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Image-based high-throughput plant phenotyping in greenhouse has the potential to

relieve the bottleneck currently presented by phenotypic scoring which limits the

throughput of gene discovery and crop improvement efforts. Numerous studies have

employed automated RGB imaging to characterize biomass and growth of agronomically

important crops. The objective of this study was to investigate the utility of hyperspectral

imaging for quantifying chemical properties of maize and soybean plants in vivo. These

properties included leaf water content, as well as concentrations of macronutrients

nitrogen (N), phosphorus (P), potassium (K), magnesium (Mg), calcium (Ca), and sulfur

(S), and micronutrients sodium (Na), iron (Fe), manganese (Mn), boron (B), copper (Cu),

and zinc (Zn). Hyperspectral images were collected from 60 maize and 60 soybean

plants, each subjected to varying levels of either water deficit or nutrient limitation

stress with the goal of creating a wide range of variation in the chemical properties

of plant leaves. Plants were imaged on an automated conveyor belt system using

a hyperspectral imager with a spectral range from 550 to 1,700 nm. Images were

processed to extract reflectance spectrum from each plant and partial least squares

regression models were developed to correlate spectral data with chemical data.

Among all the chemical properties investigated, water content was predicted with

the highest accuracy [R2 = 0.93 and RPD (Ratio of Performance to Deviation) = 3.8]. All

macronutrients were also quantified satisfactorily (R2 from 0.69 to 0.92, RPD from 1.62

to 3.62), with N predicted best followed by P, K, and S. The micronutrients group

showed lower prediction accuracy (R2 from 0.19 to 0.86, RPD from 1.09 to 2.69) than

the macronutrient groups. Cu and Zn were best predicted, followed by Fe and Mn. Na

and B were the only two properties that hyperspectral imaging was not able to quantify

satisfactorily (R2 < 0.3 and RPD < 1.2). This study suggested the potential usefulness of

hyperspectral imaging as a high-throughput phenotyping technology for plant chemical

traits. Future research is needed to test the method more thoroughly by designing

experiments to vary plant nutrients individually and cover more plant species, genotypes,

and growth stages.
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INTRODUCTION

High throughput plant phenotyping based on analysis of image
data has recently emerged as a new frontier field for plant
breeding and crop improvement. Modern plant breeding and
crop improvement efforts depend on a combination of genotypic
and phenotypic data. Advances in sequencing technology have
drastically reduced the time span, labor, and cost required
to generate genotypic data. However, the collection of plant
phenotypic data has proven more recalcitrant to increases
in throughput and/or decreases in cost, and now represents
the rate-limiting step in plant breeding efforts (Houle et al.,
2010; Furbank and Tester, 2011; Fiorani and Schurr, 2013).
The goal of high throughput plant phenotyping technologies
is to enable the collection of large-scale plant morphological
and physiological traits rapidly and non-destructively. Image
processing pipelines have been developed to extract image-based
trait measurements that are not possible with the conventional
destructive methods (Klukas et al., 2014; Knecht et al., 2016). A
majority of early research on high throughput plant phenotyping
largely focused on the model plant Arabidopsis thaliana, but
it has quickly expanded to a number of important field crops
including wheat (Golzarian et al., 2011), barley (Chen et al.,
2014), rice (Campbell et al., 2015), foxtail millet (Fahlgren
et al., 2015a), sorghum (Neilson et al., 2015), and maize
(Ge et al., 2016). These studies demonstrated the usefulness
and benefit of image-based high throughput phenotyping for
characterizing plant growth, biomass and yield, and the temporal
dynamics of changes in these traits across different stages of
development.

RGB (Red Green Blue) images capture data on light intensities
in three spectral bands corresponding to the responses of
the three types of cones in the human eye. RGB images are
collected using the same imaging technologies widely employed
in consumer cameras. As a result, these sensors usually have
the lowest cost and the highest pixel resolution. RGB image
data is most commonly used to measure plant size, biomass,
and growth rate. Fluorescence imaging quantifies fluorescence
intensity of excited chlorophyll molecules in Photosystem II, and
is used to measure photosynthetic activities of plants (Jansen
et al., 2009). Thermal infrared (TIR) imaging measures the
temperature of the plant leaf surface, and therefore has the
potential to quantify stomata resistance and water evaporation
from the leaves (Sirault et al., 2009). Furthermore, 3D imaging
systems are also investigated to quantify the 3D structure of the
plants (Chéné et al., 2012). There are two clear advantages of
image-based phenotyping. Firstly, plants can be subject to several
of these imaging modalities, allowing non-destructive evaluation
of many aspects of plant traits simultaneously. Secondly, imaging
by its nature is non-destructive, allowing trait measurements
at multiple time points along plants’ life cycle which enables
temporal dynamic analysis.

Non-imaging spectroscopy can quantify light intensity across
hundreds or thousands of distinct spectral bands but does not
provide data on spatial variation. These bands are commonly
divided into the visible (VIS, 400–700 nm), near infrared (NIR,
700–1,100 nm) and short wave infrared (SWIR, 1,100–2,500 nm)

spectral regions. Non-imaging spectroscopy is commonly used
as a remote, non-destructive method for rapid analysis of
many properties for both fresh leaves and processed plant
materials. VIS is the region where photosynthetic pigments such
as chlorophylls, carotenoids, and xanthophyll absorb strongly;
whereas reflection in NIR is dominated by structural reflection
of turgid plant cells. These two regions combined are often
employed to probe the properties of living plant leaves such as
pigment concentrations, water content, and light use efficiencies
(Penuelas and Filella, 1998; Sims and Gamon, 2002; Blackburn,
2007). Many empirical and semi-empirical spectral indices—
such as Normalized Difference Vegetation Index (NDVI),
Photochemical Reflectance Index (PRI), and chlorophyll index—
have been designed and derived from the leaf reflectance spectra
and found to be correlated with plant physiological status.
Biological samples are abundant in chemical bonds that absorb
strongly in the mid infrared region, and those strong vibrational
bands cause discernible bands (their combinations, 1st overtone
and 2nd overtone) in the SWIR region. This forms the chemical
basis of using SWIR to quantify properties such as protein,
phosphorus, cellulose, hemicellulose, and mineral (ash) contents
in the processed (usually dried and ground) plant materials
(Batten, 1998; Curran et al., 2001). Multivariate modeling
techniques such as principal component regression and partial
least squares regression are often used in these applications to
model the association between plant chemical data and spectral
data.

