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Salt stress can severely reduce crop yields. To understand how rice (Oryza sativa)
plants respond to this environmental challenge, we investigated the genes involved
in conferring salt tolerance by screening T-DNA tagging lines and identified OsSta2-
D (Oryza sativa Salt tolerance activation 2-Dominant). In that line, expression of OsSta2
was enhanced by approximately eightfold when compared with the non-transformed
wild type (WT). This gene was highly expressed in the callus, roots, and panicles. To
confirm its role in stress tolerance, we generated transgenic rice that over-expresses
OsSta2 under a maize ubiquitin promoter. The OsSta2-Ox plants were salt-tolerant at
the vegetative stage, based on our calculations of chlorophyll fluorescence (Fv/Fm), fresh
and dry weights, chlorophyll concentrations, and survival rates. Under normal paddy
field conditions, the Ox plants were somewhat shorter than the WT control but had
improved agronomic traits such as higher total grain yield. They were also more tolerant
to osmotic stress and hypersensitive to abscisic acid. Based on all of these results, we
suggest that OsSta2 has important roles in determining yields as well as in conferring
tolerance to salt stresses.

Keywords: abiotic stress, salt stress, drought stress, osmotic stress, rice, ABA, agronomic trait, tiller number

INTRODUCTION

For more than half of the world’s people, rice (Oryza sativa) is a major food crop. Global demand for
this grain will rise as populations continue to grow. Diverse environmental stresses cause plants to
respond at the molecular level by altering the expression of different sets of regulatory or signaling
genes as well as genes that encode proteins related to stress tolerance (Apse and Blumwald, 2002;
Seki et al., 2003; Shinozaki et al., 2003; Wang et al., 2003; Kumar et al., 2013; Fahad et al., 2015;
Kazan, 2015; Parihar et al., 2015; Petrov et al., 2015). Drought and salt stresses are common
environmental factors that restrict rice productivity (Yeo and Flowers, 1984; Xoconostle-Cázares
et al., 2010; Das et al., 2015; Fita et al., 2015). On high-salinity soils, annual grain yields can be
reduced by 30–50% (Eynard et al., 2005). Significant progress has been made in understanding
the mechanism(s) for salt tolerance in many plant species, including rice (Kumar et al., 2013;
Deinlein et al., 2014; Parihar et al., 2015). Under salt stress, cells can be protected and normal plant
growth maintained through cellular responses such as cytosolic calcium release, ionic imbalances

Abbreviations: ABA, abscisic acid; ATL, activation tagging line; DAG, days after germination; LSD, least significant
difference; MS, Murashige and Skoog.
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in the vacuole, stress signal transduction, and expression of
several regulatory genes (Kasuga et al., 1999; Kader and Lindberg,
2010; Ismail et al., 2014). Because all of these responses indicate
that various species utilize a common set of signaling pathways
and genes, researchers can exploit this to engineer plants with
greater salt tolerance.

Transcription factors (TFs) such as AP2/ERF, bZIP, MYB,
NAC, zinc-finger, MYC, and WRKY are important because
they can regulate the downstream expression of many stress-
responsive genes (Bhatnagar-Mathur et al., 2008; Joshi et al., 2016;
Wang et al., 2016). Transgenic application of TFs is a useful
approach for developing plants that are more tolerant to abiotic
stresses. Among them, AP2/ERFs have multiple roles in plants,
controlling processes such as, leaf epidermal cell identity; the
development of leaf petioles, flowers, and embryos; and fruit
ripening (Elliott et al., 1996; Moose and Sisco, 1996; van der
Graaff et al., 2000; Boutilier et al., 2002; Wang et al., 2007; Krizek,
2009; Licausi et al., 2013).

The AP2/ERF proteins are also involved in plant responses to
biotic stress. For example, ERF proteins modulate the expression
of many pathogenesis-related genes by binding to GCC box
(AGCCGCC) (Ohme-Takagi and Shinshi, 1995; Solano et al.,
1998; Fujimoto et al., 2000; Gu et al., 2002; Onate-Sanchez and
Singh, 2002; Onate-Sanchez et al., 2007; Liu et al., 2012; Zhao
et al., 2012; Jisha et al., 2015; Mishra et al., 2015). Proteins such
as ERN1, -2, -3, and EFD from Medicago truncatula regulate
the development of legume root nodules to establish symbiosis
with nitrogen-fixing bacteria (Andriankaja et al., 2007; Middleton
et al., 2007). Likewise, the miR172-AP2-1 node acts as a key
regulator of nitrogen fixation in the symbiotic relationship of
Phaseolus vulgaris–Rhizobium etli (Nova-Franco et al., 2015).

