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Sugarcane, one of the most photosynthetically efficient crops, is an important source of
sugar and feedstock for green energy and co-generation. The high level of polyploidy
and genomic peculiarities in this crop point towards a complex mechanism of regulation
for the economically important traits like sugar content, cane yield related traits,
resistance to biotic and abiotic stresses etc. The regulatory pathways for these traits
comprise of a number of genes, transcription factors and different categories of RNAs
like small interference RNAs (siRNAs), and Micro RNAs (miRNAs). MicroRNAs (miRNAs)
are found to play an important regulatory role in many crops. As in other crops, several
miRNAs have been identified in sugarcane too and these are speculated to have a role
in regulating the various metabolic processes. Role of miRNAs in relation to drought
tolerance has been studied to a great extent in this crop. miRNAs have been predicted
to be linked to expression of other traits like disease resistance, salinity tolerance,
waterlogging and axillary bud growth in sugarcane. miRNAs can have a significant
role in biomass production in sugarcane, as reported in several biofuel crops. Till now,
miRNAs linked to sugar accumulation have not been identified in sugarcane, but studies
suggest an important role for miRNAs in sugar metabolic pathway in crops like Sorghum
and switch grass. It is presumed that in sugarcane too, sugar accumulation as well
as the other important metabolic pathways might be regulated to some extent by
the miRNAs. The review examines the progress made in understanding the miRNA
regulation in sugarcane and the extent to which miRNA mediated regulation can be
utilized in sugarcane improvement.

Keywords: biomass, disease resistance, microRNAs, metabolic pathways, regulation, stress tolerance, sugar
content, sugarcane

INTRODUCTION

Sugarcane is one among the most photosynthetically efficient crops contributing to the major
share of sugar production in the world. The plant is unique that the storage of sugar in the
parenchymatous tissues takes place at a very high concentration. The high biomass content makes
it a fitting source of feedstock for green renewable energy. Sugarcane produces the highest crop
tonnage (FAOSTAT, 2008), on an average, 40 t/ha of dry stalk and trash (Waclawovsky et al., 2010),
with an estimated capacity to store sugar upto 62% of dry weight or 25% of fresh weight of the
stalk. The improvement efforts till now have mainly focussed on boosting the sugar content in the
crop. There is considerable gap between the theoretical conversion efficiency and the actual solar
energy conversion reported in sugarcane. With a wide range being observed for sucrose content
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on dry matter basis (350–400 mg/g to upto 500–560 mg/g
sucrose), ample scope exists in this crop for increasing the
photosynthetic efficiency as well as the sucrose accumulation
potential through conventional as well as modern crop
improvement tools.

The global concentration of CO2 has reached 405.07 ppm
in February 2017 (NAAO, 2017). As the atmospheric CO2
levels approach the 700 ppm mark, the advantage which the
C4 plants enjoy over the C3 plants with respect to increased
photosynthetic efficiency may start disappearing (Zhu et al.,
2008). This necessitates manipulations to facilitate the C4 plants
to better utilize the solar energy and for better partitioning of
the biomass into desirable components, even with increasing
CO2 levels. With the necessity to produce more, the crop
may be grown in less productive lands too, under various
abiotic and biotic stresses, in future. Regulatory mechanisms
need to be elucidated for necessary interventions at key points.
Thus, not only sugar accumulation, but traits like biomass
production, nutrient and water use efficiency, stress tolerance,
ratoon productivity and post harvest management also need to be
fine-tuned for increased productivity, with maximum utilization
of resources. Hence, an understanding of the factors regulating
various metabolic pathways and their manipulation at the key
steps assumes great significance.

Many genes and regulatory factors including different
categories of RNAs are involved in these metabolic processes.
Interaction of the RNA sequences with the target sequences may
regulate the various processes through post-transcriptional as
well as post-translational modifications. MicroRNAs (miRNAs)
are predicted to be one among these regulatory factors, associated
with various economically important traits in sugarcane (Ferreira
et al., 2012; Thiebaut et al., 2012; Gentile et al., 2013, 2015;
Srivastava, 2013; Lin et al., 2014).

MicroRNAs (miRNAs): ORIGIN AND
MECHANISM OF GENE REGULATION

Small RNAs (sRNAs) are 20–30 nucleotides long RNA sequences,
which have important roles in the various regulatory pathways.
The group consists of microRNAs (miRNAs, 21–22 nucleotides),
small interference RNAs (siRNAs, 21–24 nucleotides) and
Piwi-interacting RNAs (piRNAs, 28–30 nucleotides) (Axtell and
Bowman, 2008). These are known to regulate the expression of a
number of key developmental and stress related genes in many
crops (Jones-Rhoades et al., 2006).