Due to these successful uses of non-imaging spectroscopy
on plant characterization, hyperspectral imaging (or imaging
spectroscopy) is widely recognized as an imaging modality
of great potential for high throughput plant phenotyping (Li
et al., 2014; Fahlgren et al., 2015b). Hyperspectral imaging
combines features of both RGB imaging (multiple distinct
pixels) and spectroscopy (intensity data from many different
distinct spectral bands). It has the potential to complement
other imaging modules by enabling the measurement of plant
chemical traits (such as water, nitrogen, and nutrient levels),
rendering a more complete characterization of plant traits.
Because hyperspectral imaging measures the entire spectrum
at each plant pixel, versatile analytical techniques (such as
multivariate statistical modeling) can be employed, which
could further expand its utility in phenotype formulation and
extraction.

Several authors have used hyperspectral imaging to
characterize the spectral variations of field crops under drought
stress (Römer et al., 2012) or disease stress (Mahlein et al., 2012;
Bauriegel and Herppich, 2014). Field phenotyping systems that
incorporate hyperspectral imaging are also reported (Busemeyer
et al., 2013; Virlet et al., 2016). Nevertheless, the literature is
scant in the use of hyperspectral imaging to quantitatively
measure chemical properties of plants at the single plant level
(i.e., greenhouse phenotyping). In this study, we conducted
experiments in a high throughput phenotyping greenhouse
equipped with a hyperspectral imaging system to investigate how
effectively hyperspectral imaging can quantify plant chemical
properties including water content and macronutrient and
micronutrient concentrations in plant leaves.
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MATERIALS AND METHODS

Hyperspectral Camera and Imaging
Chamber
The hyperspectral imaging system is the part of high throughput
phenotyping greenhouse (Scanalyzer3D, LemnaTec GmbH,
Aachen, Germany) installed at the University of Nebraska-
Lincoln. The hyperspectral camera is an extended VNIR (visible
and near infrared), push-broom type imaging spectrometer
(Headwall Photonics, Fitchburg, MA, USA). Both plants and the
camera remain still during image acquisition. A scanning mirror
inside the imaging system is rotated to sequentially expose each
line of image from the top to the bottom of the imaging chamber.
The camera has a nominal spectral range from 550 to 1,700
nm (the green-red portion of VIS, the entire NIR, and the first
part of SWIR). The spectral interval of each image band is 4.77
nm, giving a total of 243 image bands for each hyperspectral
image cube. In the spatial domain, the imaging detector array
is 320-pixel wide. The mirror’s incremental angle at each step
is configured such that the pixel size at the scanning (vertical)
direction is 5 mm. Each hyperspectral image is consisted of 500
scan lines, which covers the height of the imaging chamber (2,500
mm = 5 × 500). The imaging system is placed in the imaging
chamber such that the scan line matches the entire width of the
imaging chamber (1,600 mm). Therefore, the image pixel size on
the horizontal direction is also 5 mm (1,600/320, meaning square
pixels). The imaging chamber is illuminated by two banks of
halogen lamps (35W, color temperature 2,600 K), one at the back
of the imaging chamber behind the hyperspectral imaging system
and the other on the top. The interior view of the hyperspectral
imaging chamber during image acquisition is shown in Figure 1,
as well as a 3D rendering of the chamber showing its relative
dimension. To reiterate the setup of the hyperspectral system: 500
pixels vertical (5mmper pixel)× 320 pixels horizontal (5mmper
pixel)× 243 spectral bands (4.7 nm wide from 550 to 1,700 nm).

Experiment Design and Data Collection
Sixty maize (Zea mays, B73 inbred) plants and 60 soybean
(Glycine max, Thorne variety) plants were used in this study.
Seeds were germinated and grown in 5.7 L pots having
a diameter of 22 cm and a height of 20 cm filled with
germination mix (Fafard). The temperature in the greenhouse
was maintained between 25 and 27◦C during daytime and 20–
22◦C during the night time. Relative humidity was maintained
at ∼60%. The daily light intensity resulting from natural
sunlight and the supplemental LED peaked at ∼350 µmol/m2/s
photosynthetically active radiation. The supplemental LED had a
lighting period set to 12 h (7:00 to 19:00 h). Plant growth and data
collection occurred in June and July of 2016.

The maize and soybean plants were divided equally into two
different experiments. The first was a water limitation experiment
including 30 maize and 30 soybean plants. The purpose of this
experiment was to create a wide range of plant leaf water contents
for the testing of hyperspectral imaging for plant water content
measurement. These 60 plants were further divided into two
groups: a control group and a water limitation group. For the
control group, water was added daily to each pot to field capacity

(water potential−33 kilo Pascal). For the water limitation group,
water was added daily to each pot to field capacity until 20 Days
after Sowing (DAS) for maize and 27 DAS for soybean. This was
to ensure that non-stressed plants were established before they
were subject to water limitation. After that, only limited amount
of water was added to soybean plants (to prevent complete dry
out) whereas no water was given to the maize plants.

The remaining 30 maize and 30 soybean plants were used
in the second nutrient stress experiment. These maize plants
were divided into groups of 10 plants each and were subjected
to three different nutrient levels: low, medium, and high. The
same procedure was also applied to the soybean plants. The
purpose was to create a large range of nutrient levels (in particular
nitrogen, phosphorus, and potassium) in plant leaves for the
testing of the hyperspectral imaging system. The treatments
were administered using a slow release commercial fertilizer
(Osmocote Pro 5-6 mo. 17-5-11 with improved micronutrients).
The application rate was 20 and 7.5 g per kg of soil for high and
medium levels, respectively; while no fertilizer was applied to the
low nutrient group.

Data collection was done between 27 and 64 DAS,
during which the maize and soybean plants spanned several
developmental stages. The plants under water limitation were
sampled earlier (until 51 DAS) so that the plants under severe
water limitation can be sampled before complete dry out. Most
of the plants in the nutrient stress experiment were therefore
sampled toward the end of the experiment. This was beneficial
since it allowed these plants to grow to larger total biomass
and measurable nutrient deficiency was developed for the plants
receiving medium or low nutrients.

Data collection and imaging was conducted on 10 different
days. On each day, 12 plants were selected. The plants were placed
on Scanalyzer3D’s conveyor belt and transported to system’s
imaging chamber where the hyperspectral images were acquired.
Immediately following each plant, an empty pot carrier was also
sent to the imaging chamber and a blank image was taken as the
reference image. This reference image was used to normalize the
raw digital numbers in plant images to a common range between
0 and 1. This normalization step helped to account for the short-
term and long-term variations in halogen lamps’ energy output
and imaging detector responses.

