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Hormonal Regulation in Shade
Avoidance
Chuanwei Yang and Lin Li*

State Key Laboratory of Genetic Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai,
China

At high vegetation density, shade-intolerant plants sense a reduction in the red (660 nm)
to far-red (730 nm) light ratio (R/FR) in addition to a general reduction in light intensity.
These light signals trigger a spectrum of morphological changes manifested by growth
of stem-like tissue (hypocotyl, petiole, etc.) instead of harvestable organs (leaves,
fruits, seeds, etc.)—namely, shade avoidance syndrome (SAS). Common phenotypical
changes related to SAS are changes in leaf hyponasty, an increase in hypocotyl
and internode elongation and extended petioles. Prolonged shade exposure leads
to early flowering, less branching, increased susceptibility to insect herbivory, and
decreased seed yield. Thus, shade avoidance significantly impacts on agronomic traits.
Many genetic and molecular studies have revealed that phytochromes, cryptochromes
and UVR8 (UV-B photoreceptor protein) monitor the changes in light intensity under
shade and regulate the stability or activity of phytochrome-interacting factors (PIFs).
PIF-governed modulation of the expression of auxin biosynthesis, transporter and
signaling genes is the major driver for shade-induced hypocotyl elongation. Besides
auxin, gibberellins, brassinosteroids, and ethylene are also required for shade-induced
hypocotyl or petiole elongation growth. In leaves, accumulated auxin stimulates
cytokinin oxidase expression to break down cytokinins and inhibit leaf growth. In
the young buds, shade light promotes the accumulation of abscisic acid to repress
branching. Shade light also represses jasmonate- and salicylic acid-induced defense
responses to balance resource allocation between growth and defense. Here we will
summarize recent findings relating to such hormonal regulation in SAS in Arabidopsis
thaliana, Brassica rapa, and certain crops.
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INTRODUCTION

Over the past few decades, a substantial body of studies has focused on understanding how plants
sense the proximity of neighbors, how they respond at molecular levels, and how they adjust their
morphological and physiological indexes. Many important light signaling components have been
shown to regulate the shade avoidance responses—for example, PIFs (phytochrome interacting
factors), HFR1 (long hypocotyl in far-red 1), PAR1/2 (phytochrome rapidly regulated 1/2) and
COP1 (constitutive photomorphogenic 1). Meanwhile, various phytohormones are also involved
and coordinated to shape shade-regulated plant architecture. Analyses of hormonal biosynthetic
and signaling mutants, combined with studies of exogenous hormone applications, have implicated
the roles of these phytohormones in multiple shade avoidance responses. In this review, we provide
an overview of the current understanding of shade light and subsequent hormonal regulation.
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SHADE SIGNAL AND PLANT
PERCEPTION

Light-quality signals are of paramount importance in detecting
neighboring vegetation. Photosynthetic pigments in leaves
absorb strongly in the range of photosynthetically active radiation
(PAR) (400–700 nm) and UV radiation (280–400 nm), and reflect
far-red wavelength (700–800 nm) (Casal, 2013). Thus, natural
shade is a combination of the reduction in the red/far-red ratio
(R/FR), the reduction in red plus far-red irradiance, the reduction
in blue and UV irradiance, and the reduced blue/green ratio.
To detect these spectral differences, plants use multiple light
sensors, such as red and far-red light absorbing phytochromes,
the blue/UV-A light sensing cryptochromes, and the UV-B
photoreceptor protein (UVR8).

