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Vernalization is an essential process by which many temperate plant species acquire
competence for flowering. Brachypodium distachyon is a model plant for temperate
grasses including many cool-season forage and turfgrasses and cereals. Grasses with
spring growth habit do not require vernalization for flowering and are typically less
winter hardy. Yet the connection between vernalization and freezing tolerance remain
unclear. The diverse requirement of vernalization for flowering makes it an ideal choice for
studying the relationship between vernalization and freezing tolerance. Here, we isolated
and analyzed the spatial and temporal expression patterns of two vernalization related
homologous genes, BdVRN1 and BdVRN3 in Bd21, a non-vernalization-requiring
accession, and Bd29-1, an accession shown to be vernalization-requiring. We showed
that expression of BdVRN1 and BdVRN3 is independent of vernalization in Bd21,
but is vernalization dependent in Bd29-1. Moreover, vernalization-induced expression
of BdVRN1 appears to precede that of BdVRN3 in Bd29-1. Bd21 RNAi knockdown
mutants for BdVRN1 conferred vernalization requirement for flowering, and reduced
the expression of BdVRN3. Both Bd29-1 and the BdVRN1 RNAi mutants of Bd21
exhibited reduced freezing tolerance upon vernalization treatment. Cold-responsive
genes BdCBF2, BdCBF3, BdCBF5, BdCBF6, and BdDREB2A were all constitutively
expressed at a high level in the BdVRN1 RNAi mutants of Bd21. Taken together,
our results suggest that expression of BdVRN1 promotes flowering by upregulating
BdVRN3, and gaining the competency for flowering reduces freezing tolerance in
Brachypodium.
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INTRODUCTION

Flowering occurs as a result of a critical growth transition from vegetative to reproductive growth in
plants. In plants with a winter growth habit, an exposure to a period of low temperature is essential
to flowering induction, a process known as vernalization (Boss et al., 2004; Baurle and Dean, 2006).
The long period of time required to fulfill the vernalization requirement assures that reproductive
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organs, which are more sensitive to chilling/freezing injuries than
vegetative tissues, do not form in the middle of the winter (Kim
et al., 2004; Balasubramanian et al., 2006; Baurle and Dean, 2006;
Trevaskis et al., 2007).

The molecular mechanism of vernalization-induced flowering
has been extensively studied in Arabidopsis, wheat, and barley
(Amasino, 2005; Izawa, 2007; Schmitz and Amasino, 2007;
Distelfeld et al., 2009; Srikanth and Schmid, 2011). FLOWERING
LOCUS T (FT) in Arabidopsis is identified to be the “florigen”
(Kardailsky et al., 1999; Kobayashi et al., 1999; Notaguchi et al.,
2008), which encodes a small globular protein that is able to
translocate from the leaves, through the phloem, to the shoot apex
where it interacts with a bZIP transcription factor FLOWERING
LOCUS D (FD) to activate the expression of the floral meristem
identity gene APETALA1 (AP1) for flowering (Abe et al., 2005;
Wigge et al., 2005). In wheat and barley, VERNALIZATION
3 (VRN3) and VERNALIZATION 1 (VRN1) genes have been
identified to be the homologs of the Arabidopsis FT and AP1,
respectively (Danyluk et al., 2003; Murai et al., 2003; Trevaskis
et al., 2003; Yan et al., 2003, 2006; Faure et al., 2007).

Previous studies, however, have shown that the vernalization
pathways are not conserved between Arabidopsis and temperate
cereals (Amasino, 2005; Trevaskis et al., 2007; Dennis and
Peacock, 2009; Distelfeld et al., 2009; Greenup et al., 2009;
Kim et al., 2009; Andres and Coupland, 2012). In Arabidopsis,
FLOWERING LOCUS C (FLC), a MADS-box transcription factor
gene, has been identified to be a negative regulator of flowering,
which blocks the long-day induction of FT but itself is repressed
by vernalization (Michaels and Amasino, 1999; Searle et al.,
2006). In temperate cereals, no homologous gene of FLC has been
found, but VERNALIZATION 2 (VRN2) gene was identified as a
flowering repressor in cereals, which encodes a zinc-finger and
CCT (CONSTANS, CONSTANS-LIKE, TOC1) domain protein
(ZCCT1) (Yan et al., 2004). VRN2 is induced by long-day and can
function like FLC to suppress long-day induction of VRN3 (Yan
et al., 2004, 2006). VRN2 has also been reported to repress VRN1
gene, but this repression is relieved by vernalization (Danyluk
et al., 2003; Trevaskis et al., 2003; Yan et al., 2003). Vernalization
induces the expression of VRN1 which in turn repress VRN2,
thereby releasing the repression of VRN3 by VRN2 (Yan et al.,
2003, 2004, 2006). VRN3 further elevates the expression of VRN1
forming a signaling feedback loop of VRN1-VRN2-VRN3-VRN1
that regulates flowering (Yan et al., 2004; Dubcovsky et al.,
2006; Trevaskis et al., 2006). However, Shimada et al. (2009)
proposed an alternative model of vernalization response in wheat.
In a mutant that has null alleles of VRN1, the authors could
not detect the expression of the VRN3 gene and the mutant
remained at the vegetative phase. In this alternative model, VRN1
is directly upstream of VRN3 instead of VRN2 and up-regulates
the VRN3 expression with a vernalization treatment. VRN3 in
turn represses VRN2, releasing the inhibition of VRN1 by VRN2
(Shimada et al., 2009). The interrelationships among the VRN
genes in temperate grasses remain to be investigated.