After image acquisition, the plants were cut above the soil
line to determine the fresh weight (Wfresh) of plant shoot. The
harvested plant shoot materials were placed in a walk-in drying
oven at 50◦C for over 72 h to obtain dry weight (Wdry). The
actual drying time was determined by repeatedly weighing the
dry plantmaterial every 24 h until two consecutivemeasurements
were found to be equal. Plant water content was calculated
WC= (Wfresh −Wdry)/Wfresh × 100%. The dried plant leaves
were sent to a commercial lab (Midwest Laboratories, Omaha,
NE) where the samples were ground, homogenized, and analyzed
to determine the concentration of macronutrients including
total nitrogen (N), phosphorus (P), potassium (K), magnesium
(Mg), calcium (Ca), and sulfur (S), and micronutrients including
sodium (Na), iron (Fe), manganese (Mn), boron (B), copper (Cu),
and zinc (Zn). N was analyzed by Dumas method with a LECO
FP428 nitrogen analyzer (AOAC method 968.06). All other
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FIGURE 1 | (A) The interior view of the hyperspectral imaging chamber. (B) The 3D rendering showing the setup of the imaging chamber.

elements were analyzed with microwave nitric acid digestion
followed by inductively coupled plasma spectroscopy (AOAC
method 985.01).

Hyperspectral Image Analysis and Data
Analysis
Raw hyperspectral image data were in 16 bit BIL (Band
Interleaved by Line) format. A customized function was written
to convert both the raw image data (including both 120 plant
images and 120 reference images) into 3D image cubes. The plant
image cubes were then divided by the reference image cubes
through a band-by-band operation, which converted plant image
pixels from the raw intensity numbers to a fractional number
(between 0 and 1) analog to leaf reflectance. Two image bands
at 705 and 750 nm (I705 and I750) were extracted from the image
cubes to calculate anNDVI image as (I750−I705)/(I750+I705). This
NDVI image was found very effective to segment plants from
the background by setting a universal threshold of 0.20. After
segmentation, the binary image was used to extract plant pixels
from all image bands along the wavelength. Extracted plant pixels
from each image band were then averaged to obtain the average
reflectance of the plants. Through these steps, the hyperspectral
image was reduced to a 243 data-point spectral curve that
represented the average apparent reflectance of each plant from
550 to 1,700 nm. Figure 2 summarizes the image processing
procedure and the example hyperspectral images from this study.
Image processing was implemented in MATLAB (version 2015b,
Mathwork R©, Natick, MA) with the Image Processing Toolbox.

Principal component analysis was first implemented on
spectral data to detect possible outliers in the spectral space.
Partial least squares regression (PLSR) was used to model
and predict water content, macronutrient, and micronutrient
concentrations for maize and soybean plants from their
reflectance spectra. We split the 120 plants into two groups:
60 plants (50%) for model calibration and the other 60 (50%)
for independent model validation. The split was done such that

the species (maize vs. soybean) and the treatment levels for
both water stress and nutrient stress experiments were equally
presented in the calibration and validation set. A check was done
to ensure there was no significant difference in the response
variables between the two sets (Supplementary Table 1), which
was important for effective modeling. For model calibration, the
scheme of leave-one-out cross validation was employed. Models
having as many as 12 latent factors were considered, and the
size of the models was determined by choosing the number of
factors that gave the minimum root mean squared error of cross
validation (RMSECV). The following statistics were calculated
for model evaluation: Coefficient of Determination (R2) between
lab-measured and model predicted values, RMSE (Equation 1),
Ratio of Performance to Deviation (RPD, Equation 2), and Mean
Absolute Percent Error (MAPE, Equation 3). These statistics
were calculated for both cross validation (in model calibration)
and validation. PLSR modeling was performed in R statistical
environment (R Core Team, 2016) with “chemometrics” package.

RMSE =

√

1

N
×

∑

(yi − ŷi)
2 (1)

RPD = SD/RMSE (2)

MAPE =
1
N ×

∑

|yi − ŷi|

mean
× 100% (3)

N is the number of plants in the calibration or validation set
(60); yi and ŷi are the lab-measured and model-predicted values,
respectively; SD and mean are the standard deviation and mean
of the lab-measured values.

RESULTS

Effects of Water and Nutrient Treatments
on Plant Chemical Concentrations
The experimental conditions described above created large
variation in plant water content across water treatments. Plant
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FIGURE 2 | Procedures for hyperspectral plant image analysis to obtain apparent reflectance spectra.

water content ranged from 79.6 to 91.0% for maize and 68.2 to
81.9% for soybean (Figure 3). It can also be seen that plants under
water limitation had significantly lower leaf water content than
those under control.

Figure 4 shows the range of macronutrient and micronutrient
levels observed in maize and soybean leaves under the high,
medium, and low nutrient application rates. It can be seen that
these traits responded to the nutrient treatment quite differently.
For most nutrients, plants grown with higher nutrient rates
tended to have higher concentrations of bothmacronutrients and
micronutrients in leaves; even though in several cases, there were
no statistically significant differences among all three nutrient
application rates (such as Na for either maize or soybean).
As mentioned above, our goal was to create wide ranges in
macronutrients and micronutrients in plant leaf tissues, and
Figure 4 indicates that this goal was successfully achieved for the
majority of target nutrients. For example, the N concentration
in maize and soybean plants combined ranged from 0.96 to
5.68%. This range was wider than what would be found for
maize or soybean under agronomically relevant field conditions,

and would benefit PLSR model calibration with hyperspectral
imaging.

PLSR Modeling of Plant Leaf Chemical
Traits
Pairwise score plot of the first three principal components
(PC1, PC2, and PC3) of the plant spectra from the water
limitation experiment is shown in Figure 5A. The plot revealed
one potential outlier in the spectral space. Further examination
of this maize plant, however, indicated that its spectral and
chemical data did not deviate substantially from other samples.
This sample was therefore retained in the subsequent analysis.
The plot also revealed that maize and soybean plants were largely
separated from each other (in PC1 vs. PC2 and PC2 vs. PC3
plots). In addition, plants receiving the different water treatments
was also separable (in PC1 vs. PC3 plot), although separation was
not as pronounced as plant species. Similarly, Figure 5B shows
the pairwise PC plot of plant spectra from the nutrient stress
experiment. Still maize and soybean plants were largely separable
(again PC1 vs. PC2 and PC2 vs. PC3 plots). However, different
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FIGURE 3 | Boxplots of leaf water content of the maize and soybean plants under the control (C) and water limitation (D) treatments. Treatment groups assigned to

different letters indicate their means were significantly different with Tukey’s Honest Distance test (p < 0.05).