A BRIEF ACCOUNT OF THE SHADE
SIGNALING PATHWAY

Phytochromes exist in two photoconvertible forms: an inactive
R-absorbing Pr form and an active FR-absorbing Pfr form.
The steady-state ratio of Pr and Pfr forms depends on R/FR.
The constitutive shade avoidance syndrome (SAS) phenotype
of Arabidopsis phyB mutant plants indicates that phyB plays a
dominant role in inhibiting SAS (Franklin and Quail, 2010).
High R/FR establishes a high proportion of phyB Pfr, which
interacts with the bHLH family of transcription factor PIFs and
triggers the phosphorylation, ubiquitination and degradation of
PIFs. In contrast, low R/FR drives Pfr-to-Pr conversion and
releases the suppression of PIFs. Activated PIFs promote gene
expression related to shade-induced growth. PIF7, PIF4 and PIF5
play central roles in this process (Lorrain et al., 2008; Li L. et al.,
2012).

To prevent exaggerated shade-avoidance responses, shade-
induced HFR1 (Sessa et al., 2005; Hornitschek et al., 2009),
PAR1/2 (Roig-Villanova et al., 2006; Galstyan et al., 2011; Bou-
Torrent et al., 2014), and PIL1 (PIF3 like 1) (Li et al., 2014;
Luo et al., 2014) are proposed as the negative regulators of PIFs.
The bZIP transcription factor, elongated hypocotyl 5 (HY5), is
also reported to form non-functional complexes with PIFs (Chen
et al., 2013; Toledo-Ortiz et al., 2014). In addition to directly
binding with PIFs, the Suppressor of phyA-105 (SPA)/COP1
E3 ubiquitin ligase complex indirectly enhances PIF activity by
degrading HFR1 and HY5 to augment shade responses (Sheerin
et al., 2015; Pacin et al., 2016). BBX (double B-box) 21 and
BBX25 regulate shade response through the function in the COP1
signaling pathway (Crocco et al., 2010; Gangappa et al., 2013).

Cryptochromes (CRYs) are involved in repressing a low blue-
mediated SAS by regulating PIF abundance and activity (de
Wit et al., 2016; Pedmale et al., 2016). PIF activity is enhanced
directly through CRY inactivation and indirectly through relieved
inhibition of COP1, which increases the degradation of negative
regulators of PIF, including HFR1 and HY5 (de Wit et al., 2016).

UV-B-mediated inhibition of shade responses has been
reported to occur through the degradation of PIF4/5 (Hayes et al.,
2014).

In summary, downstream of photoreceptors, PIFs, as
the key regulators, determine the massive transcriptional
reprogramming upon perception of shade light, and also
mediates the convergence between light and hormones.

AUXIN, A PROMINENT PLAYER IN
SHADE-INDUCED ELONGATION
GROWTH

A forward genetic screen for impaired shade-induced hypocotyl
elongation in Arabidopsis identified TAA1, an enzyme catalyzing
the first step of an auxin biosynthetic pathway (Tao et al., 2008;
Won et al., 2011). Later, a family of enzymes encoded by YUCCA
(YUC) genes has been functionally positioned as the second
and rate-limiting step of TAA1-dependent auxin biosynthesis
(the indole-2-pyruvic acid pathway, or “IPA pathway”). The
transcriptional regulation of YUCCA genes by PIF7 has been
found to link photoperception with auxin biosynthesis (Li
L. et al., 2012). The level of shade-stimulated free indole-3-
acetic acid (IAA) is blunted in taa1, and pif7 mutants confirm
that auxin production through the TAA1-YUC pathway is
required to initiate the SAS in seedlings (Tao et al., 2008; Li L.
et al., 2012; Procko et al., 2014). PIF4 and PIF5 are partially
redundant, with PIF7 regulating the expression of YUCCA genes
(Hornitschek et al., 2012). Correspondingly, the yuc2 yuc5 yuc8
yuc9 quadruple mutant displays the completely disrupted SAS
(Nozue et al., 2015; Muller-Moule et al., 2016). Tissue-level
measurement in Brassica rapa seedlings has suggested that auxin
appears to be generated in the cotyledons and transported to
the hypocotyl (Procko et al., 2014). Indeed, seedlings treated
with the auxin transport inhibitor naphthylphalamic acid (NPA)
totally abolish shade-induced hypocotyl elongation (Tao et al.,
2008). Consistently, pin3-3 (PIN3, auxin transporter) exhibits an
impaired shade-induced hypocotyl elongation (Keuskamp et al.,
2010), and the mutation in SAV4 leads to defective basipetal auxin
transport and shade responses (Ge et al., 2017), indicating that
auxin redistribution is important for shade-avoidance reactions
(Morelli and Ruberti, 2000).