In general, plants with a vernalization-requiring winter
growth habit have better freezing tolerance compared with
plants having a spring growth habit that are non-vernalization-
requiring, suggesting a link between vernalization requirement

and freezing tolerance (Antikainen and Griffith, 1997; Limin
and Fowler, 2006; Sandve et al., 2011; Chawade et al., 2012).
However, whether and how vernalization is related to freezing
tolerance remain to be investigated. Previous findings showed
that vernalization pathway and cold acclimation pathway are
interconnected (Liu et al., 2002; Seo et al., 2009; Dhillon et al.,
2010; Lee et al., 2012). SUPPERSSOR OF OVEREXPRESSION OF
CONSTANS1 (SOC1), which encodes a MADS-box transcription
factor, has been reported to regulate multiple floral induction
pathways including vernalization, photoperiod, and autonomous
(Onouchi et al., 2000; Samach et al., 2000). SOC1 may also play
an important role on regulation of cold acclimation, a period
of exposure to low temperatures that results in a significant
increase in freezing tolerance (acquired freezing tolerance). Cold
acclimation induces the cold-responsive genes including the
C-repeat binding factor (CBFs)/Dehydrate Responsive Element
Binding (DREB) and Cold Regulated (COR) (Thomashow, 1999;
Chinnusamy et al., 2007; Zhang et al., 2009, 2017; Chinnusamy
et al., 2010). The SOC1 knockout mutants increased the
expression of cold-responsive genes such as CBFs and COR
whereas SOC1 overexpression mutants decreased the expression
of these genes in Arabidopsis (Seo et al., 2009). In addition,
heterologous expression of the wheat VRN2 (TaVRN2) gene in
Arabidopsis delayed flowering and enhanced freezing tolerance
due to the accumulation of CBF2, CBF3, and COR genes (Diallo
et al., 2010). In barley, genotype with the vrn-1 allele had higher
expression ofCBF genes than genotypes with theVrn-1 allele, and
CBF transcript abundance decreased after vernalization in the
vrn-1 genotype (Dhillon et al., 2010). In wheat, freezing tolerance
and transcript abundance of several CBF and COR genes were
much lower in a deletion mutant, maintained vegetative phase
(mvp) in which VRN1, along with several other genes are deleted
(Dhillon et al., 2010). Taken together, these results suggest that
VRN1 has a negative effect on the expression of CBF genes that
influence freezing tolerance.

To better understand the mechanism of vernalization pathway
and its relationship with freezing tolerance in temperate grasses,
we used the monocot model plant, Brachypodium distachyon for
our study. With its sequenced genome, a small physical stature,
self-fertility, a short life cycle, an efficient transformation system
and abundant natural variation in flowering habit, Brachypodium
is well suited for studying the molecular mechanism of
vernalization and its relationship with freezing tolerance (Draper
et al., 2001; Vogel et al., 2010).

In this study, we isolated and analyzed the expression
of three putative VRN genes in Brachypodium of either a
non-vernalization-requiring (Bd21) or a vernalization-requiring
accession (Bd29-1) and studied their freezing tolerance. We
showed that BdVRN1 and BdVRN3 are induced by vernalization
and are positive regulators of flowering in Bd29-1. The BdVRN2-
like gene is likely not involved in the vernalization pathway in
Brachypodium. Knockdown of BdVRN1 in Bd21 also reduced the
expression of BdVRN3, but had no effect on the expression of
the BdVRN2-like gene and resulted in a dramatic non-flowering
phenotype, which can be rescued by a vernalization treatment.
Meanwhile, enhanced tolerance to freezing stress was observed
in the RNAi mutants, accompanied by constitutive expression
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of several cold-responsive genes, BdCBF2, BdCBF3, BdCBF5,
BdCBF6, and DREB2A at high levels. These results suggest
that BdVRN1 plays a critical role on flowering in vernalization
pathway and its expression negatively affects the regulation of
the cold-responsive genes and reduces freezing tolerance in
Brachypodium.

