory domain at the C-terminus, and the subsequent
binding of 14-3-3 regulatory proteins (Falhof et al., 2016).
The binding of 14-3-3 protein displaces the C-autoinhibitory
domain, resulting in the formation of a dodecameric complex
composed of six H+-ATPases and six 14-3-3 regulatory
proteins and resulting in the activated plasma membrane
H+-ATPase (Haruta et al., 2015). Many signals, including auxin,
blue light and the fungal toxin fusicoccin (FC), regulate the
phosphorylation level of the penultimate Thr at the C terminus
of H+-ATPase and its interaction with the 14-3-3 proteins,
affecting cell growth and stomatal movements (Emi et al.,
2001; Hohm et al., 2014; Falhof et al., 2016; Wang et al.,
2016).

THE PLASMA MEMBRANE H+-ATPase
AND ALUMINUM TOXICITY

Changes in the Plasma Membrane
H+-ATPase Activity in Plant Responses
to Aluminum Toxicity
Under Al stress, the most important functional change occurring
in the plasma membrane is the alteration of membrane potential
(Ahn and Matsumoto, 2006), which is dependent on the plasma
membrane H+-ATPase. The changes in the membrane potential
and the plasma membrane H+-ATPase activity are related to
the root part, the degree of Al stress and Al sensitivity of
plant species and genotypes. For example, the Al stress induced
depolarization of the plasma membrane in tobacco suspension-
cultured cells (Sivaguru et al., 2005), squash (Ahn et al., 2001),
and barley (Matsumoto, 1988), suggesting decreased H+-ATPase
activity, but either depolarization or hyperpolarization of the
plasma membrane was recorded in Arabidopsis (Bose et al.,
2010a,b) and soybean (Wang et al., 2016). In wheat root tips,
Al exposure caused hyperpolarization in the Al-resistant and
depolarization in the Al-sensitive genotypes (Ahn et al., 2004).
Al-induced proton release is associated with activation of the
plasma membrane H+-ATPase in tea plants (Qing et al., 2017).
In soybean and faba bean roots, Al significantly increased the
activity of the plasma membrane H+-ATPase in the Al-resistant
but not the Al-sensitive cultivars (Shen et al., 2005; Kim et al.,
2010; Chen et al., 2013).

The activity of plasma membrane H+-ATPase is affected
by Al at the transcription, translation, and post-translation
levels. In soybean and faba bean, higher plasma membrane
H+-ATPase concentration and activity coincided with enhanced

expression of the gene and greater abundance of the plasma
membrane H+-ATPase protein in the Al-resistant cultivars
(Shen et al., 2005; Guo et al., 2013). Furthermore, Al increased
the phosphorylation levels of the plasma membrane and its
interaction with the 14-3-3 proteins in a time-dependent manner
in the Al-resistant cultivars of faba bean and soybean (Shen
et al., 2005; Chen Q. et al., 2012; Chen et al., 2013). It is likely that
Al activates an unknown kinase, resulting in phosphorylation
of the plasma membrane H+-ATPase, maintenance of strong
interaction with the 14-3-3 proteins and thus increased H+-
ATPase activity. However, identification and characterization of
a kinase that regulates phosphorylation of the plasma membrane
H+-ATPase remains to be reported.