Besides auxin biosynthesis and transport, auxin sensitivity is
also enhanced under shade (Nozue et al., 2011; Hornitschek et al.,
2012; Bou-Torrent et al., 2014). Auxin signaling components,
such as AUX/IAAs (Auxin/indole-3-acetic acid), have been
reported to modulate the SAS (Steindler et al., 1999; Procko et al.,
2016).

In addition to Arabidopsis, the key role of auxin on the
SAS has also been confirmed in crop species (Carriedo et al.,
2016). Shade-induced changes in auxin level have been found in
sunflower (Kurepin et al., 2007) and tomato (Kozuka et al., 2010).
Expression quantitative trait locus (eQTL) analysis identified
a group of auxin-related genes, which were down-regulated
in shade-tolerant tomato lines and up-regulated in the shade
responders, suggesting the role of auxin in the natural variation
of the SAS (Bush et al., unpublished). In maize seedlings (Wang
et al., 2016) and rice seedlings (Liu et al., 2016), the expression
of auxin-responsive genes is also dramatically affected by shade
treatment.
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Considered together, it may be concluded that intact auxin
biosynthesis, transportation and signaling are required for shade-
induced stem growth.

GIBBERELLIN, ANOTHER SHADE
GROWTH-PROMOTING HORMONE

Shade treatment resulted in an increased gibberellin (GA)
concentration in bean internode (Beall et al., 1996), cowpea
(Vigna sinensis) epicotyls (Martínez-García et al., 2000),
sunflower stem (Kurepin et al., 2007) and Arabidopsis seedling
(Bou-Torrent et al., 2014). The shade-induced GA biosynthetic
enzymes GA20ox1, GA20ox2, and GA3ox at least in part account
for the increase in active GA (Hisamatsu et al., 2005; Yu et al.,
2015).

Bioactive GA leads to proteasomal degradation of DELLA
proteins (Harberd et al., 2009). Lacking direct DNA binding
capability, DELLAs are direct interactors of PIFs. Their
binding prevents PIF proteins from binding DNA and thus
negatively regulates the expression of genes involved in cell
elongation (de Lucas et al., 2008; Feng et al., 2008). Shade-
induced breakdown of DELLA proteins due to increased
gibberellin biosynthesis releases the suppression of PIFs,
and activates the transcription of target genes. The GA-
insensitive gai gain-of-function mutant, which has a stable
GAI (DELLA) protein, shows a reduced SAS (Djakovic-Petrovic
et al., 2007), suggesting that DELLA proteins constrain the
SAS.

It is noteworthy that proteins that physically interact with
DELLA proteins may alleviate DELLA-mediated repression of
PIF activity, such as BBX24. The shade-response defect in
bbx24 mutants is rescued by a GA treatment (Crocco et al.,
2015).

In addition to GA-induced seedling phenotypes, GA
biosynthesis and signaling are also important for shade-induced
flowering. Silencing GA20ox2 expression delays flowering of
Arabidopsis exposed to a FR-enriched light condition (Hisamatsu
and King, 2008).

ETHYLENE, AN ORGAN-SPECIFIC
REGULATOR OF THE SAS

Low R/FR can enhance the production of ethylene in wide-
type tobacco (Pierik et al., 2004). In Arabidopsis, shade-induced
petiole elongation was absent in the ethylene-insensitive mutants
ein2-1 and ein3-1eil1-3, indicating that ethylene is a positive
regulator of shade-induced petiole elongation (Pierik et al.,
2009). However, the ein3eil1 mutant retains a full shade-
induced hypocotyl response (Das et al., 2016). The controversy
suggests that ethylene plays a role in organ-specific shade
response.