MATERIALS AND METHODS

Plant Materials and Growth Condition
Seeds of B. distachyon Bd21 (PI 254867) and Bd29-1(PI 639818)
were sown in 6-inch pots containing Sun Gro Hort soil mix
(Bellevue, WA, United States) in the greenhouse at 25◦C, 16/8h
(day/night) with an irradiance of 450± 50 µmol m−2 s−1.

RNAi Vector Construction and
Generation of RNAi Mutants
A fragment of BdVRN1 (414 bp) gene was amplified by PCR
(primers listed in Supplementary Table S2) with the addition
of four bases of CACC at its 3′ end. PCR was performed
as follows: 94◦C for 5 min; 35 cycles of 94◦C for 20 s,
59◦C for 30 s, and 72◦C for 50 s; final extension at 72◦C
for 1 min. The PCR product was separated on 1% agarose
gel and extracted from the gel. Cleaned gene fragment was
cloned into a Gateway R© entry vector pENTRTM/D-TOPO R© (Life
Technologies, Grand Island, NY, United States) containing attL
and attR recombination sites according to the manufacturer’s
protocol. The Gateway R© compatible pANDA vector (Miki and
Shimamoto, 2004) containing two cassettes in inverse orientation
linked by a small fragment of the GUS gene was used as the
destination vector for BdVRN1. The attL × attR reaction is
mediated by Gateway R© LR ClonaseTM II enzyme mix (Life
Technologies, Grand Island, NY, United States). Kanamycin
(nptII) and hygromycin (hpt) resistance genes were used for the
selection in bacteria and plants, respectively. The final binary
vector pANDA::BdVRN1 was verified by Sanger sequencing
(Supplementary Figure S1).

The pANDA::BdVRN1 vector was introduced into
Agrobacterium tumefaciens C58C1 strain for transformation of
Brachypodium following the protocol developed by Vogel and
Hill (2008). The selection medium contained 150 mg L−1

Timentin (bioWORLD, Dublin, OH, United States) to
suppress Agrobacterium growth and 40 mg L−1 hygromycin B
(bioWORLD, Dublin, OH, United States) to kill untransformed
calli. Two cycles of selection, each lasting 2 weeks were performed
under dark at 23◦C. Resistant calli were transferred into the
regeneration medium containing Kinetin (KT) at 1 mg L−1 and
hygromycin at 10 mg L−1 in a tissue culture chamber at 23◦C,
16/8 h (light) with an irradiance of 120 µmol m−2 s−1. Shoots
started to appear 7–10 days after the transfer. Rooting took place
on a MS medium supplemented with 0.1 mg L−1 NAA and 10 mg
L−1 hygromycin. Well-rooted plantlets were carefully moved
into 6-inch pots containing Sun Gro Hort soil mix (Bellevue,
WA, United States). Plants were grown in a growth chamber at
23◦C, 16/8 h (day/night) with an irradiance of 400 ± 30 µmol
m−2 s−1.

Transgenic plants were screened by PCR using primers
(HPT-F 5′ GAATTCAGCGAGAGCCTG 3′, HPT-R 5′ ACATT
GTTGGAGCCGAAA 3′) designed from the sequence of the
hygromycin resistant gene present in the pANDA binary vector.
Eight independent T0 lines were confirmed by PCR analyses. In
two of the independent lines, RNAi-4 and RNAi-12, PCR-positive
and negative plants segregated in a 3:1 ratio in the progenies,
indicating the integration of the transgene occurred at a single
locus in each of the two lines. Homozygous plants of T2 RNAi-4
and RNAi-12 lines were chosen for further analyses.

Cold Acclimation, Vernalization
Treatment, and Assessment of Freezing
Tolerance
Cold acclimation was done by growing plants in growth
chamber at a 4◦C and 8/16 h (day/night) with an irradiance
of 400 ± 30 µmol m−2 s−1 for 10 days. To determine the
vernalization requirement for flowering, 4-week-old plants of Bd
21 or Bd29-1 accession were placed into a growth chamber at
4◦C and 8/16 h (day/night) with an irradiance of 400 ± 30 µmol
m−2 s−1 for 3, 6, 9, or 12 weeks before they were moved back
to a greenhouse (25◦C, 16/8 h day/night) with an irradiance of
450± 50 µmol m−2 s−1.