FIGURE 4 | Boxplots of the macronutrient and micronutrient concentrations in maize and soybean plant leaves under the low (L), medium (M), and high (H) nutrient

treatments. Treatment groups assigned to different letters indicate their means were significantly different with Tukey’s Honest Distance test (p < 0.05).

from the water treatments, no clear spectral separation was seen
among the nutrient stress levels. Overall, it suggested that plant
species contributed most to spectral differences, followed by the
water treatments and then the nutrient treatments. This had
important implications for PLSR modeling, which is discussed
later with the results of PLSR modeling.

The results of PLSR analysis (Table 1) show that, among all the
plant chemical traits studied, leaf water content can be modeled
with the highest accuracy (R2 = 0.93 and MAPE = 1.6%) for
validation. For macronutrients, N, P, K and S were modeled quite
satisfactorily, with their validation R2 > 0.80 and MAPE < 15%.
Mg and Ca were modeled with moderate accuracy, with their
validation R2 around 0.70 and MAPE around 15%. Compared

to macronutrients, micronutrients were in general modeled with
lower accuracy. Cu and Zn were modeled most successfully
in this group, with validation R2 of 0.86 and 0.73 (MAPE of
20.8 and 16.1%), respectively. Modeling of Fe and Mn showed
somewhat lower accuracy, with validation R2 slightly greater than
0.60 (MAPE of 13.7 and 17.3%). Models of Na and B showed
the lowest prediction accuracy among all variables tested, with
validation R2 lower than 0.30. MAPE of Na was 49.5%, much
higher than all other variables.

In analytical chemistry and chemometric modeling, RPD
is widely used as a criterion to evaluate the usefulness of
prediction models by normalizing model’s RMSE with the
standard deviation of the reference value. Models with an RPD
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FIGURE 5 | Pairwise score plots of the first three principal components of plant spectra from the water limitation experiment (A) and the nutrient stress experiment (B).

> 2.0 are generally considered good models, with RPD > 3.0
indicative of quantitative analysis. Models with RPD between
1.5 and 2.0 are considered fair in a quantitative sense, but they
can be useful for qualitative screening and have potential for
improvement (Chang et al., 2001; Fearn, 2002). The majority of
the models developed in this study had RPD between 1.5 and
4.0 (except for Na and B). Therefore, these models would be
useful for the screening purpose of leaf biochemical traits. In
many circumstances of plant breeding and phenotypic scoring, it
is not necessary to precisely predict traits. Rather, the goal often
is to rapidly screen out the superior lines from a population of
hundreds or even thousands of lines. In this sense, the models
developed from hyperspectral imaging in this study can be used
as a practical tool for rapid screening of plant leaf biochemical
traits.

DISCUSSION

The result that water content can be predicted from hyperspectral
imaging is not surprising. Water is a strong absorber in the NIR
and SWIR spectral range, and the variation of reflected light
energy is therefore sensitive to probe water status in plants. In
fact, spectral indices have been constructed from known water
absorption bands (such as those at 970, 1,240, 1,450 nm) as
proxies for plant canopy water content in remote sensing (Gao,
1996; Penuelas et al., 1997).

As an alternative to hyperspectral imaging, researchers have
tested the use of a single band NIR camera (with a wide spectral
response covering 900–1,700 nm) to quantify plant water content
(Chen et al., 2014; Neilson et al., 2015). Although, NIR images are
much easier to process, their studies were only able to establish
a qualitative relationship between the single band NIR images
and leaf water content. This study suggests that hyperspectral

imaging provides substantially more accurate predictions of
leaf water content. The improved accuracy of predictions with
hyperspectral imaging relative to broad spectrum NIR imaging
can be attributed to two factors. Firstly, hyperspectral imaging
captures reflectance at many contiguous narrow spectral bands,
allowing the water absorption bands to be better resolved.
Secondly, PLSR modeling (which is not possible with single
band NIR images) is highly efficient in extracting useful spectral
information correlated with water content even in the presence
of confounding factors and noises. This result also confirms
the conclusions of a previous study we conducted that showed
hyperspectral imaging predicted plant leaf water content across
two contrasting maize genotypes successfully (Ge et al., 2016).

The fact that N, P, and S can be modeled satisfactorily with
hyperspectral imaging was also anticipated. As mentioned in
the introduction section, these elements usually participate in
covalent bonding of carbon compounds that usually absorb VIS-
NIR-SWIR light energy and lead to their quantification. For
example, N in plant leaves exists in several forms including
proteins, free amino acids, and within chlorophyll molecules.
Protein and free amino acids contain N-H bonds that absorb
in SWIR region, whereas chlorophylls are pigments with strong
absorption in the VIS region. The same is true for P (such as
sugar-phosphate intermediates and phospholipids) and S (amino
acids), but with lower concentrations in living plant tissues
than N.

Macronutrients K, Ca, Mg, and Na and micronutrients Fe,
Mn, Zn, Cu are all metallic elements and they exist primarily as
ions in living plant tissues. In ionic form, they do not produce
active spectral absorption features in the VIS-NIR-SWIR region.
It is noteworthy that some of these ions do bond electrostatically
or as ligands to larger carbon containing compounds, which give
spectroscopic basis for their quantification with hyperspectral
imaging. For example, Mg is a part of the ring structure of
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TABLE 1 | Cross-validation and validation results of using hyperspectral images to predict plant leaf water content, macronutrients, and micronutrient concentrations with

partial least squares regression.

Cross-validation (n = 60) Validation (n = 60)

R2 RMSECV RPD MAPE (%) Model size R2 RMSEV RPD MAPE (%)

WC (%) 0.97 1.18 5.64 1.1 12 0.93 1.62 3.80 1.6

N (%) 0.88 0.47 2.94 8.8 12 0.92 0.41 3.60 8.3

P (%) 0.71 0.075 1.86 13.8 10 0.83 0.056 2.43 12.3

K (%) 0.73 0.53 1.92 15.5 7 0.83 0.41 2.47 14.1

Mg (%) 0.69 0.088 1.81 13.1 5 0.69 0.078 1.79 12.2

Ca (%) 0.75 0.35 2.02 14.6 8 0.70 0.39 1.62 15.7

S (%) 0.71 0.068 1.88 13.0 11 0.83 0.052 2.46 12.2

Na (%) 0.19 0.003 1.13 46.2 7 0.18 0.003 1.09 49.5

Fe (ppm) 0.73 16.0 1.95 10.4 11 0.68 16.2 1.70 13.7

Mn (ppm) 0.51 11.1 1.45 21.2 7 0.64 9.56 1.62 17.3

B (ppm) 0.38 10.4 1.29 20.2 7 0.29 15.6 1.12 23.3

Cu (ppm) 0.80 3.01 2.25 24.9 12 0.86 2.52 2.69 20.8

Zn (ppm) 0.64 7.02 1.68 15.3 8 0.73 7.39 1.93 16.1

chlorophyll molecules (which is a strong absorber in VIS);
whereas Fe is associated with cytochrome involved in the electron
transfer of photosynthesis. Furthermore, deficiency in these
macronutrients and micronutrients usually cause distinct visual
symptoms (such as chlorosis and necrosis of leaves and veins) in
plants, which can be readily captured by hyperspectral imaging.