Apart from their role in biotic stress responses, AP2/ERF
proteins also participate in response to abiotic stresses such as
drought, salt, and cold (Nakano et al., 2006; Xu et al., 2011;
Mizoi et al., 2012; Licausi et al., 2013; Fu et al., 2014; Jisha et al.,
2015). These proteins contain a conserved AP2/ERF domain
(Riechmann et al., 2000; Sharoni et al., 2011; Licausi et al., 2013).
One of the best-studied is a group of CBF/DREBs that activate
the expression of many stress-related genes and improve drought,
salt, and cold tolerance (Stockinger et al., 1997; Liu et al., 1998;
Kasuga et al., 1999; Sakuma et al., 2006; Lata and Prasad, 2011;
Schmidt et al., 2013; Zhuang et al., 2013; Rong et al., 2014; Yang
et al., 2014, 2016; Duan et al., 2015).

Rice (O. sativa ssp. japonica) has at least 139 AP2/ERF family
genes (Nakano et al., 2006), and various environmental stresses
induce their expression (Dubouzet et al., 2003; Cao et al., 2006;
Fukao et al., 2006; Xu et al., 2006; Liu et al., 2007; Hattori et al.,
2009). For example, genes for the AP2/ERF proteins SNORKEL1
and SNORKEL2 promote the accumulation of gibberellic acid
in deep-water rice and rapid stem elongation under flooding
conditions as an escape strategy (Hattori et al., 2009). In contrast,
the AP2/ERF protein SUB1A-1 in submergence-tolerant rice
varieties is part of a quiescence strategy that prevents shoot
elongation and increases their rate of survival (Xu et al., 2006).
Constitutive expression in rice of AP2/ERF genes such as
DREB1A, HARDY (from Arabidopsis), HvCBF4 (from Hordeum
vulgare), and TERF1 (from Solanum lycopersicon) enhances

tolerance to abiotic stress (Oh et al., 2005, 2007; Karaba et al.,
2007; Gao et al., 2008), while overexpression of the rice AP2/ERF
gene AP37 increases drought tolerance at the vegetative stage and
leads to higher grain yields (Oh et al., 2009). Overexpression in
rice of TSRF1, another AP2/ERF protein, also improves tolerance
to osmotic stress and drought (Zhang et al., 2004, 2007; Quan
et al., 2010). Salt-responsive ERF1 regulates reactive oxygen
species-dependent signaling during the initial response to salt
stress in rice (Schmidt et al., 2013) while the rice ERF TF factor
OsERF922 negatively regulates resistance to the development of
salt tolerance (Liu et al., 2012). Furthermore, overexpression of
rice OsEREBP1 increases tolerance to both biotic and abiotic
stresses (Jisha et al., 2015). Based on these earlier reports, rice
functional genomics, including reverse and forward genetics
methods, is now an important research field for identifying novel
genes involved in plant stress responses and tolerance. These
genes can become new targets for genetic engineering of rice and
other crops to improve tolerance.

In this study, we characterized a gene that is induced by
several types of stress. Overexpression of OsSta2 made rice plants
more tolerant to oxidative and salt stresses at the seedling and
vegetative stages, respectively. This overexpression also helped
improve overall agronomical traits under normal paddy field
conditions.

MATERIALS AND METHODS

Plant Materials
Rice (O. sativa ssp. japonica cv. Dongjin) seeds were surface-
sterilized and germinated in a wet paper towel for 2 days. The
resultant seedlings were cultured in a walk-in growth chamber
(Koencon, South Korea) under conditions of 30◦C [day/22◦C
(night) and a 12-h photoperiod (Lee et al., 2015)].

Abiotic Stress Treatments and Assays of
Stress Tolerance
Gene expression was analyzed using rice seedlings that had been
hydroponically cultured in Yoshida solution (Yoshida et al.,
1976). At 8 DAG, they were exposed to various types of stress
for 0, 1, 3, 6, 12, or 24 h. The treatments included drought
(water removal), salt (300 mM NaCl), cold (4◦C), or abscisic acid
(100 µM ABA). After the treatment period, 100 mg leaf tissue was
collected for RNA extraction.