Freezing tolerance was evaluated for Bd21, Bd29-1and
BdVRN1 RNAi mutants. Five-week-old plants were treated with
−5◦C and 8/16 h (day/night) for 12 h. Following the freezing
treatment, plants were moved into a growth chamber at 4◦C for
recovery for 1 day and were then transferred into a greenhouse
(25◦C, 16/8 h day/night) and evaluated for recovery 1 week later.
Percentage of plants that survived the freezing test and regrew
were recorded.

Gene Expression Analysis by
Semiquantitative and Real-Time RT-PCR
Analysis
To examine the expression levels of BdVRN genes
(Supplementary Table S1) in response to vernalization treatment,
4-week-old plants of each accession were placed into a growth
chamber at 4◦C and 8/16 h (day/night) with an irradiance of
400 ± 30 µmol m−2 s−1. Leaves and meristem were harvested
separately 2, 4, 6, 8, 10, or 12 weeks following the conclusion of
the vernalization treatment.

For semiquantitative RT-PCR analysis, total RNA was
extracted from leaves or meristems with TRIzol R© Reagent
(Invitrogen, Carlsbad, CA, United States). Reverse transcription
was performed with the SuperScript R© III First-Strand Synthesis
System for RT-PCR kit (Invitrogen, Carlsbad, CA, United
States). PCR was performed with gene specific primers (See
Supplementary Table S2 for primer information) with the
following program: pre-denaturation at 94◦C for 5 min; 25 cycles
of denaturation at 94◦C for 30 s, primer-annealing at 58◦C for
30 s, elongation at 72◦C for 50 s, and post elongation at 72◦C
for 5 min for all genes. The expression level of each gene was
normalized to that of the BdGAPDH reference gene.

For Real-Time RT-PCR analysis, total RNA extraction and
reverse transcription were done the same way as described for
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the semiquantitative RT-PCR analysis. Quantitative analyses were
carried out on the Eco R© Real-Time PCR System (Illumina, Inc.,
San Diego, CA, United States) using the SYBR R© GreenERTM

qPCR SuperMix kit (Invitrogen, Carlsbad, CA, United States)
according to the manufacturer’s instructions. The quantity of
PCR products was determined at the end of each cycle by
the Eco R© Software v4.0 (Illumina, Inc., San Diego, CA, United
States). The expression level of each gene was normalized
to that of the BdGAPDH gene, and the expression level for
each gene in the wild type without treatment was set as 1.0.
Primers used for PCR amplification are listed in Supplementary
Table S3.

RESULTS

Brachypodium Accessions Vary in
Vernalization Requirement for Flowering
Time to flower was determined for accessions Bd29-1and
Bd21 with or without vernalization treatment. Bd21 started
flowering within 24 ± 3 days, regardless of the vernalization
treatment (Figure 1), indicating vernalization treatment had no
significant effect on accelerating flowering in Bd21. In contrast,
without vernalization treatment Bd29-1 did not flower even after
140 days when record-taking was stopped. When subjected to a
3-week vernalization treatment, Bd29-1 started flowering after
109 ± 6.2 day. A 6-week vernalization treatment of Bd29-1
reduced the time to flower to just 27 ± 4.2 days. Longer than
6 weeks of vernalization treatment did not reduce the number
of days to flowering further. Clearly, accession Bd29-1 requires
vernalization treatment to flower.

FIGURE 1 | Average number of days required for flowering for the
non-vernalization-requiring accession Bd21 and the vernalization-requiring
accession Bd29-1 after vernalization treatment. Four-week-old seedlings (30
plants for each accession) were either not vernalized or vernalized for 3, 6, 9,
or 12 weeks at 4◦C and 8/16 h (day/night) in a growth chamber. After
vernalization treatment, plants were transferred to a greenhouse (25◦C, 16/8 h
day/night). NF denotes no flowering observed. Average number of days to
flowering indicate the number of days required for flowering following a
vernalization treatment. Error bars represent the standard deviation from
independent plants.

Vernalization Requirement of
Brachypodium Is Strongly Associated
with the Expression of BdVRN Genes
Three genes of VRN1, VRN2, and VRN3 that regulate the
vernalization requirement in wheat or barley have been
characterized. Previous comparative genomic analysis showed
that Brachypodium has a VRN1 homolog, Bradi1g08340
(BdVRN1), located in a position co-linear to the rice
(OsMADS14) and wheat (TaVRN-1) homologous genes,
and a VRN3 homolog, Bradi1g48830 (BdVRN3). Although there
was no apparent homologous VRN2-like gene in Brachypodium,
Bradi3g10010 is a member of the group IV CCT gene, an
intermediate between the barley HvCO9 and cereal VRN2 genes
in the phylogenetic tree (Higgins et al., 2010). For these reasons,
we designated Bradi3g10010 as BdVRN2.