A recent research shows that light activation of photoreceptor
phyB results in rapid degradation of EIN3, a master transcription
factor in the ethylene signaling pathway (Shi et al., 2016). The

position of ethylene signaling components under shade is worthy
of further investigation.

BRASSINOSTEROID, A DYNAMIC
REGULATOR UNDER SHADE

The promotion of stem growth by shade light requires
brassinosteroids (BRs) because the BR biosynthesis mutant
dwarf1 (Luccioni et al., 2002) and rot3 (Kim et al., 1998) are
unable to show the elongation of hypocotyl under shade, as
with wild-type seedlings treated with the BR synthesis inhibitor
brassinazole (Keuskamp et al., 2011). BR biosynthesis is also
required for petiole growth under low R/FR (Kozuka et al., 2010).
However, short-term (4 h) simulated shade treatments resulted in
lower levels of the active BR, and longer periods (24 h) abolished
the differences in BR levels in whole seedlings (Bou-Torrent et al.,
2014), suggesting that simulated shade altered BR levels in a
dynamic fashion.

Beside the level of hormones, the sensitivity of seedlings to
hormones also has an important effect on shade-induced growth.
BR signaling components BR-ENHANCED EXPRESSION (BEE)
and BES1-INTERACTING MYC-LIKE (BIM) are positive
regulators of SAS hypocotyl responses because bee123 and
bim123 seedlings display hypocotyl elongation defects after
detecting simulated shade (Cifuentes-Esquivel et al., 2013).
Remarkably, DELLAs negatively regulate BR signaling by binding
BZR1 and reducing the expression of BR-responsive genes (Bai
et al., 2012; Gallego-Bartolome et al., 2012; Li Q.F. et al.,
2012). The transcription factor BZR1 and PIF4 physically
interact and synergistically regulate target genes (Oh et al., 2012;
Kohnen et al., 2016). Given that the binding of DELLA and PIFs
impair the DNA-binding ability of PIFs, the complex of DELLAs,
BZR1, and PIFs may play a role in stem elongation, and possibly
exerts a similar function in shade avoidance, but this needs
further investigation (Casal, 2013; de Lucas and Prat, 2014).
In concordance with these findings, BR-responsive genes are
overrepresented in end-of-day FR-induced genes in both the leaf
blade and petiole (Kozuka et al., 2010). Although the majority of
the BR genomic response comprises genes annotated as auxin
responsive, the regulation of BR and auxin on SAS responses
might nevertheless occur in a non-redundant and non-synergistic
manner, because the response to blue light depletion will be fully
inhibited only when both hormones are blocked simultaneously
(Keuskamp et al., 2011).

In particular, the BR response appears to be required for the
full expression of the SAS phenotypes under low blue light (Keller
et al., 2011; Keuskamp et al., 2011). The question as to how BR
biosynthesis and signaling dynamically respond to low R/FR or
low blue light is yet to be answered.

CYTOKININ, ENSURING REALLOCATION
OF PLANT RESOURCES

The role of cytokinins (CKs) in shade avoidance responses
was discovered from the response of plants to vertical light
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intensity gradients in leaf canopies (Pons et al., 2001). In
shaded leaves, where stomatal conductance and transpiration
rate are reduced, the low delivery rate of CKs leads to reduced
photosynthetic capacity and ultimately senescence (Boonman
and Pons, 2007).

Another role of CKs was found in the inhibition of leaf growth
in shade. Low R/FR signal can induce hypocotyl elongation
and also trigger a rapid arrest of leaf-primordia growth by the
breakdown of auxin-induced CKs through the action of AtCKX6
(cytokinin oxidase) in the incipient vein cells of developing
primordia (Carabelli et al., 2007). In addition, the CK receptor
AHK3 has been reported to mediate the root-to-hypocotyl ratio
response under shade conditions (Novak et al., 2015).