Figures 6, 7 are the scatterplots showing the relationships
of lab-measured and image-predicted plant macronutrient and
micronutrient concentrations. These plots provided additional
insight into how the PLSR predictions were made between
maize and soybean. Firstly, the scatter of maize and soybean
plants around 1:1 line were quite consistent. In other words, no
systematic overestimation or underestimation were observed for
either maize or soybean. This is the desirable attribute of PLSR
modeling. Because the calibration set included both maize and
soybean plants, the PLSR models calibrated were able to predict
the plant traits on both crops.

Secondly, for the traits including Mg, Ca, and Cu, there
were natural separations among maize and soybean. Because
Figure 5 also showed a large separation of spectra among the
two species, the concern is that PLSR models captured the
between-species variation successfully but might not perform
well within each species. To shed more light on this point, we
conducted PLSR modeling involving only one species for these
three traits (with leave-one-out cross validation). The results were
as follows. For Maize-Mg model, R2 = 0.64 and RPD= 1.75;
for Soybean-Mg model, R2 = 0.69 and RPD = 1.83; for Maize-
Ca model, R2 = 0.67 and RPD = 1.68; for Soybean-Ca model,
R2 = 0.70 and RPD = 1.80; for Maize-Cu model, R2 = 0.75
and RPD = 1.92; for Soybean-Cu model, R2 = 0.65 and RPD
= 1.63. Therefore, the performances of these within species
models were comparable to those of the models that included
both species (Table 1). Supplementary Table 2 gives the full
cross validation results (R2 and RPD) of all 13 variables by
modeling maize and soybean plants separately, for interested
readers.

With RGB imaging, simple linear regressions are commonly
used to relate images (such as green pixel count) to plant traits
(such as biomass). However, hyperspectral imaging presents
different challenges and opportunities. Analyzing hyperspectral
data requires more complicated statistical modeling to relate
measured reflectance to plant chemical traits. In this study, we
employed PLSR, but many other multivariate statistical modeling
techniques such as random forest (Baranowski et al., 2015),
support vector machines (Behmann et al., 2014), and artificial
neural networks (Singh et al., 2016) can also be used. This can
be regarded as an advantage of hyperspectral imaging, because
these more sophisticated (and non-linear) modeling techniques
could potentially improve the prediction accuracy. One potential
problem with the use of these advanced modeling tools is that,
as pure data driven approaches, the models might be difficult
to interpret for their biological significance. PLSR models for
the selected nutrients are given in Supplementary Figure 1 for
interested readers.

Although the results are promising, several limitations of our
study should also be pointed out. Firstly, we used a commercial
slow release fertilizer for the nutrient treatment. While this
created desirable variations in all macro and micronutrients,
it did not target for the variation of any specific nutrient
in a clearly defined way. The concern is that deficiency of
multiple nutrients and their interdependence could lead to false
correlations between the nutrients and spectral data. Pairwise
correlation analysis (Supplementary Figure 2) indicated some
level of covariation among the nutrients. Therefore, further
studies are needed to vary nutrient concentration individually
and test the efficacy of hyperspectral imaging under those
conditions. This would establish the validity of this method for
plant chemical sensing and as a tool to help address questions of
biological relevance.

Secondly, the models developed in this study involved only
two crops (maize and soybean), each represented by only a
single accession. A plant breeding or plant genetics focused high
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throughput phenotyping project will generally involve dozens
to hundreds of genotypes which may exhibit other types of
compositional variation creating more noise in the analysis.
Another limitation of the analysis conducted in this study was
that imaging only took at certain developmental stages (for
maize V8 to V14 and for soybean V5 to before flowering). To
fully utilize hyperspectral imaging for routine high throughput
phenotyping, further studies should be undertaken to understand
how models relating plant reflectance to chemical properties will
be affected by (1) plant species, (2) different genotypes within
a species, and (3) plant’s developmental stages. It may prove
to be the case that overall models can be developed to make
satisfactory prediction. But much more likely, plant specific or
genotype specific or developmental stage specific models will be
needed for satisfactory prediction of these chemical traits under
different experimental conditions and scenarios.

Practical Considerations to Use
Hyperspectral Imaging for High
Throughput Plant Phenotyping
Hyperspectral imaging is significantly different from some other
imaging modalities such as RGB and thermal infrared (TIR)
imaging. RGB is most widely used to extract green plant pixels
which in turn are counted to estimate plant biomass. In this
process, the intensities of the R G B components of plant pixels
are not necessarily of interest to the users, as long as those plant

pixels can be successfully segmented from background pixels.
TIR imaging involves the detection of emitted electromagnetic
energy (at much longer wavelengths of 8–14 µm) from plant
leaves and therefore no illumination is needed. For these reasons,
effort was not usually emphasized to radiometrically calibrate the
RGB and TIR cameras.

On the other hand, the use of hyperspectral imaging to predict
chemical properties of plants relies on the accurate measurement
of reflectance of plant pixels at each waveband. This means
that radiometric calibration is a key step in the collection
of informative hyperspectral images. Radiometric calibration
seeks to account for the short- and long-term variations in
the spectral output intensity of light sources (halogen lamps)
and imaging detectors’ response and dark current. Ideally, a
calibration after each plant measurement should be implemented
to obtain the highest performance. This level of calibration has
been implemented for hyperspectral imaging applications in
some other fields including quality assessment of food products
(Naganathan et al., 2008) and fruits and vegetables (Qin and
Lu, 2008). However, more frequent calibrations create a tradeoff
between image quality and analysis throughput, which are two
important factors to consider in high throughput phenotyping.