We next assayed the expression of the BdVRN1, 2 and 3
genes in both Bd21 and Bd29-1 with or without vernalization
treatment. Without vernalization treatment, expression of
BdVRN1 expression remained at a low level in leaves and the
meristem during the first 3 weeks following seed germination
for both Bd21 and Bd29-1 (Figure 2A and Supplementary
Figure S2). Four weeks after germination, BdVRN1 expression
was dramatically increased by 20-fold in the meristem in Bd21,
whereas it remained unchanged in Bd29-1 (Figures 2A,B).
Following various length of vernalization treatments, expression
of BdVRN1 in the meristem of Bd21 remained at a high
level, whereas in Bd29-1 it was gradually increased to a level
similar to that of Bd21 after 6 weeks of vernalization treatment
(Figures 2A,B).

BdVRN2 was expressed at a high level in leaves
(Supplementary Figure S2A) but was expressed at a very
low level in the meristem of both Bd21 and Bd29-1 (Figure 2C).
Semiquantitative RT-PCR showed that BdVRN2 was highly
expressed in leaves of Bd21 with or without vernalization and its
expression in Bd29 appeared to increase slightly after a 2-week
vernalization; but longer vernalization did not increase further
(Supplementary Figure S2B). Interestingly, the expression of
BdVRN2 in the meristem is not influenced by vernalization
in both Bd21 and Bd29-1 (Figure 2C and Supplementary
Figure S2B). In Bd21, expression of BdVRN3 in the meristem
increased continuously before vernalization treatment took
place, and did not change significantly by vernalization treatment
(Figure 2D). In contrast, in Bd29-1, the expression of BdVRN3
in the meristem remained at a low level without vernalization,
but increased gradually with vernalization treatment and
increased by sixfolds when it reached the peak following a
8-week vernalization (Figure 2D).

Knockdown of BdVRN1 in Bd21
Conferred Vernalization Requirement
To determine whether BdVRN1 indeed regulates flowering
time, RNAi mutants of BdVRN1 were created for Bd21. Eight
independent T0 transgenic lines were confirmed by PCR analysis
and two of them, RNAi-4 and RNAi-12 did not flower without
vernalization (Figures 3A,C). Real-Time RT-PCR showed that
the BdVRN1 transcripts were reduced to 0.12 ± 0.02 in
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FIGURE 2 | Expression of BdVRN genes in meristems of the non-vernalization-requiring Bd 21 and vernalization-requiring Bd29-1 accessions. (A) BdVRN gene
expression in meristems of 4-week-old seedlings of Bd29-1 that were vernalized for 2, 4, 6, 8, 10, or 12 weeks. BdGAPDH was used as loading control. (B–D)
Relative expression levels of BdVRN1, BdVRN2, and BdVRN3 genes in meristems of Bd21 and Bd29-1. Prior to vernalization, plants were grown at a greenhouse
(25◦C, 16/8 h day/night). Four-week-old seedlings were transferred to a growth chamber at 4◦C and 8/16 h (day/night) for vernalization treatment. Meristems were
harvested after 2, 4, 6, 8, 10, or 12 weeks of vernalization treatment. Error bars represent the standard deviation from independent plants.

RNAi-4 and 0.26 ± 0.04 in RNAi-12 (Figure 3B). After a
6-week vernalization treatment, RNAi-4 and RNAi-12 mutants
started flowering after 35.5 ± 5.6 days and 28.2 ± 8.3 days,
respectively, compared to 19.2 ± 5.4 days for the wild type. The
phenotypic change of Bd21 from non-vernalization-requiring
to vernalization-requiring in the BdVRN1 knockdown mutants
strongly indicate that BdVRN1 is of paramount importance to
flowering induction in Brachypodium.

Knockdown of BdVRN1 in Bd21 Reduced
the Expression of BdVRN1 and BdVRN3,
But Not BdVRN2
To better understand how BdVRN1 affects flowering at the
molecular level, we analyzed the expression patterns of BdVRN1,
BdVRN2, and BdVRN3 in the RNAi-4 knockdown mutant. The
expression of BdVRN1 was significantly suppressed in 4-week-
old seedlings of the RNAi mutant, but it increased significantly
following a 6-week vernalization treatment, although it is still
only half of the value observed for the wild type without

cold acclimation (Figure 4A). Moreover, the expression level
of BdVRN3 also decreased in the BdVRN1 mutants, but
its expression was also elevated by vernalization treatment
(Figure 4C). However, the expression of BdVRN2 was not
affected in the mutant (Figure 4B). These results indicated that
upregulation of BdVRN1 is positively correlated with BdVRN3,
but not with BdVRN2.