To test the extent of tolerance in our transgenic rice lines, we
sowed seeds in a soil box. At 8 DAG, the seedlings underwent
drought stress when water was withheld for 30–40 h until
the leaves wilted. To induce salt stress, 8 DAG seedlings were
transferred to either 100 mM NaCl for 7 days or 250 mM
NaCl solution for 72 h. To examine their response to a low
temperature, we incubated 8 DAG seedlings for 48–72 h at 4◦C
(Koencon, South Korea). At the end of each treatment period,
the plants were returned to normal growing conditions for 6 days
of recovery before their phenotypes were recorded and their
survival rates were calculated. For all treatments, dry weights
were determined after the plants had been dried at 80◦C for
2 days.
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FIGURE 1 | Identification of salt-tolerant activation tagging line (ATL) OsSta2-D. (A) Visual phenotypes of salt response by ATL and WT after 8 DAG
seedlings were exposed to either 100 mM NaCl for 7 days or 250 mM NaCl for 48 h. All seedlings were returned to normal conditions for 6 days of recovery.
(B) Schematic diagram of ATL of OsSta2 and RT-PCR of LOC_Os02g43830 (OsSta2) and LOC_Os02g43830. (C) qRT-PCR of ATL showing OsSta2 mRNA levels
isolated from young seedlings. Error bars represent standard error of three replicates.

To examine osmotic stress tolerance and ABA sensitivity,
we germinated surface-sterilized, de-hulled rice seeds on a
half-strength MS medium for 5 days before transferring the
seedlings to a half-strength MS medium supplemented with 0
or 200 mM mannitol, or with 0, 5, or 10 µM ABA. Seedlings
were oriented vertically and their growth was observed 7 days
after this transfer (Kim H. et al., 2012). The stress tolerance
assay also included an examination of chlorophyll fluorescence.
Briefly, the fifth leaves from 12 DAG seedlings were removed and
incubated in 500 mM NaCl for 48 h, then either air-dried for
3 h (28◦C; 110 µmol m−2 s−1) or incubated at 4◦C in deionized
water for up to 48 h (4◦C; 110 µmol m−2 s−1). The Fv/Fm
values, which represent the photochemical efficiency of PSII in
a dark-adapted state (Fv, variable fluorescence; Fm, maximum

TABLE 1 | Level of salt tolerance in WT rice and OsSta2-D lines, based on
survival rates of 8 DAG seedlings exposed to salinity treatment (100 mM
NaCl for 7 days or 250 mM NaCl for 48 h) and then returned to normal
growing conditions for 6 days of recovery.

Treatment WT OsSta2-D

100 mM NaCl 9/48a (18.8)b 16/43∗ (37.2)

250 mM NaCl 0/48 (0.0) 5/48∗ (10.4)

aNumber of surviving seedlings/total number of seedlings tested; bPercent survival;
∗values are significantly different from those of WT at P < 0.05.

fluorescence) were calculated with data obtained by using a
Mini-PAM-II Photosynthesis Yield Analyzer (Walz, Germany).
A leaf disk assay was conducted to examine salt tolerance.
Healthy and fully expanded leaves (∼60 DAG) were washed in
deionized autoclaved water before 1-cm-diameter disks were cut
and floated for 24 h in 30-mL solutions of various concentrations
of NaCl (100, 200, or 250 mM) (Tuteja et al., 2013). The
effects of salt stress were represented as phenotypic changes
and quantifications of chlorophyll (Arnon, 1949). Briefly, 1-cm
disks were ground and extracted with 80% acetone. Absorption
was measured at 645 and 663 nm with a spectrophotometer
(Shimadzu, Japan).

Screening of Activation Tagging Lines for
Salt Tolerance
Rice T-DNA tagging mutants were screened for salt tolerance
(100 or 250 mM NaCl) by using a mixed pool of approximately
5,000 individuals from the T2 generation of a T-DNA ATL
(Jeong et al., 2002, 2006). After 2–7 days of induced salt stress,
followed by 6 days of recovery, a mutant line showing enhanced
tolerance (based on a high survival rate) was identified and
further characterized.

Inverse PCR (IPCR) was performed by Cla1 cutting in our
pGA2715-tagged lines (Jeong et al., 2002; Jung et al., 2003), the
primers for the 1st and 2nd IPCR included in Supplementary
Table S2. Samples were amplified for 35 cycles of 94◦C for 1 min,
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FIGURE 2 | Patterns of OsSta2 expression under stress conditions and in developing tissues. (A) qRT-PCR analysis of OsSta2 throughout various stages of
development. Ca, callus; Ss, 7 DAG shoot; Sr, 7-day-old root; Lf, mature leaf; Ls, flag leaf sheaths; Ih, highest internodes at pre-heading stage; P1, 3- to 8-cm-long
panicles; P2, mature panicles; S, mature seed at 3 days after pollination (DAP). RAc1 was used as reference gene. qRT-PCR analysis of OsSta2 detected in
stress-treated seedlings after 0, 1, 3, 6, or 24 h of exposure to salt (B), drought (C), ABA (D), or cold (E). Error bars represent standard error of three replicates.