The reduction of bioactive CKs triggers a reduced
photosynthetic capacity and a transient arrest of leaf
development, ensuring that energy resources are indeed
redirected into extension growth in shade.

JASMONIC ACID, SHADE-REDUCED
HORMONE RELATED TO DEFENSE

Plants often display a weak defense in insect and pathogen
infection under shade conditions or FR-enriched conditions
(Cerrudo et al., 2012; de Wit et al., 2013; Ballare, 2014).
Shade has been shown to reduce herbivory-induced
jasmonic acid (JA) accumulation (Agrawal et al., 2012),
and FR-exposed plants suffer more insect herbivory than
wild-type plants (Moreno et al., 2009), suggesting that
shade can down-regulate the JA pathway to control plant
immunity.

The JAZ-DELLA pathway is an important modulator of
plant immunity under shade conditions (Moreno and Ballare,
2014). DELLA proteins positively regulate JA signaling by
interacting with JAZs, and this interaction weakens the ability
of JAZs to repress MYC2 (Hou et al., 2010; Yang et al., 2012).
As described previously, DELLA proteins negatively regulate
growth-related genes by binding PIFs (de Lucas et al., 2008;
Feng et al., 2008). JAZ10 is required for the inhibitory effect
of shade on JA responses (Leone et al., 2014). Therefore,
shade conditions induce GA synthesis and the degradation
of DELLA proteins, consequently increasing PIF-dependent
growth and impairing JAZ-dependent defense. Canopy shade
represses JA-mediated defenses via shade-induced stabilization
of JAZ proteins and triggers inactivation of MYC2, MYC3, and
MYC4 proteins (Chico et al., 2014). By contrast, regulation of
the protein stability of MYCs and JAZs by shade facilitates
reallocation of resources from defense to growth. The mutants
deficient in JA biosynthesis and signaling display exaggerated
shade-induced hypocotyl responses to a low R/FR ratio
(Robson et al., 2010). Moreover, several FR light induced gene
expressions are dependent on CORONATINE INSENSITIVE1
(COI1), a central component of JA signaling (Robson et al.,
2010).

Canopy light cues affect emission of constitutive and
methyl JA-induced volatile organic compounds, which
can be detected by herbivorous insects (Kegge et al.,

2013). A recent study found that in tomato (Solanum
lycopersicum) phyB inactivation led the plants to produce
a blend of JA-induced monoterpenes that increased their
attractiveness to the predatory mirid bug Macrolophus
pygmaeus (Cortes et al., 2016; Ballare and Pierik,
2017).

Certain transcription factors in the JA signaling pathway
also participate in the regulation of SAS; for example,
PHYTOCHROME AND FLOWERING TIME 1 (PFT1), a
subunit of Mediator, is required for both JA-dependent defense
gene expression and shade-induced early flowering (Cerdan and
Chory, 2003; Cevik et al., 2012; Inigo et al., 2012). These factors
could be the additional linkers of light signal and JA-mediated
defenses.

SALICYLIC ACID, ANOTHER
SHADE-REDUCED HORMONE

Salicylic acid (SA)-dependent disease resistance is also reduced
under shade, which is considered as the early warning signal for
plant competition (de Wit et al., 2013). Reduced SA synthesis
(Griebel and Zeier, 2008) and response (de Wit et al., 2013)
have been correlated with phyB inactivation. Under a low R/FR
ratio, the phosphorylation level of the SA-signaling component
NONEXPRESSOR of PATHOGENESIS-RELATED GENE 1
(NPR1) is reduced, which partly explains why shade reduces SA-
dependent disease resistance. A more detailed explanation of the
mechanism that exists between shade avoidance responses and
SA is required.