Whereas, image acquisition by RGB is almost instantaneous,
the time needed for hyperspectral image acquisition is
substantially longer. With our system, acquiring one
hyperspectral image cube takes ∼2 min (due to line-by-line
scanning mechanism of image formation). If a reference image is

FIGURE 6 | Scatterplot of the lab measured value vs. the image predicted value of the concentrations of the six macronutrients in plant leaves for the validation set (n

= 60). Maize plants are denoted by circles and soybean plants are denoted by crosses. The statistics of the plots are given in Table 1.
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FIGURE 7 | Scatterplot of the lab measured value vs. the image predicted value of the concentrations of the six micronutrients in plant leaves for the validation set (n

= 60). Maize plants are denoted by circles and soybean plants are denoted by crosses. The statistics of the plots are given in Table 1.

also acquired each time a plant is imaged, 4–5 min are therefore
needed to scan one plant. This represents a significant rate
limiting factor for high throughput phenotyping. With this
speed, a work shift of 12 h continuous imaging can only scan
about 180 plants. This is obviously not adequate for many large
population studies which usually involve several hundreds of
plants. Therefore, from an operational and logistics standpoint,
system characterization is needed so that the researchers would
know how often a calibration should be run to strike a balance
between radiometric accuracy and imaging throughput.

Whole Plant vs. Multiple Predictions Per
Plant
In this study, we treated the plants as a whole. All leaves from
the plant were harvested, dried and thoroughly homogenized and
a portion of it was sent to the lab for analysis. At the image
analysis side, all pixels of the plant were combined to obtain an
average reflectance at each wavelength. Therefore, the prediction
models developed in our study specified the correlations between
spectra and the chemical traits of plants at the whole plant level
(i.e., one prediction per plant per image time). However, it is
possible to make spatially resolved predictions for the plant,
because a complete spectrum can be extracted from every pixel
of the plant. This would provide a tool to quantify the spatial
distribution of these chemical properties within the plant. If
such quantifications could be made at multiple time points along
plants’ life cycle, it would be possible to elucidate (1) how the

macronutrient and micronutrient elements are taken up from
the soils, and (2) the translocation of mobile nutrients (such as
N, P, K) among plant tissues as plants develop. Currently, there
is significant variation in image quality throughout the chamber
as a result of non-uniform lighting (even after normalization),
which makes accurate pixel by pixel prediction challenging.
However, this is a solvable problem; and, in the future it should
be possible to improve the lighting uniformity inside the chamber
and retrieve the true reflectance of plant leaves from each plant
pixel, which would enable spatially resolved predictions of plant
leaf composition.

Finally, the positive results obtained in this study, indicate

that it may also be feasible to use hyperspectral imaging data
to phenotype for other plant chemical properties. For example,

there is a wide interest in breeding improved accessions of
energy crops for dedicated biofuel production (for example,

biomass sorghum). One of the greatest challenges is to breed
for optimized biomass compositions (in particular lignin content

which simultaneously determines standability, resistance to fungi

and diseases during growth, and to chemical and microbial
pretreatments for biomass conversion) without compromising

yield or abiotic or biotic stress tolerance (Rooney et al., 2007;

Yuan et al., 2008). The lack of a non-destructive, in vivo

screening tool that can measure biomass composition rapidly
is a perceived bottleneck for the effective utilization of high

throughput genomics-assisted breeding efforts in sorghum.
Our results suggest that hyperspectral imaging could be an
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effective tool to fill in that technological gap in plant breeders’
toolkit. It is quite possible that hyperspectral imaging can
predict the chemical compositions of cell wall (such as lignin,
cellulose, hemicellulose, and ash) from both plant leaves and
stems.

CONCLUSION

In this study, the promise of hyperspectral imaging was
demonstrated as a non-destructive, in vivo tool to measure plant
chemical properties including water content, macronutrients,
and micronutrients. Statistics from the prediction models
indicated that, among the 13 variables, leaf water content and
N can be quantified accurately. Predictions of P, K, Mg, Ca, S,
Fe, Mn, Cu, and Zn were somewhat less accurate but still quite
satisfactorily. Na and B were the only two variables quantified
poorly. While there have been many studies reporting the use
of other imaging modules (including RGB, fluorescence, and
NIR) for high throughput plant phenotyping, the plant traits
being investigated were mainly morphological (size and growth)
and physiological (chlorophyll and Photosystem II). To the best
of our knowledge, this is the first study of using hyperspectral
imaging to probe the nutrient concentrations of living plants in
vivo. The results suggested the high potential of this technique for
plant chemical sensing. Future studies to further test the validity
of the technique should include experiments that (1) control the
variation of individual nutrients inmore clearly definedmanners,
(2) involve more plant species, genotypes, and developmental
stages.

AUTHOR CONTRIBUTIONS

YG contrived the study. PP and VS collected the data. PP
analyzed the data. YG and JS interpreted the results. PP and YG
drafted the manuscript. JS significantly edited the manuscript.

FUNDING

The funding for this work is provided by National Science
Foundation of the United States (DBI-1556186), Nebraska
Soybean Board, and Nebraska Corn Board.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: http://journal.frontiersin.org/article/10.3389/fpls.2017.
01348/full#supplementary-material

Supplementary Figure 1 | Partial least squares regression models for the

selected variables of water content (WC), nitrogen (N), phosphorus (P), calcium

(Ca), and zinc (Zn).

Supplementary Figure 2 | Pairwise scatter plots and correlation matrix of plant

nutrient concentrations. Black dots are maize plants and red dots are soybean

plants. Pearson’s correlation coefficients are significant at 0.05, 0.01, and 0.001

level with one, two, and three stars.

Supplementary Table 1 | Results of Welsh’s two sample T-test to compare the

mean of the calibration and validation sets.

Supplementary Table 2 | Cross-validation results of using hyperspectral images

to predict plant leaf water content, macronutrients, and micronutrients with partial

least squares regression, by constructing models for maize and soybean

separately.

REFERENCES

Baranowski, P., Jedryczka, M., Mazurek, W., Babula-Skowronska, D., and

Siedliska, A. (2015). Hyperspectral and thermal imaging of oilseed rape

(Brassica napus) response to fungal species of the Genus Alternaria. PLoS ONE

10:e0122913. doi: 10.1371/journal.pone.0122913

Batten, G. D. (1998). Plant analysis using near infrared reflectance spectroscopy:

the potential and the limitations. Aust. J. Exp. Agric. 38, 697–706.

doi: 10.1071/EA97146

Bauriegel, E., and Herppich, W. (2014). Hyperspectral and chlorophyll

fluorescence imaging for early detection of plant diseases, with special

reference to Fusarium spec. infection on wheat. Agriculture 4, 32–57.

doi: 10.3390/agriculture4010032

Behmann, J., Schmitter, P., Steinrücken, J., and Plümer, L. (2014). Ordinal

classification for efficient plant stress prediction in hyperspectral data. Internat.