58◦C for 1 min, and 72◦C for 5 min. Aliquots from the primary
PCR products were used for the secondary PCR reaction and then
the PCR products were directly sequenced. Genomic sequences
containing the tagging sequence were retrieved from Rice GE
Database1.

Gene Expression Analysis by RT-PCR
and qRT-PCR
Total RNA was isolated from rice leaf samples with an RNeasy
Mini Plant Kit (Qiagen, Germany) and cDNAs were synthesized
with RT Complete Kits (Biofact, South Korea), according
to the manufacturers’ instructions. Primers were designed
with Gene Runner software2 and NCBI primer blast3. Primer
pairs (Supplementary Table S1) were used at concentration of
5–10 picomoles. In addition, 3 µL of cDNA (6 ng of total
RNA) was used as template. All RT-PCRs were performed at
an initial 95◦C for 5 min, followed by 25–35 cycles of 95◦C

1http://signal.salk.edu/cgi-bin/RiceGE5
2http://www.generunner.net/
3http://www.ncbi.nlm.nih.gov/tools/primer-blast/

for 30 s, 58◦C for 30–60 s, and 72◦C for 30–60 s. The PCR
products were visualized on a 0.8% agarose gel. The qRT-
PCR analysis utilized a SYBER R© FAST Universal qPCR Kit
(Kapa, South Africa) and a LightCycler R© 96 (Roche Life Science,
Germany). The qPCR procedures were performed at 95◦C for
3 min, followed by 40 amplification cycles of 95◦C for 3 s,
60◦C for 20 s, and 72◦C for 20 s. A melting curve was
obtained through a protocol involving 95◦C for 5 s, 65◦C for
1 min, and 97◦C for 1 min; followed by cooling at 40◦C for
10 min. Relative expression levels were calculated by the 2−11Ct

method (Livak and Schmittgen, 2001), using RAc1 as an internal
control.

In silico Analysis of the OsSta2 Promoter
Promoter sequences (approximately 2 kb long) upstream of
the ATG start codon were analyzed from Oryzabase (Kurata
and Yamazaki, 2006), and cis-elements in those promoters were
searched in the PLACE database4 (Higo et al., 1999).

4http://tenor.dna.affrc.go.jp/
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FIGURE 3 | Production of transgenic rice over-expressing OsSta2. (A) Schematic diagram of Pubi::OsSta2 construct used for transformation; P35S, CaMV
35S promoter; Pubi, maize ubiquitin promoter; T7, terminator sequence of Transcript 7; Tnos, terminator sequence of nopaline synthase; hph, hygromycin
phosphotransferase; RB and LB, right and left border sequences of Ti plasmid from A. tumefaciens. (B) qRT-PCR analysis of OsSta2 in transgenic overexpression
(Ox) rice lines. Actin was loading control. (C) Visual phenotype for 8 DAG seedlings from OsSta2-Ox line grown in soil box. (D) Visual phenotype of 14 DAG seedlings
grown in half-strength MS medium.

Generation of OsSta2 Overexpression
Lines
For construction of the OsSta2-overexpression (-Ox) vector,
OsSta2 cDNA (J065129D08) was obtained from KOME5. The
cDNA was placed between the SacI and BamHI sites by
subcloning and then cloned in to the pGA3426 binary vector
with a maize ubiquitin promoter and the nos terminator (Kim
et al., 2009). Scutellum-derived calli of ‘Dongjin’ rice were
transformed byAgrobacterium-mediated co-cultivation methods.
5 days scutella were used for transformation experiments.
Subculture was done for 4 days in 2N6 medium (Hiei et al., 1994;
Koh et al., 2007). The transgenic plants were then transferred to a
confined paddy field for further growth. For segregation analysis
of the transgenic lines, seeds were germinated in a half-strength
MS medium supplemented with hygromycin (50 mg L−1). The
number of surviving seedlings was recorded after incubation at
30◦C for 5 days. Lines in which the survival rate was 100% were
considered transgene homozygotes.