In plants, the precursor gene sequences, after a series of
intermediaries, give rise to the mature microRNAs i.e., miRNAs
(the leading strand), whereas the miRNA∗ (the passenger strand)
gets degraded (Ferreira et al., 2012; Saikumar and Kumar, 2014).
The process can be roughly illustrated as follows (Figure 1). The
mature miRNA binds with ARGONAUTE (AGO) protein and
directs the cleavage or translational repression of target mRNAs.

The nucleotide at the 5′ end of the miRNA is significant
as it determines the AGO protein to which, the miRNA binds
(Mi et al., 2008). In many crops, the most frequently present
nucleotide at the 5′ end is the Uracil (U), whereas in sugarcane,

both Uracil (U) and Adenine (A) have been observed to be
present in almost equal frequency (Ferreira et al., 2012). In
sugarcane, there seems to be a preference among 21 nt new
miRNA candidates for U at their 5′ end and among 24 nt
candidates for A in the same position (Thiebaut et al., 2012).
In rice and Arabidopsis, AGO1 associates preferentially with an
miRNA with U at the 5′ end, while AGO2 binds preferentially
with an miRNA, with A at the corresponding position. AGO5
has been found to prefer cytosine as 5′ cap. Exceptions have
also been reported as in Arabidopsis, where miR172 (5′cytosine)
gets associated with AGO1 in most of the cases and majority of
miR390 (5′ adenosine) bind with AGO7 (Mallory and Bouche,
2008). Besides, the presence of conserved histidine residues at
specific positions in the AGOs has been detected, which is
critical for slicing of miRNA:AGO complex (Kapoor et al., 2008;
Thiebaut et al., 2012). Such preferences and conserved sequences
may exist in sugarcane too and these may influence the regulatory
mechanisms in this crop.

The regulation of gene expression by miRNAs in plants
is mainly through target cleavage and transcriptional and
translational repressions (Chen, 2004; H-shan et al., 2005).
Additionally, miRNAs may regulate gene expression through
DNA methylation (Wu et al., 2010). In Arabidopsis, target
mimicry has been found to operate, as in the regulation of
shoot pi content through miR399 (Franco-Zorilla et al., 2007).
An additional regulatory pathway was identified in rice and
Arabidopsis where, miRNA recognition sites in the introns
of mRNAs are targeted by specific miRNAs (Meng et al.,
2013). These introns get cleaved depending on the presence
or absence of cleavage sites. Single nucleotide polymorphisms
(SNPs) residing in the target sites and other mutations in the
miRNA binding sites of the target gene can lead to loss or
gain of miRNA target sites, thereby modifying the regulatory
process (Pelletier and Weidhaas, 2010). Regulation by miRNAs
may not always be through single target regulation. miRNA–
miRNA interactions, where the expression of one miRNA is
regulated by another miRNA, has been reported (Guo et al., 2012;
Xu et al., 2014). Trans-acting miRNAs (ta-siRNAs) from TAS
genes direct the cleavage of partially complimentary mRNAs as
a regulatory mechanism (Vaucheret, 2005; Mallory and Bouche,
2008; Montgomery et al., 2008). Thus, the mechanisms may vary
depending upon the crop and the gene regulated. The same
metabolic pathway may have different genes/factors on which
different miRNA regulatory mechanisms operate.

miRNAs IN SUGARCANE: REGULATING
THE VARIOUS PATHWAYS

miRNAs and their role in gene regulation have been studied in
many crops (Jones-Rhoades et al., 2006; Axtell and Bowman,
2008; Mallory and Bouche, 2008; Ding et al., 2013; Saikumar and
Kumar, 2014; Srivastava et al., 2015). In sugarcane also, miRNAs
have been speculated to have a major role in regulating various
traits (Zanca et al., 2010). The identification of mature miRNAs
and their expression analysis has been limited in this crop. The
absence of a well sequenced complete genome of sugarcane, along
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FIGURE 1 | MicroRNA formation: a schematic illustration.