ABSCISIC ACID, REPRESSING
BRANCHING UNDER SHADE

Abscisic acid (ABA) is commonly known as the “stress
hormone” that responds to a variety of environmental stresses
including both biotic and abiotic stress. Shade conditions
increase ABA levels in sunflower (Helianthus annuus) (Kurepin
et al., 2007) and tomato leaves (Cagnola et al., 2012). Shade
increases the endogenous ABA level probably by enhancing
the transcript levels of ABA biosynthetic gene NINE-CIS-
EPOXYCAROTENOID DIOXYGENASE 3 (NCED3) and NCED5,
particularly in hypocotyls (Kohnen et al., 2016). Several ABA
signaling genes (ABF3, AFP1, AFP3, and GBF3) are up-regulated
by a neighbor signal (Sellaro et al., 2017).

Shade light exerts a strong influence on branch development
(Finlayson et al., 2010; Su et al., 2011). One recent study suggested
that shade represses branching in bud n-2 by accumulation of
ABA (Reddy et al., 2013). The genes involved in ABA biosynthesis
and signal transduction showed varied gene expression patterns
in responsive buds with increasing R/FR treatment. ABA
biosynthesis mutants (nced3-2 and aba2-1) exhibited enhanced
branching capacity under low R/FR.

However, ABA was not involved in shade-induced petiole
elongation (Pierik et al., 2011), suggesting that the roles of ABA
in the SAS may be organ specific.
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FIGURE 1 | Hormonal regulation in shade avoidance. Auxin, Gibberellin (GA),
Brassinosteroid (BR), Karrikin and strigolactone (SL) are involved in
shade-regulated stem growth. Ethylene is required for shade-induced petiole
elongation. Shade-reduced cytokinin (CK) inhibits the leaf growth. Shade light
also represses salicylic acid (SA) and jasmonic acid (JA) mediated defense.
Abscisic acid (ABA) and SL suppress branching in shade. GA contributes to
shade-induced early flowering. Shade-stimulations are presented in green and
shade-supressions are presented in red.

STRIGOLACTONE, AN UNCLEAR ROLE
IN THE SAS

Most shade-avoiding plants display reduced branching and
enhanced apical growth, which helps them to compete for
incident light. Strigolactone (SL) is one of the hormones
that control lateral shoot growth. In Arabidopsis, BRC1
(BRANCHED1) is up-regulated in the axillary buds of plants
grown at high density and is required for shade-mediated branch
suppression (Aguilar-Martinez et al., 2007; Gonzalez-Grandio
et al., 2013). In sorghum, inhibition of outgrowth in a phyB
mutant and by FR treatment is correlated with an increase
in the transcript levels of the SL-signaling gene SbMAX2 in
buds (Kebrom et al., 2010). The involvement of SL in SAS has
been observed, but more detailed studies of this mechanism are
required.

Besides branching, Arabidopsis max2 mutants show longer
hypocotyls under red, far-red and blue light than wild–type plants
(Shen et al., 2012; Jia et al., 2014). The double mutant pif1max2

shows a similar hypocotyl length to max2, which indicates that
MAX2 is epistatic to PIF1 (Shen et al., 2012). MAX2 plays a role
in the light signaling pathway, but further investigation of the
mechanisms involved is needed.

KARRIKINS, A POSSIBLE WAY TO
ATTENUATE THE SAS

Studies have shown that karrikins enhance the sensitivity of
seedlings to light (Waters and Smith, 2013). Since karrikins can
inhibit elongation of the hypocotyl and increase the chlorophyll
content (Nelson et al., 2010), they may be an efficient solution
to attenuating plant SAS during the seedling stage (Meng et al.,
2016).

FINAL REMARKS

This review focused on understanding the interaction between
phytohormones and the SAS (Figure 1). The regulations of these
phytohormones on the SAS described here might vary according
to tissue type (Kohnen et al., 2016), stage of development
(Roig-Villanova and Martinez-Garcia, 2016) and species (Liu
et al., 2016). In this regard, further research into the spatial
and temporal regulation of phytohormones is necessary for a
mechanistical understanding of the SAS. Moreover, crosstalk
among hormones under shade conditions is also worthy of
further investigation.
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