Investigation of Agricultural Traits
Rice plants were grown from May until the grain was harvested at
the end of October. These experiments were conducted annually
for 4 years, 2012 through 2015, at the LMO paddy field of
Kyungpook National University and Kyung Hee University,
South Korea (Permit number, RDA- A-2011-039). To analyze
the agricultural traits of rice, we sampled eight plants from each
of three independent lines and recorded the numbers of tillers

5https://dbarchive.biosciencedbc.jp/en/kome/desc.html

and panicles per plant, the numbers of spikelets and filled grains
per panicle, lengths of the panicles and culms, and 1,000-grain
weights.

Statistical Analysis
Mean values (±SE) were determined from the data set for
three replications. Differences between stress treatments were
examined with LSD and χ2 tests, and were considered statistically
significant at P < 0.05.

RESULTS

Isolation of a Salt Stress-Tolerant
Activation Tagging Line
Screening a mixed pool of the T2 generation of PFG T-DNA
tagging mutants (Lee et al., 2004; Jeong et al., 2006), we
identified Line PFG_3A-05272.R, which had enhanced tolerance
to treatments with 100 mM and 250 mM NaCl (Figure 1A
and Table 1). Molecular analysis by inverse PCR revealed
that the T-DNA was tagged between LOC_Os02g43820 and
LOC_Os02g43830 (Figure 1B). However, expression of only
LOC_Os02g43820 was induced, by eightfold, when compared
with the wild type (WT) (Figure 1C). This gene was named
Oryza sativa Salt tolerance activation 2-Dominant, or OsSta2-
D (AK241246). Its deduced amino acids contain a 775-bp open
reading frame that yields a 56-amino acid protein. Potential
stress-related cis-acting elements like, W-box, GT1, MYB, MYC,
GATA box, ABRE and ERd1, etc., were found in the 2 kb
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FIGURE 4 | Enhanced salt tolerance in transgenic rice over-expressing OsSta2 at vegetative stage. (A) Visual phenotype of salt response by Ox transgenic
plants and WT after 8 DAG seedlings were exposed to 100 mM NaCl for 7 days before returning to normal conditions for 6 days of recovery. (B) Fresh weights after
recovery. (C) Weights after plants were dried for 2 days. (D) Stress tolerance of OsSta2-Ox lines based on 8 DAG seedlings treated with drought (water withheld for
32 h), salt (100 mM NaCl treatment for 7 days or 250 mM NaCl treatment for 72 h), or cold (4◦C for 72 h). Percent survival was calculated after recovery period.
aNumber of surviving seedlings/total number of seedlings tested; bPercent survival; ∗, results are significantly different between Ox line and WT at P < 0.05.

upstream region of OsSta2 (Buchel et al., 1999; Finkelstein and
Lynch, 2000; Chen et al., 2002; Xue, 2002; Yang and Poovaiah,
2002; Itzhaki et al., 1994; Xie et al., 2005) (Supplementary
Figure S1 and Table S1).

Expression Analysis of OsSta2
Expression of OsSta2 was examined by RT-PCR and validated
by qRT-PCR. Although the gene was detected in all tissue types,
transcripts were more abundant in the panicles, callus, and 7
DAG roots, while levels were relatively low in 7 DAG shoots
(Figure 2A). Expression increased by approximately twofold after
12 h of salt stress (Figure 2B), and after 24 h of drought or ABA
treatment (Figures 2C,D), but was not induced under cold stress
(Figure 2E).

Generation of OsSta2 Transgenic Rice
A full-length cDNA sequence (J065129D08) obtained from
KOME was incorporated under the maize ubiquitin promoter
in the pGA3426 vector (Figure 3A). pGA3426 vector has T7
terminator in T-DNA which have been used for expression of
foreign gene (Jeon et al., 2000). We could not clone the full-
length cDNA as reported by Fu et al. (2007), and could not
even detect any transcript spanning the putative AP2 domain
(Supplementary Table S2 and Figure S4). The cassette was
transformed into ‘Dongjin’ rice and 21 independent transgenic
lines were generated. The insertion of OsSta2 was confirmed by
PCR analyses of the genomic DNA (Supplementary Figure S2).
From those primary transgenic plants, we chose five lines with
normal seed formation and used them for T1 production in
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FIGURE 5 | Comparison of photosynthetic rates under stress conditions. (A) Leaf disk assays of homozygous T4 OsSta2-Ox plants, WT, and ATL under
salinity stress (100, 200, or 250 mM NaCl) after 24 h. (B,C) Estimates of chlorophyll concentration (mg per g fresh weight) in homozygous T4 OsSta2. (D) Changes
in chlorophyll fluorescence (Fv/Fm) in leaves sampled from rice plants grown in soil for 12 days before being exposed to high salinity (500 mM NaCl for 48 h), drought
(lack of water in Petri plate for 3 h), or low-temperature stress (4◦C for 48 h) under continuous light (150 µmol m-2 s-1). Three independent homozygous T4 lines of
OsSta2-Ox plants and WT controls were tested. ∗, differences between Ox line and WT are significant at P < 0.05.