Involvement of the Plasma Membrane
H+-ATPase in MATE-Mediated Citrate
Exudation
Citrate and malate are intermediates in the tricarboxylic acid
(TCA) cycle. The Al-induced organic acid anion exudation is
controlled by specific transporters, such as ALMT1 for malate
and MATE for citrate, along with enzymes of organic acid
metabolism, such as citrate synthase, malate dehydrogenase,
and phosphoenolpyruvate carboxylase (Chen and Liao, 2017).
Beside the expression of citrate transporter, the exudation of
citrate also requires activation of the plasma membrane H+-
ATPase as shown in many plant species. Under low-P conditions,
increased citrate exudation was related to activation of the
plasma membrane H+-ATPase in white lupin (Lupinus albus)
(Yan et al., 2002) and blue lupin (Lupinus pilosus) (Ligaba
et al., 2004). A mutant carrot (Daucus carota) cell line (can
grow on water-insoluble phosphate) exhibited an enhancement
in citrate exudation and plasma membrane H+-ATPase activity
when grown in an Al-phosphate medium (Ohno et al., 2003). In
Al-resistant soybean roots under Al stress, fusicoccin significantly
enhanced (by 85%) and vanadium ions significantly inhibited
(by 53%) activity of the plasma membrane H+-ATPase, which
was associated with Al-induced citrate exudation increasing by
58% and decreasing by 52% in the fusicoccin and vanadium
treatments, respectively (Shen et al., 2005). Chen et al. (2013)
in faba bean and Guo et al. (2013) in soybean reported similar
results.

In soybean roots, the Al-induced enhancement of the
plasma membrane H+-ATPase and the related citrate exudation
coincided with the increased gene expression and protein
abundance as well as enhanced phosphorylation of this enzyme
(Shen et al., 2005; Guo et al., 2013). In both Al-resistant and
Al-sensitive cultivars of faba bean, the interaction between
the phosphorylated plasma membrane H+-ATPase and the
14-3-3 protein was stimulated by FC but inhibited by 5′-AMP
(adenosine 5′-monophosphate) in the presence of Al; in addition,
the activity of the plasma membrane H+-ATPase and the
related citrate exudation were increased, respectively, about
1.7- and 2.7-fold by FC and decreased, respectively, about 60
and 70% by 5′-AMP (Chen et al., 2013), indicating that post-
translational regulation of the plasma membrane H+-ATPase
plays an important role in Al-induced citrate exudation.
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FIGURE 1 | The functions of the plasma membrane H+-ATPase in IAA polar transport and nutrient uptake. (1) The proton pump; (2) AUX1/LAX-mediated IAA−/H+

symport; (3) Lipophilic diffusion of protonated IAAH; (4) PIN proteins-mediated IAA− efflux; (5) Anion (NO3
−, Cl−, SO4

2−, etc.) uptake via symport with H+; (6)
Proton-coupled sucrose transporters-mediated sucrose (Suc) phloem loading; (7) cation (Mg2+, Ca2+, K+, etc.) uptake through various transporters.

It is interesting to note that, unlike the secretion of malate and
oxalate, only the exudation of citrate is dependent on the plasma
membrane H+-ATPase. For example, neither P-deficiency-
induced malate exudation by Lupinus pilosus (Ligaba et al.,
2004) nor Al-induced oxalate exudation by tomato (Yang
et al., 2011b) was related to the plasma membrane H+-ATPase
activity. Wu et al. (2014) found that transgenic Arabidopsis lines
containing Brassica oleracea MATE gene had stronger citrate
exudation coupled with a higher H+ efflux activity than wild-type
plants.

Electrophysiological analysis using Xenopus oocytes showed
that the MATE family transporters from sorghum (SbMATE)
(Magalhaes et al., 2007), maize (ZmMATE1) (Maron et al.,
2010), and rice bean (VuMATE1) (Yang et al., 2011c) mediated
significant 14C-labeled-citrate efflux as well as proton influx
across the plasma membrane, suggesting that the MATEs might
be citrate/H+ antiport transporters (Kochian et al., 2015).
This suggestion, however, needs to be interpreted with respect
to the ionic as well as charge gradients across the plasma
membrane. Citric acid is a triprotic weak acid having pKa
values for the three stepwise carboxylic group dissociations of
3.1, 4.8, and 6.4. Hence, at a relatively high (∼7.0) cytosolic
pH, citric acid is dissociated to citrate anion (Cit3−) and
H+ (Figure 2). The MATE-mediated citrate anion efflux is
likely to be coupled with the H+-ATPase-driven H+ efflux
(to balance charges), meaning that Al-induced citrate exudation
is mediated by a plasma membrane co-transport (symport)
system in which H+-ATPase and MATE are coupled. The
H+ influx (purportedly via MATE transporters) as observed
in Xenopus oocytes (Magalhaes et al., 2007; Maron et al.,