Arch. Photogramm. XL-7, 29–36. doi: 10.5194/isprsarchives-XL-7-29-2014

Blackburn, G. A. (2007). Hyperspectral remote sensing of plant pigments. J. Exp.

Bot. 58, 855–867. doi: 10.1093/jxb/erl123

Busemeyer, L., Mentrup, D., Möller, K., Wunder, E., Alheit, K., Hahn, V., et al.

(2013). BreedVision— Amulti-sensor platform for non-destructive field-based

phenotyping in plant breeding. Sensor 13, 2830–2847. doi: 10.3390/s130302830

Campbell, M. T., Knecht, A. C., Berger, B., Brien, C. J., Wang, D., and Walia, H.

(2015). Integrating image-based phenomics and association analysis to dissect

the genetic architecture of temporal salinity responses in rice. Plant Physiol.

168, 1476–1489. doi: 10.1104/pp.15.00450

Chang, C. W., Laird, D., Mausbach, M. J., and Hurburgh, C. R. (2001). Near-

infrared reflectance spectroscopy—principal components regression analysis of

soil properties. Soil Sci. Soc. Am. J. 65, 480–490. doi: 10.2136/sssaj2001.652480x

Chen, D., Neumann, K., Friedel, S., Kilian, B., Chen, M., Altmann, T., et al. (2014).

Dissecting the phenotypic components of crop plant growth and drought

responses based on high-throughput image analysis. Plant Cell 26, 4636–4655.

doi: 10.1105/tpc.114.129601

Chéné, Y., Rousseau, D., Lucidarme, P., Bertheloot, J., Caffier, V., Morel, P., et al.

(2012). On the use of depth camera for 3D phenotyping of entire plants.

Comput. Electron. Agric. 82, 122–127. doi: 10.1016/j.compag.2011.12.007

Curran, P. J., Dungan, J. L., and Peterson, D. L. (2001). Estimating the foliar

biochemical concentration of leaves with reflectance spectrometry: testing

the Kokaly and Clark methodologies. Remote Sens. Environ. 76, 349–359.

doi: 10.1016/S0034-4257(01)00182-1

Fahlgren, N., Feldman, M., Gehan, M. A., Wilson, M. S., Shyu, C., Bryant, D.

W., et al. (2015a). A versatile phenotyping system and analytics platform

reveals diverse temporal responses to water availability in Seteria. Mol. Plant

8, 1520–1535. doi: 10.1016/j.molp.2015.06.005

Fahlgren, N., Gehan, M. A., and Baxter, I. (2015b). Lights, camera, action: high-

throughput plant phenotyping is ready for a close-up. Curr. Opin. Plant Biol.

24, 93–99. doi: 10.1016/j.pbi.2015.02.006

Fearn, T. (2002). Assessing calibrations: SEP, RPD, RER and R2. NIR News 13,

12–13. doi: 10.1255/nirn.689

Fiorani, F., and Schurr, U. (2013). Future scenarios for plant phenotyping. Annu.

Rev. Plant Biol. 64, 267–291. doi: 10.1146/annurev-arplant-050312-120137

Furbank, R. T., and Tester, M. (2011). Phenomics— technologies to

relieve the phenotyping bottleneck. Trends Plant Sci. 16, 635–644.

doi: 10.1016/j.tplants.2011.09.005

Gao, B. (1996). NDWI— A normalized difference water index for remote sensing

of vegetation liquid water from space. Remote Sens. Environ. 58, 257–266.

doi: 10.1016/S0034-4257(96)00067-3

Ge, Y., Bai, G., Stoerger, V., and Schnable, J. C. (2016). Temporal dynamics of

maize plant growth, water use, and leaf water content using automated high

Frontiers in Plant Science | www.frontiersin.org 11 August 2017 | Volume 8 | Article 1348

http://journal.frontiersin.org/article/10.3389/fpls.2017.01348/full#supplementary-material
https://doi.org/10.1371/journal.pone.0122913
https://doi.org/10.1071/EA97146
https://doi.org/10.3390/agriculture4010032
https://doi.org/10.5194/isprsarchives-XL-7-29-2014
https://doi.org/10.1093/jxb/erl123
https://doi.org/10.3390/s130302830
https://doi.org/10.1104/pp.15.00450
https://doi.org/10.2136/sssaj2001.652480x
https://doi.org/10.1105/tpc.114.129601
https://doi.org/10.1016/j.compag.2011.12.007
https://doi.org/10.1016/S0034-4257(01)00182-1
https://doi.org/10.1016/j.molp.2015.06.005
https://doi.org/10.1016/j.pbi.2015.02.006
https://doi.org/10.1255/nirn.689
https://doi.org/10.1146/annurev-arplant-050312-120137
https://doi.org/10.1016/j.tplants.2011.09.005
https://doi.org/10.1016/S0034-4257(96)00067-3
http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive


Pandey et al. Hyperspectral Leaf Chemical Traits Phenotyping

throughput RGB and hyperspectral imaging. Comput. Electron. Agric. 127,

625–632. doi: 10.1016/j.compag.2016.07.028

Golzarian, M. R., Frick, R. A., Rajendran, K., Berger, B., Roy, S., Tester, M., et al.

(2011). Accurate inference of shoot biomass from high-throughput images of

cereal plants. Plant Methods 7:2. doi: 10.1186/1746-4811-7-2

Houle, D., Govindaraju, D. R., and Omholt, S. (2010). Phenomics: the next

challenge. Nat. Rev. Genet. 11, 855–866. doi: 10.1038/nrg2897

Jansen, M., Gilmer, F., Biskup, B., Nagel, K. A., Rascher, U., Fischbach, A.,

et al. (2009). Simultaneous phenotyping of leaf growth and chlorophyll

fluorescence via GROWSCREEN FLUORO allows detection of stress tolerance

in Arabidopsis thaliana and other rosette plant. Funct. Plant Biol. 36, 902–914.

doi: 10.1071/FP09095

Klukas, C., Chen, D., and Pape, J. (2014). Integrated analysis platform: an open-

source information system for high-throughput plant phenotyping. Plant

Physiol. 165, 506–518. doi: 10.1104/pp.113.233932

Knecht, A. C., Campbell, M. T., Caprez, A., Swanson, D. R., and Walia, H. (2016).