the confined paddy field. Seeds were harvested and subjected to
selection on a hygromycin-containing medium for segregation
analysis. Three T2 overexpression lines (Ox13, Ox19, and Ox20)
that over-expressed OsSta2 were identified by RT-PCR and
validated by qRT-PCR analysis (Figure 3B). Different generations
of overexpression lines were used for different set of experiments
(Supplementary Figure S5). Southern blot analysis was done
to check the copy number integration in three independent
overexpression lines by digesting 4 µg DNA with HindIII, EcoRI
and BamHI restriction enzyme (Supplementary Figure S6). None
of those independent lines differed morphologically from each
other when grown under normal conditions either in a soil box
or on half-strength MS media (Figures 3C,D).

Overexpression of OsSta2 in Transgenic
Rice Plants Enhances their Salt
Tolerance at the Vegetative Stage
To investigate whether overexpression of OsSta2 can confer salt
tolerance at the vegetative stage, we exposed rice seedlings to
100 mM NaCl for 7 days and found that 10.1–22.7% of the
OsSta2-Ox transgenics survived versus 7.2% of the WT plants.
Similar results were obtained after treatment with 250 mM
NaCl for 72 h, with 25.8–34.5% survival for the transgenics
versus 11.6% survival for the WT (Figures 4A–C). After the
recovery period, fresh and dry weights were 2–11% higher
for the OsSta2-Ox plants than for the WT (Figure 4 and
Supplementary Figure S3). Drought tolerance was not improved
in the transgenics at the vegetative stage.

Leaf disk assays performed under various concentrations of
NaCl revealed that less chlorophyll was lost from the Ox lines
than from the WT plants (Figures 5A,B). For example, in
response to 100 mM NaCl, the WT samples contained 5.8 mg
of chlorophyll per g of leaf tissue versus 19.6–21.5 mg per g
in the transgenics, i.e., 14–16% more than in the WT. Similar
results were obtained in response to 200 or 250 mM NaCl.
There, chlorophyll concentrations in the WT ranged from 3.0 to
6.2 mg per g, which was 9–12% lower than the 12.0–20.0 mg g
measured in the Ox lines. These higher levels of chlorophyll in the
transgenics demonstrated that OsSta2 expression was positively
correlated with improved salt tolerance (Figure 5C).

Under high-salinity stress, Fv/Fm values for WT plants were
reduced from 0.81 to 0.66 which were 18.52% reduction. Fv/Fm
values for transgenics plants were reduced from 0.81 to 0.70
which were 13.58% reduction and were 5% better than that
of WT plants (Figure 5D). In contrast, under drought or
low-temperature stress, Fv/Fm values were similar between the
OsSta2-Ox and WT plants.

Overexpression of OsSta2 Increases
Grain Yields
Three independent homozygous lines of OsSta2-Ox, together
with the WT control, were grown in a paddy field. Mature
transgenic plants showed semi-dwarfism but this phenotypic
difference from the WT was not apparent at the four-leaf stage.
Culms were 7–9% shorter from the Ox plants, i.e., 79–82 cm
versus 86 cm for the WT stems (Figure 6). However, the Ox
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FIGURE 6 | Agronomic traits of field-grown rice plants under normal
conditions. (A) Number of tillers per hill. (B) Culm length. (C) Number of filled
grains per hill. (D) Number of spikelets per panicle. (E) Number of spikelets
per hill. (F) Number of panicles per hill. (G) Panicle Length. (H) 1,000-grain
weight. (I) Morphology of mature rice panicle. (J) Morphology of mature
paddy field-grown rice plant. (K) Spider plot of agronomic traits of three
independent homozygous T5 lines of OsSta2-Ox and corresponding WT
controls under normal conditions was drawn using Microsoft Excel software.
Each data point represents percentage of mean values (n = 8). Mean value for
WT controls was set at ‘100%’ as reference. CL, Culm length; NFG, number
of filled grains; NSH, number of spikelets per hill; NSP, number of spikelets per
panicle; NP, number of panicles per hill; NT, Numbers of tillers per hill;
1,000GW, 1,000-grain weight. Bars indicate standard error of 8 replicates.
∗, differences between Ox line and WT are significant at P < 0.05.