2010; Yang et al., 2011c) may be secondary in nature, and
its role remains to be properly explained. It may be tempting
to speculate that such influx of H+ may be associated with
the general maintenance of cytosolic pH and the plasma
membrane gradients as well as balancing of secondary ion
transports rather than primarily as an antiport action directly
coupled with citrate exudation via MATEs. This explanation
is well aligned with the primary roles of MATEs as organic
cation (citrate is never a cation) antiporters (coupled with
H+ or Na+ influx, Jin et al., 2014) in waste disposal (e.g.,
in kidney and liver cells, Nies et al., 2016) as well as in
bacterial or cancer cell resistance to drugs (e.g., Tanaka et al.,
2013). Hence, there is no doubt that MATEs can allow H+
influx (for the mechanism, see Nishima et al., 2016), but we
would suggest it is premature to assign the label of citrate/H+
antiporters to the MATE transporters functioning in citrate
(anion) efflux. Alternatively, it may also be tempting to suggest
that in plants MATEs transport Al::citrate complexes from
roots to shoots, thus playing a role in Al detoxification, rather
than effluxing citrate from roots to mediate Al exclusion at
the root surface; however, there is no experimental evidence
to support this suggestion, except that MATE transporter
OsFRDL1 was found to transport Fe::citrate complexes from
rice roots to shoots (Yokosho et al., 2009), and the same
route of Al::malate transport in Arabidopsis was claimed for the
nodulin 26-like intrinsic protein (NIP1;2) from the aquaporin
family (Wang J. et al., 2017; Wang Y. et al., 2017). The
MATE transport system in plants is indeed complex, and a
substantial future work is needed to shed more light on that
complexity.
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FIGURE 2 | The proposed regulatory roles of plasma membrane H+-ATPase
in Al-induced citrate exudation from plant roots. Al toxicity is perceived by root
cells, inducing expression of numerous genes and proteins (1), including
tricarboxylic acid (TCA) cycle enzymes, the plasma membrane H+-ATPase,
14-3-3 proteins and MATE transporters. Citric acid is dissociated to citrate
anion (Cit3−) and H+ at a relative high cytosolic pH∼7.0 (2), followed by the
plasma membrane H+-ATPase-mediated H+ efflux (3) coupled with
MATE-mediated citrate (Cit3−) exudation (4) possibly associated with proton
influx. The phosphorylation of the plasma membrane H+-ATPase and
interaction with the 14-3-3 proteins (5) were enhanced by the application of
Mg and/or IAA (6) under Al stress, resulting in activation of both the plasma
membrane H+-ATPase and the MATE citrate transporter. Citrate exuded from
plant roots forms a stable non-toxic complex with Al in the rhizosphere (7).

ACTIVATION OF THE PLASMA
MEMBRANE H+-ATPase IMPROVES
PLANT RESISTANCE TO ALUMINUM
STRESS

Magnesium Availability
Magnesium (Mg) is an essential nutrient for plant growth
and has a number of key functions in plants (Cakmak and
Kirkby, 2008). It is an activator of a large number of enzymes,
such as phosphatases, protein kinases, RNA polymerases, and
carboxylases (Bose et al., 2011). Magnesium is also pivotal to the
function of most ATPase proteins and essential for maintaining
the proton pump activity at the plasma membrane (Brooker and
Slayman, 1983; Gibrat et al., 1989). Under constant Al3+ ionic
activity, the Al-resistant genotypes had higher Mg concentration
than the Al-sensitive genotypes of wheat (Silva et al., 2010),
maize (Mariano and Keltjens, 2005; Giannakoula et al., 2008),
sorghum (Baligar et al., 1993), Arabidopsis (Bose et al., 2013),
and rice (Sivaguru and Paliwal, 1993). Additionally, it has been
shown that Mg can alleviate Al toxicity to plants (Rengel et al.,
2015). Relatively high concentrations (millimolar) of Mg were
found to alleviate Al toxicity in Poaceae species, such as wheat
and rice (Ryan et al., 1997; Watanabe and Okada, 2005; Chen