Decreased BdVRN1 Expression Is
Associated with Increased Freezing
Tolerance Accompanied by Increased
Expression of Cold-Responsive Genes
To determine the relationship between the vernalization
requirement and freezing tolerance, we compared the freezing
tolerance of Bd29-1 and Bd21. Without a vernalization treatment,
Bd29-1 showed a much higher freezing tolerance than did Bd21
based on the percentage of plants that survived the freeze-thaw-
regrowth test. When plants of both accessions were vernalized for
6 weeks, the recovery rate of Bd21 was nearly unchanged whereas
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FIGURE 3 | (A) Wild type (WT) (left) and BdVRN1 RNAi mutant plant (right) 7 weeks after seed germination. (B) Real-Time RT-PCR analysis of the BdVRN1
expression level in the WT, knockdown mutants of BdVRN1 RNAi-4 and RNAi-12. (C) Average number of days required for flowering for the WT Bd21 and RNAi
mutants with or without a 6-week vernalization treatment. Four-week-old seedlings (30 plants for each accession) were either not vernalized or vernalized for
6 weeks at 4◦C and 8/16 h (day/night) in a growth chamber. After the vernalization treatment, plants were transferred to a greenhouse (25◦C, 16/8 h day/night). NF
denotes non-flowering phenotype. The average number of days to flowering indicates the number of days passed before flowering occurs following a vernalization
treatment. Error bars represent the standard deviation from independent plants.

FIGURE 4 | Expression analysis of BdVRN1 (A), BdVRN2 (B), and BdVRN3 (C) genes in the WT (Bd21) and BdVRN1 RNAi mutant. The relative expression levels of
each gene were determined by Real-Time RT-PCR in leaf tissues. Prior to vernalization, plants were grown at a greenhouse (25◦C, 16/8 h day/night). Four-week-old
seedlings were then transferred to a growth chamber at 4◦C (8/16 h day/night) for 0 or 6 weeks. BdGAPDH is a loading control. Error bars represent the standard
deviation from independent plants.

that of Bd29-1 greatly decreased (Figure 5A). With a cold
acclimation, both Bd21 and Bd29-1 had an increase in recovery
rate compared with their non-cold acclimated counterparts
(Figure 5B), which clearly indicated that both accessions have
a well-defined cold acclimation mechanism to increase freezing
tolerance upon an exposure to low temperatures. The result
that vernalization treatment reduced the freezing tolerance of

Bd29-1, but not Bd21suggested that vernalization requirement
is negatively correlated with freezing tolerance. Furthermore the
BdVRN1 RNAi-4 mutant that gained vernalization requirement
is also much more freezing tolerant than that of the wild
type Bd21 with or without cold acclimation (Figures 5A,B).
Semiquantitative RT-PCR experiments confirmed that without
vernalization treatment Bd29-1 and the Bd21 RNAi-4 mutant
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FIGURE 5 | Freezing tolerance of vernalized or non-vernalized Bd21 and Bd29-1 with or without cold acclimation. (A) Freezing tolerance of non-vernalized or
vernalized plants of Bd21, Bd29-1, and BdVRN1 mutant RNAi-4 without cold acclimation. Freezing tolerance was assayed by subjecting plants to –5◦C and 8/16 h
(day/night) for 12 h in a growth chamber. Plants were then moved back into a greenhouse (25◦C, 16/8 h day/night) and were examined for recovery a week later. The
non-vernalized plants were 5-week-old. (B) Freezing tolerance of non-vernalized or vernalized plants of Bd21, Bd29-1, and RNAi-4 mutant following a 10 day cold
acclimation. (C) Semiquantitative RT-PCR of BdVRN1 gene in leaves from vernalized or non-vernalized plants of Bd21, Bd29-1, and RNAi-4 mutant. Leave tissues
were collected before assessing freezing tolerance for each accession. Error bars represent the standard deviation from independent plants.

had lower BdVRN1 expression levels than the wild type Bd21,
but a 6-week vernalization treatment increased the expression
levels of BdVRN1 in both Bd29-1 and the BdVRN1 RNAi-4
mutant approaching to that in Bd21 (Figure 5C). This increase
in BdVRN1 expression coincides with the reduced freezing
tolerance.