plants produced more tillers than the WT control, and grain
yields were higher from those transgenics under normal field
conditions. In particular, the grain filling rates were 17 and 23%
higher for Ox13 and Ox19, respectively, than for the WT, and
total grain weights were increased by 5–8% over the WT total.
Filling rates did not differ significantly between Ox20 and the WT,
suggesting that OsSta2 expression was lower in that transgenic
line. Nevertheless, the total grain weight was 10% higher in
Ox20 than in the WT, perhaps because plants of the former type
produced 8% more spikelets per panicle. Taken together, these
results again showed that overexpression of OsSta2 can improve
grain yields significantly.

OsSta2-Ox Transgenic Plants are
Hypersensitive to ABA
Although the growth of WT shoots was repressed by ABA, this
inhibitory effect was more significant in shoots from Ox plants
(Figure 7). For example, after treatment with 5 µM ABA, relative
shoot lengths from Ox plants were 61.76–63.89% shorter than
those measured from plants not exposed to ABA. By comparison,
the shoots from ABA-treated WT plants were 56.2% shorter than
those of the WT control (untreated) plants. A similar pattern
was found in response to 10 µM ABA (i.e., Ox shoots from
ABA-treated plants were 71.4–74.1% shorter than those from
untreated transgenics while shoots from ABA-treated WT plants
were 69.5% shorter than their untreated counterparts). These
results suggested that OsSta2 is hypersensitive to ABA and is
involved in its signaling pathway.

OsSta2-Ox Transgenic Plants are more
Tolerant than the WT to Osmotic Stress
When grown in a half-strength MS medium supplemented with
200 mM mannitol, the shoots from Ox plants were 46–50%
shorter than those from the untreated transgenics while shoots
from mannitol-treated WT plants were 54% shorter than those
from the untreated WT (Figure 8). This demonstrated that
OsSta2 helps confer tolerance to osmotic stress.

DISCUSSION

Rice is a salt-sensitive crop at the germination stage, but becomes
more tolerant as plants progress from young seedlings to the
vegetative stage (Heenan et al., 1988; Lutts et al., 1995). We
used various assays to monitor activation or overexpression of
OsSta2 and to determine how this gene can confer enhanced
salt tolerance at the seedling stage. Fujimoto et al. (2000) have
reported that AtERF5 (At5g47230), acts as a functional activator
of GCC box-mediated transcription. AtERF5 also plays a role
as a positive regulator of JA/ethylene-mediated defenses against
Botrytis cinerea (Moffat et al., 2012). However, no previous
research confirmed its function under abiotic stresses, although
a role for ERF TFs has been suggested (Nakano et al., 2006). We
found here that OsSta2 could respond to salt, drought, and ABA
treatments because its promoter region contains multiple stress-
related cis-elements, i.e., ABREs, DRE/CRT, and a MYB/MYC
recognition site. Those same elements also occur in the promoter
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FIGURE 7 | Analysis of ABA sensitivity. OsSta2-Ox rice showing ABA-sensitive phenotypes at early seedling stage. At 5 DAG, two independent Ox lines and WT
control were transferred to half-strength MS media supplemented with different ABA concentrations. (A) Growth inhibition by ABA treatment. Photographs show
representative seedlings 7 days after transfer. (B) Relative shoot lengths of control and Ox lines. Results are mean ± SE (n = 9 seedlings per experiment).
Bar = 5 cm. ∗, differences between Ox line and WT are significant at P < 0.05.

FIGURE 8 | Analysis of tolerance to osmotic stress. OsSta2-Ox rice showing normal phenotypes at early seedling stage. At 5 DAG, two independent Ox lines
and WT control were transferred to half-strength MS media supplemented with 200 mM mannitol. (A) Growth in presence of mannitol. Photographs show
representative seedlings 7 days after transfer. (B) Relative shoot lengths of WT control and Ox lines. Results are mean ± SE (n = 9 seedlings per experiment).
Bar = 5 cm. ∗, differences between Ox line and WT are significant at P < 0.05.
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region of stress-responsive genes that are regulated by DREB,
ERF, and MYB/MYC TFs, respectively (Urao et al., 1993; Baker
et al., 1994; Abe et al., 1997, 2003; Guan et al., 2000; Simpson
et al., 2003; Tran et al., 2004; Kaplan et al., 2006). All of these
findings provide evidence of the role thatOsSta2 has in conferring
salt tolerance.