Z.C. et al., 2012). This effect may be attributed to Mg reducing
Al saturation at the apoplasmic binding sites and decreasing Al
activity at the root-cell plasma-membrane surface. On the other
hand, in legumes, relatively low (micromolar) concentrations of
Mg significantly alleviated Al-induced root growth inhibition in
soybean (Silva et al., 2001), rice bean (Yang et al., 2007), and
faba bean (Chen et al., 2015) through enhancement of Al-induced
citrate exudation. It is important to point out that the Mg-related
enhancement of Al-induced citrate exudation was dependent on
the activation of the plasma membrane H+-ATPase in rice bean
(Yang et al., 2007) and faba bean (Chen et al., 2015).

Chen et al. (2015) determined the expression of the genes
encoding MATE as well as the plasma membrane H+-ATPase
in the presence or absence of Mg under Al stress in faba bean
roots. The expression of both a putative MATE-like gene and
vha2 (Vicia faba plasma membrane H+-ATPase 2) was induced
by Al but not Mg. Furthermore, immunoprecipitation, pull-down
and Western blot analyses showed that phosphorylation of the
penultimate Thr-residue in VHA2, as well as its in vivo and
in vitro association with the vf14-3-3b protein, both increased
in the presence of Mg under Al stress, which corresponded well
with the Mg-mediated enhancement of (i) the plasma membrane
H+-ATPase activity and (ii) citrate exudation under Al stress
(Chen, 2012; Chen et al., 2015). The Mg-mediated increase in
phosphorylation of the Thr-residue in the plasma membrane
H+-ATPase may enhance binding of the 14-3-3 protein and thus
activation of the enzyme.

Auxin Transport
The auxin signaling has been shown to be involved in abiotic
stresses such as salt (Albacete et al., 2008) and low P (Shen
et al., 2006). In soybean roots, low-P induced endogenous
IAA accumulation that (similarly to an exogenous application
of 10 µM IAA) increased the activity of plasma membrane
H+-ATPase and enhanced P uptake (Shen et al., 2006). In
Arabidopsis, the pin2 and aux1 mutants exhibited the much
decreased activity of the plasma membrane H+-ATPase and
depressed root elongation under alkaline (Xu et al., 2012) and
acidic stress (Inoue et al., 2016).

The Al-induced auxin accumulation in Arabidopsis root-
apex transition zone was crucial for Al-related root growth
inhibition (Yang et al., 2014). Primary root elongation was less
inhibited in theArabidopsis auxin-polar-transport mutantsAUX1
(AUXIN RESISTANT 1) and PIN2 (PIN-FORMED) than wild-
type plants under Al stress (Sun et al., 2010). Consistently,
auxin signaling was involved in the Al-induced primary root
growth inhibition, but promoted lateral root formation and
maturation (Ruiz-Herrera and Lopez-Bucio, 2013). In wheat
roots, the Al-induced endogenous IAA accumulation correlated
significantly with malate exudation; similarly, the exogenous
treatment with 10 µM IAA enhanced, whereas that with 30 µM
1-naphthylphthalamic acid (NPA, an auxin efflux transport
inhibitor) decreased, malate efflux and Al concentration (Yang
et al., 2011d). In soybean roots, Wang (2014) found that the
mRNA abundance of GmPIN2 and IAA concentration in soybean
roots were increased after treatment with 25 or 50 µM Al, but
not 200 µM Al. Furthermore, the Al-induced citrate exudation
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as well as the expression of GmMATE and the phosphorylation
of the plasma membrane H+-ATPase in soybean roots were
significantly increased by IAA, but decreased by IAA transport
inhibitor TIBA (2,3,5-triiodobenzoic acid) (Wang et al., 2016).
In accordance with these pharmacological results obtained in
soybean, the genetic data using pin2 and aux1-7 Arabidopsis
mutants showed a decrease not just in the activity of the
plasma membrane H+-ATPase, but also in citrate exudation and
expression of AtMATE (Yu, 2017). Hence, it is suggested that
activation of the plasma membrane H+-ATPase and upregulation
of the MATE expression are involved in the auxin enhancement
of Al-induced citrate exudation.