The regulation of gene expression in response to cold is quite
complex with more than a 1000 genes are cold induced, but a
critical group of them are organized into a cascade controlled
through a regulatory hub involving cold-inducible CBF genes
(Chinnusamy et al., 2007; Thomashow, 2010). The CBF genes
encode members of the AP2/ERF family of transcription factors,
which bind to the CRT/DRE regulatory elements in target genes
of the CBF regulon and increase freezing tolerance (Jaglo-Ottosen
et al., 1998; Liu et al., 1998; Catala et al., 2003; Dubouzet et al.,
2003; Ito et al., 2006; Xiong and Fei, 2006; Lata and Prasad,
2011). For example, CBF1 in Arabidopsis is a transcriptional
activator for the COR genes, such as COR47and COR414-TM1,
which are involved in cold and dehydration responses (Xiong
et al., 2002; Sakuma et al., 2006; Griffith et al., 2007). DREB2A
is a transcription factor induced by dehydration in Arabidopsis,
rice, soybean, and maize (Simpson et al., 2003; Sakuma et al.,
2006; Qin et al., 2007; Cui et al., 2011; Mizoi et al., 2013).
The RD (RESPONSIVE TO DESICCATION) genes, for example
RD26 and RD29B, are induced by cold or drought stress through
the regulation of the transcription factor DREBs (Yamaguchi-
Shinozaki and Shinozaki, 1994; Nakashima et al., 2006; Msanne
et al., 2011). To further characterize the relationship between
BdVRN1 gene and freezing tolerance, we analyzed the expression

FIGURE 6 | Real-Time RT-PCR analysis of the cold-responsive genes in the
WT and RNAi mutant with or without cold treatment. Leaves were harvested
24 h after a 4◦C cold treatment. The expression level of each gene was
normalized to that of BdGAPDH gene, and the expression level for each gene
in the WT without cold treatment was set to 1.0. Error bars represent the
standard deviation from independent plants.

of some important cold-responsive genes by real-time RT-PCR
in both the wild type Bd21 and the BdVRN1 RNAi-4 mutants
without vernalization treatment.

Previously, we isolated eight CBF genes (CBF1 Bradi4g35630,
CBF2 Bradi4g35620, CBF3 Bradi4g35650, CBF4 Bradi4g35570,
CBF5 Bradi4g35580, CBF6 Bradi4g35590, CBF7 Bradi4g35600,
and CBF8 Bradi4g35650) from Brachypodium that are tandemly
arranged in chromosome 4 and are all cold induced (not
published). Here we compared their expression with four other
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important cold-responsive genes between the wild type Bd21 and
the BdVRN1 RNAi-4 mutants. We showed that CBF2, CBF3,
CBF5, CBF6, COR414-TM1, and COR47 were highly induced by
3- to 600-fold in both the wild type and the BdVRN1 RNAi-
4 mutants after a mere 24 h of cold treatment (Figure 6).
More interestingly, CBF2, CBF3, CBF5, CBF6, and DREB2A were
highly expressed in the BdVRN1 RNAi-4 mutant without cold
induction, and the constitutive expression of CBF3 and DREB2A
in the RNAi mutant was even higher than that of the cold-treated
wild type. On the other hand, RD26 and RD29B genes showed
no noticeable changes in the RNAi mutant, compared to the wild
type.

DISCUSSION

In this study, we examined the requirement for vernalization
in Brachypodium accessions Bd29-1 and Bd21 and discovered
that while Bd21 does not require vernalization for flowering,
Bd29-1 requires vernalization. To understand the molecular
basis underlining the differences in vernalization requirement
between the two accessions, we isolated homologs of the
three known cereal vernalization genes, BdVRN1, BdVRN2, and
BdVRN3 from both accessions, and analyzed their temporal
expression patterns in leaves and the meristem. It was shown
that the vernalization requirement is closely correlated with
the expression patterns of the BdVRN1 and BdVRN3 genes,
but not with the BdVRN2 gene. Bd21 started flowering in
approximately 7 weeks following seed germination, accompanied
by accumulations of both BdVRN1 and BdVRN3 transcripts in
the meristem regardless of vernalization treatment. In contrast, a
minimum of 3-week vernalization is required for Bd29-1 to gain
competence for flowering while 6 weeks or more significantly
reduced the number of days for vernalized plants to flower.
Accumulation of BdVRN1 appears to precede the accumulation
of BdVRN3. However, the expression of BdVRN2 was not
correlated to vernalization treatment in both Bd21 and Bd29-1.
Therefore, we speculated that BdVRN1 and BdVRN3 positively
regulate vernalization response of the vernalization-requiring
accession Bd29-1. It is consistent with the results of a previous
study that overexpression of FT1 (VRN3) caused extremely
early flowering during shoot regeneration and downregulation
of FT1 by RNA interference (RNAi) resulted in non-flowering
Brachypodium (Lv et al., 2014). The loss-of-function mutants
exhibited vernalization-requiring phenotype, similar to Bd29-
1. Gene expression analysis showed that the expression of not
only BdVRN1 but also BdVRN3 were suppressed in the mutants,
however, expression of both were elevated by vernalization
treatment. The expression of BdVRN2 was not affected in
the RNAi mutants with or without vernalization treatment,
suggesting BdVRN2 may not be a true homolog, or is not
involved in flowering in Brachypodium. This is different from
Ream et al. (2014) who reported that BdVRN2 is induced during
cold.