with the inherent complexities of the crop makes the miRNA
studies in sugarcane more complicated. The highly unstable
nature of the miRNA precursors makes their identification in
the EST collections difficult (Gentile et al., 2015). Discovery of
novel miRNAs and prediction of targets for miRNA, necessitate
the availability of a sequenced genome, even though, wet bench
cloning and in silico sequence mining can be an answer to this
challenge to some extent, at the initial stages. Application of
comparative genomics has facilitated the use of information from
Sorghum, the closest diploid relative of sugarcane, for miRNA
identification and further analyses in sugarcane (Zanca et al.,
2010). Some limited studies on miRNA based regulation in
sugarcane have revealed information regarding the categories of
miRNAs present and their abundance in relation to particular
traits. More of 24 nt long miRNAs were observed in salt stress
and drought stress sensitive libraries from sugarcane genotypes.
Drought stress tolerant libraries had more of 21 nt miRNAs.
Thus, the extent of involvement of these two groups of miRNAs
in regulating a particular pathway depends, on the trait analyzed
and on the target identified. The putative miRNA target MADS2,
a MADS-based transcription factor that regulated development,
was recognized by 21 nt miRNAs whereas, 24 nt miRNA
candidates were found to recognize a 60S acidic ribosomal
protein RPP2B involved in biotic stress resistance (Thiebaut et al.,
2012).

miRNAs and Drought Response in
Sugarcane
Perhaps the most widely studied miRNA mediated regulation
in sugarcane is the one related to drought (Ferreira et al., 2012;
Thiebaut et al., 2012; Gentile et al., 2013, 2015; Srivastava, 2013;
Lin et al., 2014). Computational studies using the sequences from
four each of drought tolerant and drought sensitive sugarcane
genotypes that had been subjected to biotic and abiotic stresses,
identified 623 candidates of new mature miRNAs (Thiebaut et al.,
2012). Of these, 44 were classified as high confidence miRNAs.
67 miRNAs were identified specifically in the water deficit assay,
with 20 being shared by the tolerant and susceptible assays. The
putative targets and their biological functions were identified and
these were predicted to be targeting serine/threonine kinases,
zinc-finger proteins etc. Ferreira et al. (2012) identified 18
miRNA families in sugarcane cultivars differing in their level of
drought tolerance, with seven of these differentially expressed
during drought. The differential expression varied with the
extent/duration of water stress. Study of expression profile of
miRNAs in a drought resistant cultivar ROC22 by Lin et al.
(2014) identified 23 conserved and 34 new miRNAs in the
leaves, with 438 putative target genes. Eleven miRNAs were
found to be differentially expressed among the control plants
and the plants subjected to drought. Expression studies of the
micro-transcriptome regulating drought response by Gentile
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et al. (2013), using two sugarcane cultivars of contrasting drought
tolerance, identified 18 miRNA families with 30 mature miRNA
sequences, 13 of them being differentially expressed. Seven
miRNAs were differentially expressed in both the sugarcane
cultivars. Two of these were observed under all the stress
durations and all growing conditions. Transcription factors,
transporters and proteins associated with senescence and flower
development. were reported to be among the target sequences
for these miRNAs, speculating the existence of cross talk among
these pathways. Some of the miRNAs were up-regulated in
one cultivar while the same were down-regulated in another
cultivar under drought stress. The duration of the stress and
the growing conditions (greenhouse vs. field) also influenced the
miRNAs expressed, with a shift in the up or down regulation
of some miRNAs as per the duration of stress. Short term PEG
stress led to significant up-regulation of miR159 targeting the
MYB transcription factor family, in sugarcane leaves (Patade and
Suprasanna, 2010). Thus, the miRNA regulation seems to be
dependant largely on the type and duration of stress induced.
Tolerance/susceptibility of sugarcane plants to waterlogging has
also been speculated to be associated with miRNA regulation in a
study, wherein, seven candidate miRNAs were identified in plants
subjected to waterlogging for one month. These were speculated
to be sugarcane specific (Khan et al., 2014).

All these studies point towards a possible role of miRNAs, both
induced and modulated by drought, in regulating the drought
response in this crop. These may be one among the many factors
involved in the regulatory cascade of the entire pathway. These
investigations helped in identifying some of the target genes
for these regulatory sequences, with genes for plant growth and
related processes also being predicted as probable targets. These
also brought out the cross-talk that might be present among the
various metabolic pathways.

miRNAs Regulating Other Stresses in
Sugarcane
Other than drought response, salinity and response to diseases
have also been studied with reference to miRNA mediated
regulation in sugarcane. Short term salinity stress has been found
to result in up-regulation of transcript expression of MYB-related
genes, with a concomitant down regulation of miRNA (Patade
and Suprasanna, 2010). Carnavale-Bottino et al. (2013), in their
studies in Saccharum spp. cultivars grown in mild and intense
salt stress, identified 11 miRNAs with higher expression in severe
salt stressed plants, compared to that in mild stress.