Transgenic Methods to Increase Activity
of the Plasma Membrane H+-ATPase
Overexpressing either the plasma membrane H+-ATPase directly
or its regulatory components has been shown to be effective
in enhancing the activity of this enzyme. Ectopic expression
of PeHA1 from Populus euphratica significantly increased the
proton pumping activity of the plasma membrane H+-ATPase
and salt tolerance in transgenic Arabidopsis (Wang et al.,
2013). In tobacco plants, expressing a plasma membrane H+-
ATPase isoform lacking the autoinhibitory domain (1PMA4)
constitutively activated the plasma membrane H+-ATPase
and resulted in abnormal leaf inclination and twisted stems,
suggesting alterations in cell expansion (Gevaudant et al., 2007).
Under salt stress conditions, the 1PMA4 plants displayed
increased salt tolerance during germination and seedling growth
(Gevaudant et al., 2007).

Under Al stress, overexpression of AHA1 in Arabidopsis
significantly increased organic acid anion exudation and Al
resistance in comparison with the wild-type plants (Wu
et al., 2008). To investigate the interaction between 14-3-3
proteins and plasma membrane H+-ATPase of soybean in the
regulation of citrate exudation and Al resistance, Guo (2013)
obtained transgenic tobacco overexpressing soybean SGF14a
that encodes a 14-3-3 protein. The expression of SGF14a in
tobacco significantly increased the activity and phosphorylation
of the plasma membrane H+-ATPase and interaction with the
14-3-3 proteins, resulting in activation of the Al-induced citrate
exudation and Al resistance. Overexpression of soybean 1GHA2
lacking the autoinhibitory domain of the plasma membrane
H+-ATPase isoform had no effect on phosphorylation of the
plasma membrane H+-ATPase and the interaction with 14-
3-3 proteins, but it significantly improved plasma membrane
H+-ATPase activity, citrate exudation, Al resistance, and the
growth of transgenic tobacco in acidic soil (Guo, 2013).

CONCLUSION

The plant plasma membrane H+-ATPase plays the important
roles in plant growth under optimal and Al stress conditions.
In several plant species, the Al-resistant genotypes show
higher activity of the plasma membrane H+-ATPase than the
Al-sensitive ones, which is associated with higher gene expression
and protein abundance as well as the penultimate threonine-
residue phosphorylation of the enzyme and its interaction with
14-3-3 proteins. Providing the motive force for MATE-mediated
transport of citrate anion out of root epidermal cells and
maintaining the physiological H+ and charge gradients across
the plasma membrane might be the two main functions of
the plasma membrane H+-ATPase under Al stress. Further
work is needed to improve plant Al resistance by modulating
activity of the plasma membrane H+-ATPase, especially in
plant species relying on facilitated citrate exudation as the
main Al-resistance mechanism. However, some fundamental
questions remain unclear. For example, activation of the plasma
membrane H+-ATPase occurs also under P deficiency and salt
and heavy metal stresses. Possibly, Al toxicity shares a similar
signaling pathway with these abiotic stresses to regulate the
plasma membrane H+-ATPase activity. Moreover, the research
on the interaction between Al toxicity and plasma membrane
H+-ATPase has focused so far on just several plant species,
such as soybean, faba bean, wheat, tea, and Arabidopsis;
therefore, the function of plasma membrane H+-ATPase in
response to Al toxicity in other plant species, especially in
Gramineae such as barley, maize, and sorghum where MATE-
mediated citrate exudation occurs under Al stress, needs to be
elucidated.
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