Grain yield is an important parameter when investigating
the effects of abiotic challenges. Overexpression of stress-related
genes can alter the productivity and overall architecture of rice
plants (Oh et al., 2009; Jeong et al., 2010; Xia et al., 2012; Alam
et al., 2014; Yoon et al., 2016). Therefore, it was important that
we examine grain yields using stable transgenic lines that did not
segregate under paddy field conditions. This approach facilitated
our identification of a segregating line of transgenic rice plants
up to the T3 generation, even if they were homozygous for a
particular transgene. To determine how yields were increased
in OsSta2-Ox rice under normal conditions, we relocated T4
homozygous lines in 2014 and T5 homozygous lines in 2015
to the paddy field. Those lines had been pre-screened for
segregation in the field from 2011 to 2013. Grain production
was significantly improved in the Ox plants when compared
with the WT, mainly because the former type of plant had more
tillers and panicles, and its panicles were longer than those of
the WT.

During its response to osmotic stress, plants utilize the ABA
signaling transduction pathway to initiate the expression of
defense genes (Chinnusamy et al., 2004; Singh et al., 2015).
Overexpression of some stress-related genes, e.g., OsZIP72
and OsABI5, results in abiotic-stress tolerance and causes the
transgenic plants to be hypersensitive to exogenous ABA (Zou
et al., 2008; Lu et al., 2009; Kim et al., 2014). We also
found that OsSta2-Ox plants showed increased responsiveness
to exogenous ABA, which suggested that this gene has
a role in the ABA pathway during the stress response.
Therefore, we proposed that OsSta2 has a role in the ABA
signaling pathway and that this response to salinity is ABA-
dependent.

When plants recognize and respond to stress in an
ABA-hypersensitive manner, the processes associated with
physiological processes may retard growth because necessary
resources are instead being directed toward mechanisms for
protection. This can occur even under normal environmental
conditions because higher levels of transcripts for genes related to
abiotic-stress tolerance can inhibit plant development, especially
when such genes are constitutively over-expressed. This is
particularly true for genes associated with ABA signaling
because that phytohormone has important regulatory roles
(Sreenivasulu et al., 2012). For example, rice plants that
constitutively over-express DREB1A grow more slowly under
standard conditions (Kasuga et al., 1999; Nakashima et al.,
2007). This might explain why our OsSta2-Ox plants showed
slight retardation when grown to maturity in the paddy field.
However, no such inhibition was noted when young OsSta2-
Ox seedlings were grown either in soil boxes in a chamber
or on plates containing a half-strength MS medium. To
partially overcome this problem when conducting experiments,

researchers utilize promoters that are stress-inducible, such as
OsDhn1, rd29A, and OsPOX1 (Kasuga et al., 1999; Wang et al.,
2005; Kim S.H. et al., 2012; Lee et al., 2013; Kumar et al.,
2014).

As with salt stress, OsSta2-Ox plants were also more
tolerant to osmotic stress, maintaining a much healthier growth
pattern (as reflected in shoot length parameters) than the
WT seedlings in response to mannitol treatment. Similar
results have been described previously (Zou et al., 2012;
Kumar et al., 2013; Kim et al., 2014; You et al., 2014;
Singh et al., 2015). Hence, we can conclude that OsSta2-Ox
plants exhibit ABA-dependent salt tolerance via osmotic stress
signaling.

The extent to which Ox lines are salt-tolerant also depends
on the level of OsSta2 expression and its involvement in the
tolerance pathway (Ashraf, 2009). Because salinity-promoted
oxidative stress is peripheral to ionic and osmotic stresses,
it might not be possible to achieve adequate salt tolerance
through the manipulation of OsSta2 alone but it might entail
strong interactions with other stress-related genes (Ashraf,
2009; Kumar et al., 2013). Therefore, further exploration of
such genetic inter-relationships is necessary if we are to
produce crop plants that are more tolerant to environmental
challenges.

CONCLUSION

We have demonstrated that overexpression of OsSta2 enhances
the tolerance of transgenic rice plants to salt and osmotic stresses.
This is manifested by an increase in tiller numbers and grain
yields. However, additional analyses of gene expression and
how they finely regulate plant processes are required in the
future.
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