The gene sequences in sugarcane that act as targets for
pathogen miRNAs and also the miRNAs in sugarcane related
to diseases incidence have been investigated. Thiebaut et al.
(2012) identified more than 240 miRNAs in sugarcane infected
with Acidovorex avenae ssp avenae. Viswanathan et al. (2014)
computationally predicted and experimentally validated the
miRNAs encoded by the Sugarcane Streak Mosaic Virus
(SCSMV) infecting sugarcane genome and identified their
potential gene targets in sugarcane. A total of 30 putative miRNAs
were identified in the pathogen. 19 target genes belonging to
several gene families were identified for the miRNA SCSMV

miR16 in sugarcane. Some of the miRNA families are found to
target the genes for NBS-LRR plant immune receptors in legumes
(Zhai et al., 2011; Shivaprasad et al., 2012) and solanaceous
plants (Li et al., 2012) with a possibility of similar occurrence in
sugarcane also.

miRNAs and Regulation of Traits Related
to Biomass
With the crop emerging as an efficient feed stock for cellulosic
bioethanol, studies on the metabolic pathways related to lignin
and degradation of cellulosic material have gained importance in
sugarcane. miRNAs for recalcitrance and biconfinement, along
with those for development and stress response were identified
in some of the biofuel crops (Trumbo et al., 2015). miR156 and
miR159 have been found to be associated with recalcitrance,
bioconfinement and also abiotic stresses in sugarcane. Several
other miRNAs linked to biomass improvement viz., miR164,
miR166, miR167, miR172, miR398, miR414, miR444, miR477,
miR528, miR531, miR854, miR1535, miR1848, miR102, miR2118
etc., have been identified in related biofuel crops by these
researchers and these may have important roles in sugarcane
also. Overexpression of miR156 has been found to have a 30%
reduction in lignin content in switch grass. It has been speculated
that the relative levels of miR156 and miR172 regulates
juvenile-to-adult transition and thereby, the biomass content.
miR156 is reported to down regulate Trehalose-6-Phosphate
Synthase-1, which is also involved in sucrose metabolism.
miR166, miR169, and miR139, are also reported to regulate shoot
development, flower development, phase transition and sugar
production. Thus, all these miRNAs are reported to favor biomass
accumulation through different strategies (Trumbo et al., 2015).
Twenty six conserved miRNA families and two putative miRNAs
were identified by Ortiz-Morea et al. (2013), in their studies
of small RNAs in active and developing vegetative buds in
sugarcane. The expression pattern suggested a role for the
miRNAs in regulating abscicic acid signaling pathway during
bud growth. A fine-tuned regulation of miR139, resulting in a
molecular switch in the inactive vegetative buds and a higher
expression of the gene SsGAMYB in actively growing axillary
buds was suggested in this study. The regulation of axillary bud
development may have a role in the vegetative growth of the plant
thereby, possibly influencing biomass accumulation.

miRNAs and Sugar Metabolic Pathway in
Sugarcane
Even though sugar accumulation and final sugar content are
important economic traits in sugarcane, till now, no miRNAs
have been reported to be related to sugar metabolism in this crop.
In switch grass (Panicum virgatum L.), miR156 and miR139 are
reported to be associated with regulation of the enzymes sucrose
synthase and trehalose -6-Phosphate (Xie et al., 2014). Calvino
et al. (2011) and Yu et al. (2015) identified miRNAs differentially
expressed in grain and sweet sorghum (e.g., miR169), speculating
that this miRNA might be associated with sugar accumulation
in this crop. Three miR169 genes – miR169a, miR169b, and
miR169c (out of a total of 18 detected), have been found to

Frontiers in Plant Science | www.frontiersin.org 4 June 2017 | Volume 8 | Article 997

http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive


fpls-08-00997 June 10, 2017 Time: 15:43 # 5

Swapna and Kumar MicroRNAs in Sugarcane

be differentially expressed in the stems and leaves of sweet and
grain sorghum. These reports also ascertain the importance of
source (leaves) as well as sink (stems) in the sugar accumulation
pathway. Also, the relative abundance of 24 nt miRNAs that
influence transcriptional gene silencing, compared to the 21
nt miRNAs which are responsible for post-transcriptional gene
silencing in sweet sorghum tissues may be an indicator of the
regulatory mechanisms more prevalent in this crop. The studies
by Calvino and his group (Calvino et al., 2011) reported an equal
abundance of miR395 as well as miR395∗ in sweet sorghum stem
tissues, suggesting a regulatory role for the miR395∗ strand also
in sugar accumulation. Sorghum is the closest diploid relative
of sugarcane and comparative genomic studies have reported
similarities with respect to gene sequences and their function in
the two crops. Thus, it is possible that these miRNAs identified
in sweet and grain sorghum may have regulatory roles in the
sugar accumulation in sugarcane also. Differential accumulation
of potential target genes seldom has a simple correlation with
miRNA levels, as reported in sweet sorghum (Calvino et al.,
2011). Such findings call for more detailed studies and some
amount of caution, before directly applying the results from other
related crops to sugarcane.