Image Harvest: an open-source platform for high-throughput plant image

processing and analysis. J. Exp. Bot. 67, 3587–3599. doi: 10.1093/jxb/erw176

Li, L., Zhang, Q., and Huang, D. (2014). A review of imaging techniques for plant

phenotyping. Sensors 14, 20078–20111. doi: 10.3390/s141120078

Mahlein, A. K., Steiner, U., Hillnhütter, C., Dehne, H. W., and Oerke, E. C. (2012).

Hyperspectral imaging for small-scale analysis of symptoms caused by different

sugar beet diseases. Plant Method 8:3. doi: 10.1186/1746-4811-8-3

Naganathan, G. K., Grimes, L. M., Subbiah, J., Calkins, C. R., Samal,

A., and Meyer, G. E. (2008). Visible/near-infrared hyperspectral imaging

for beef tenderness prediction. Comput. Electron. Agric. 64, 225–233.

doi: 10.1016/j.compag.2008.05.020

Neilson, E. H., Edwards, A. M., Blomstedt, C. K., Berger, B., Lindberg Møller, B.,

and Gleadow, R. M. (2015). Utilization of a high-throughput shoot imaging

system to examine the dynamic phenotypic responses of a C4 cereal crop

plant to nitrogen and water deficiency over time. J. Exp. Bot. 66, 1817–1832.

doi: 10.1093/jxb/eru526

Penuelas, J., and Filella, I. (1998). Visible and near infrared reflectance techniques

for diagnosing plant physiological status. Trends Plant Sci. 3, 151–156.

doi: 10.1016/S1360-1385(98)01213-8

Penuelas, J., Pinol, J., Ogaya, R., and Filella, I. (1997). Estimation of plant water

concentration by the reflectance water index WI (R900/R970). Int. J. Remote

Sens. 13, 2869–2875. doi: 10.1080/014311697217396

Qin, J., and Lu, R. (2008). Measurement of the optical properties of

fruits and vegetables using spatially resolved hyperspectral diffuse

reflectance imaging technique. Postharvest Biol. Technol. 2008, 355–365.

doi: 10.1016/j.postharvbio.2008.03.010

R Core Team (2016). R: A Language and Environment for Statistical Computing.

R Foundation for Statistical Computing. Vienna. Available online at: URL

https://www.R-project.org/

Römer, C., Wahabzada, M., Ballvora, A., Pinto, F., Rossini, M., Panigada, C.,

et al. (2012). Early drought stress detection in cereals: simplex volume

maximization for hyperspectral image analysis. Funct. Plant Biol. 39, 878–890.

doi: 10.1071/FP12060

Rooney, W. L., Blumenthal, J., Bean, B., and Mullet, J. E. (2007). Designing

sorghum as a dedicated bioenergy feedstock. Biofuels Bioprod. Bioref. 1,

147–157. doi: 10.1002/bbb.15

Sims, D. A., and Gamon, J. A. (2002). Relationships between leaf pigment

content and spectral reflectance across a wide range of species, leaf

structures and developmental stages. Remote Sens. Environ. 81, 337–354.

doi: 10.1016/S0034-4257(02)00010-X

Singh, A., Ganapathysubramanian, B., Singh, A. K., and Sarkar, S. (2016). Machine

learning for high-throughput stress phenotyping in plants. Trends Plant Sci. 21,

110–124. doi: 10.1016/j.tplants.2015.10.015

Sirault, X. R. R., James, R. A., and Furbank, R. T. (2009). A new screening

method for osmotic component of salinity tolerance in cereals using infrared

thermography. Funct. Plant Biol. 36, 970–977. doi: 10.1071/FP09182

Virlet, N., Sabermanesh, K., Sadeghi-Tehran, P., and Hawkesford, M. J. (2016).

Field scanalyzer: an automated robotic field phenotyping platform for

detailed crop monitoring. Funct. Plant Biol. 44, 143–153. doi: 10.1071/

FP16163

Yuan, J. S., Tiller, K. H., Al-Ahmad, H., Stewart, N. R., and Neal Stewart C. Jr.

(2008). Plants to power: bioenergy to fuel the future. Trends Plant Sci. 13,

421–429. doi: 10.1016/j.tplants.2008.06.001

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

The reviewer TV and handling Editor declared their shared affiliation, and

the handling Editor states that the process met the standards of a fair and objective

review.

Copyright © 2017 Pandey, Ge, Stoerger and Schnable. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) or licensor are credited and that the original publication in this

journal is cited, in accordance with accepted academic practice. No use, distribution

or reproduction is permitted which does not comply with these terms.

Frontiers in Plant Science | www.frontiersin.org 12 August 2017 | Volume 8 | Article 1348

https://doi.org/10.1016/j.compag.2016.07.028
https://doi.org/10.1186/1746-4811-7-2
https://doi.org/10.1038/nrg2897
https://doi.org/10.1071/FP09095
https://doi.org/10.1104/pp.113.233932
https://doi.org/10.1093/jxb/erw176
https://doi.org/10.3390/s141120078
https://doi.org/10.1186/1746-4811-8-3
https://doi.org/10.1016/j.compag.2008.05.020
https://doi.org/10.1093/jxb/eru526
https://doi.org/10.1016/S1360-1385(98)01213-8
https://doi.org/10.1080/014311697217396
https://doi.org/10.1016/j.postharvbio.2008.03.010
https://www.R-project.org/
https://doi.org/10.1071/FP12060
https://doi.org/10.1002/bbb.15
https://doi.org/10.1016/S0034-4257(02)00010-X
https://doi.org/10.1016/j.tplants.2015.10.015
https://doi.org/10.1071/FP09182
https://doi.org/10.1071/FP16163
https://doi.org/10.1016/j.tplants.2008.06.001
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive

	High Throughput In vivo Analysis of Plant Leaf Chemical Properties Using Hyperspectral Imaging
	Introduction
	Materials and Methods
	Hyperspectral Camera and Imaging Chamber
	Experiment Design and Data Collection
	Hyperspectral Image Analysis and Data Analysis

	Results
	Effects of Water and Nutrient Treatments on Plant Chemical Concentrations
	PLSR Modeling of Plant Leaf Chemical Traits

	Discussion
	Practical Considerations to Use Hyperspectral Imaging for High Throughput Plant Phenotyping
	Whole Plant vs. Multiple Predictions Per Plant

	Conclusion
	Author Contributions
	Funding
	Supplementary Material
	References