Our result is consistent with previous studies in wheat and
barley that both VRN1 and VRN3 are induced by vernalization
with a quantitative effect on the timing of flowering initiation

(Danyluk et al., 2003; Murai et al., 2003; Yan et al., 2003, 2006).
Different hypotheses have been proposed on the relationship
betweenVRN1 andVRN3 in temperate cereals. Li and Dubcovsky
(2008) posited VRN3 regulate the VRN1 expression in the
vernalization pathway, while others suggested that VRN1 is
upstream of VRN3 (Sasani et al., 2009; Shimada et al., 2009).
Our results largely agree with the idea that VRN1 is induced by
vernalization and up-regulates the expression of VRN3.

Comparative genomic analysis suggested that VRN2 gene
has been lost in the Bd21 genome, similar to rice, which has
no requirement for vernalization (Higgins et al., 2010). In our
work, we chose a CCT gene grouped between HvCO9 and
VRN2 in a phylogenetic tree as BdVRN2. We showed that
BdVRN2 was stably expressed in Bd21, which is consistent
with the idea by comparative genomic analysis that this is a
loss-of-function BdVRN2 in Bd21. However, the BdVRN2 was
also stably expressed independent of the vernalization both in
Bd29-1 and the BdVRN1 RNAi mutants of Bd21, suggesting
that BdVRN2 is not involved in the vernalization pathway.
This is different from wheat or barley, in which VRN2 was
characterized as a repressor of flowering and is regulated by
both photoperiod and vernalization. Our result suggested that
there are evolutionary difference between Brachypodium and
temperate cereals. Interestingly a recent study identified a FLC
homolog in Brachypodium that is a vernalization-regulated
repressor (Sharma et al., 2016).

It is well observed that plants with vernalization requirement
for flowering typically have better freezing tolerance than their
non-vernalization-requiring close relatives (spring wheat vs.
winter wheat or spring barley vs. winter barley), but the molecular
link between them remains unclear. Previous works suggested
that there might be a negative correlation between freezing
tolerance and VRN1 transcript in wheat (Liu et al., 2002;
Danyluk et al., 2003; Limin and Fowler, 2006). The expression
of TaVRT-1, a homolog of AP1/VRN1 in wheat, was positively
associated with vernalization treatment, and was negatively
associated with the accumulation of COR genes and freezing
tolerance (Danyluk et al., 2003). Expression studies showed
that high levels of constitutive expression of some CBF genes
in winter wheat cultivars confers a higher freezing tolerance
compared to spring cultivars (Kobayashi et al., 2005; Badawi
et al., 2007). In addition, the VRN1 deletion mutant, mvp,
increased freezing tolerance along with an increased expression
level of several CBF and COR genes (Dhillon et al., 2010).
A subsequent study found that the deletion of the mvp mutant
include other genes besides VRN1 such as AGLG1, CYS, and
PHYC (Distelfeld and Dubcovsky, 2010). In the present study
we showed that the vernalization-requiring Bd29-1 accession
is more freezing tolerant than the non-vernalization-requiring
Bd21, which corresponds to the different transcript levels of
BdVRN1 between the two accessions. Significantly, when we
treated the Bd29-1 and Bd21with vernalization for 6 weeks,
the freezing tolerance of Bd29-1 was greatly reduced, but that
of Bd21 remained the same. In order to exclude other factors
in regulating freezing tolerance, we compared the freezing
tolerance between the non-vernalization-requiring Bd21 and its
VRN1 RNAi mutants which requires vernalization for flowering.
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Our results showed that freezing tolerance was enhanced
in BdVRN1 knockdown mutants relative to the wild type.
Vernalization treatment of the RNAi mutants reduced their
freezing tolerance. Moreover, several key cold-responsive
genes, BdCBF2, BdCBF3, BdCBF5, BdCBF6, and DREB2A, are
constitutively expressed at high levels in the knockdown mutants.
Whether BdVRN1 directly regulates the freezing tolerance
pathway or function through interaction with other genes
remains to be determined.
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