miRNA REGULATION IN SUGARCANE:
POSSIBILITIES AND CHALLENGES

There are indications that miRNAs play a role in regulating
temporal transitions, especially with respect to control of
developmental timings, in many crops. miR172 regulates
flowering time by targeting a sub-family of APETALA2 (AP2)
transcription factor genes in Arabidopsis (Aukerman and Sakai,
2003). Similar type of miRNA regulation along with other
mechanisms, may occur in sugarcane also, where temporal
differences are exhibited with respect to the maturity of sugarcane
genotypes. There can be differential regulatory mechanisms by
some miRNAs in early and late maturing varieties in which,
the sucrose content reaches the peak level at 8–10 months after
planting or at 10–12 months after planting, respectively. Varietal
differences may exist with respect to the extent of inversion of the
sugar accumulated in this crop and this also might be regulated
by miRNA, along with many other factors. It is possible that
the relative levels of different miRNAs and fine-tuning of their
expression regulate the sugar accumulation, and thereby, the time
of maturity of the crop. These speculations need to be tested and
validated so that the miRNA regulatory mechanism can be fully
exploited to manipulate major economically important traits in
this crop.

The different categories of genes speculated to be targeted
by the individual miRNAs, point towards the complexity of the
entire regulatory mechanism and emphasize the existence of
“cross talk” among the various pathways. Still a lot need to be
understood to pinpoint the miRNAs regulating the various traits
and those differentially expressed.

The correlation and differential expression of the miRNAs in
these studies with respect to the different traits, give a preliminary
insight into the presence of miRNAs and their possible role

in regulating the various metabolic processes. These do not
present a conclusive evidence that the miRNAs do regulate the
traits studied in sugarcane, and more studies may be needed
in this regard. It can be inferred that miRNAs are not solely
responsible for regulating the metabolic pathways and these may
be one among the several components of the entire regulatory
network (Ferreira et al., 2012). Also, as reported by Calvino
et al. (2011), a lack of simple correlation between the miRNA
levels and the target genes points towards a complex process
of regulatory mechanism involving miRNAs. There can be
varying mechanisms of regulation involving different miRNAs,
resulting in transcriptional or post-transcriptional regulation.
The variation exhibited with respect to the miRNA expression
profile, with changes in the growth conditions and trait of
interest, indicates that the process of regulation by miRNAs
is highly complicated. Several points are yet to be answered
in relation to miRNAs and gene regulation in sugarcane. It
has been reported that duplicate genes are more likely to be
targeted by miRNAs than singletons (Wang and Adams, 2015).
With the high ploidy level of sugarcane, will the possibility of
miRNA regulation for traits be more in sugarcane than that
in other diploid crops? Are all the metabolic pathways and
the traits/genes for a particular trait regulated by miRNAs? Do
all the genes governing a particular trait have miRNA binding
sites? Is there a basis for preference of specific traits/genes
for being regulated by miRNAs or is it random? How do the
ploidy level and the complexity of genome affect the presence
of miRNAs and their regulatory role? To what extent can
the information from comparative genomics with respect to
regulatory role of miRNAs be applied to sugarcane improvement?
These are some of the points that need to be considered in
detail.

CONCLUSION

With the modern tools for computational prediction and
expression studies, and advances in bioinformatics, researchers
can take full advantage of miRNA regulation in the various
economically important traits. Still, challenges do exist in
this area. Variations in sequencing methodology, interactions
between miRNAs and their transcripts, pleiotropy, multiple-
miRNA alterations etc., are a few of the challenges that need to
be addressed. These will be in addition to the complexities for
a crop like sugarcane due to its inherent genomic peculiarities.
The advances in the tools available and the information from
the genome sequencing projects in this and other related crops,
along with comparative genomics, will help in overcoming these
challenges, so that the regulatory properties of miRNA can
be effectively exploited for improvement of important traits in
sugarcane too.
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