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Plants require several essential mineral nutrients for their growth and development.
These nutrients are required to maintain physiological processes and structural integrity
in plants. The root architecture has evolved to absorb nutrients from soil and transport
them to other parts of the plant. Nutrient deficiency affects several physiological and
biological processes in plants and leads to reduction in crop productivity and yield. To
compensate this adversity, plants have developed adaptive mechanisms to enhance the
acquisition, conservation, and mobilization of these nutrients under deficient or adverse
conditions. In addition, plants have evolved an intricate nexus of complex signaling
cascades, which help in nutrient sensing and uptake as well as to maintain nutrient
homeostasis. In recent years, small non-coding RNAs such as micro RNAs (miRNAs)
and endogenous small interfering RNAs have emerged as important component in
regulating plant stress responses. A set of these small RNAs (sRNAs) have been
implicated in regulating various processes involved in nutrient uptake, assimilation, and
deficiency. In response to phosphorus (P) and sulphur (S) deficiencies, role of sRNAs,
miR395 and miR399, have been identified to be instrumental; however, many more
miRNAs might be involved in regulating the plant response to these nutrient stresses.
These sRNAs modulate expression of target genes in response to P and S deficiencies
and regulate their uptake and utilization for proper growth and development of the plant.
This review summarizes the current understanding of uptake, sensing, and signaling of
P and S and highlights the regulatory role of sRNAs in adaptive responses to these
nutrient stresses in plants.

Keywords: abiotic stress, gene regulation, miRNA, nutrient deficiency, nutrient homeostasis

INTRODUCTION

Plants acquire mineral nutrients from the soil through extensive root system for their growth
and development (Lynch, 2011; Gruber et al., 2013). Conventionally, there are 16 essential
mineral nutrients, which are crucial for plant development. These are required in different
amounts and thus are categorized as primary, secondary, and micronutrients. Primary or the
macronutrients include nitrogen (N), phosphorus (P), and potassium (K); essentially required in
various processes including photosynthesis, cell division, protein synthesis, and disease resistance.
Secondary nutrients comprising calcium (Ca), magnesium (Mg), and sulfur (S) are required in
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lesser amount than the primary nutrients by the plants. Similarly,
micronutrients required in trace amounts comprise boron (Bo),
chlorine (Cl), iron (Fe), manganese (Mg), molybdenum (Mo),
and zinc (Zn; Schachtman and Shin, 2007). The requirement
of micronutrients is as essential as the primary and secondary
nutrients for plant growth and development. These nutrients
are taken up by the root system from the soil and associated
microorganisms such as rhizobium and mycorrhizal associations.
Most of the absorption of nutrients from soil is performed by the
root hairs that form the extreme most component of the root
system. Roots being the first site to sense nutrient availability
maximizes nutrient uptake using high surface area and volume
ratio (Gruber et al., 2013). Thus, the plants restructure the
root architecture according to the nutrient availability, e.g.,
the succulents have deep penetrating with developed primary
root whereas the aquatic plants have sparsely distributed and
less developed primary roots. Plants possess counteracting
mechanisms against nutrient deficiency that includes sensing,
signaling, and acquisition of nutrients and restructuring the
root architecture depending upon nutrient availability in the
soil. The restructuring happens in the nutrient pockets of the
soils where the root hairs and secondary roots develop well to
enhance nutrient absorption whereas the number and length
of root hairs and other root system components decreases in
the nutrient deficient regions of the soil. From the rhizosphere
and root epidermal cells, nutrients are transported to the
vascular cells and are further allocated to different tissues
(Nath and Tuteja, 2016). Different transporters including ion
channels, electrochemical potential-driven transporters, group
translocators, electron carriers, and voltage gated channels
present on the plasma membrane take part in the nutrient uptake
and allocation in various cellular organelles and tissues (Ludewig
and Frommer, 2002; Saier et al., 2016; Sasaki et al., 2016). Under
nutrient deficiency, a complex signaling cascade from aerial plant
tissue activates various biochemical components required for
uptake and transport of nutrients to meet optimum requirement
for growth and development.

In recent past, role of non-coding RNAs (ncRNAs) have
been implicated in stress response including nutrient deficiency
(Sunkar et al., 2007; Mao et al., 2009; Kuo and Chiou, 2011;
Sharma et al., 2015). MicroRNAs (miRNAs) and endogenous
small interfering RNAs (siRNAs) of 21–24 nucleotides length
are two major classes of small regulatory RNAs in plants.
Though these small RNAs (sRNAs) differ in their mode of
biogenesis, regulate several processes through transcriptional
(TGS) and post-transcriptional gene silencing (PTGS; Napoli
et al., 1990; Vaucheret and Fagard, 2001; Valencia-Sanchez et al.,
2006; Khraiwesh et al., 2012; Tiwari et al., 2014). A number
of studies suggest that these sRNAs regulate gene expression
and thus modulate plant growth and development in normal or
stress conditions including nutrient deficiency (He and Hannon,
2004; Sunkar et al., 2007; Paul et al., 2015; Melnikova et al.,
2016; Sharma et al., 2016; Wang et al., 2016). Plants adapt to
nutrient deficient conditions by modulating the expression of
genes encoding specific group of transporters and metabolic
enzymes. This differential regulation of these genes is controlled
by a set of miRNA families. Major research endeavors have

identified several miRNAs responsive to nutrient deficiencies
in different plant species including Arabidopsis, maize, rice,
and Medicago truncatula (Sunkar et al., 2007). In Arabidopsis,
miR156 family has been identified to be most responsive toward
nitrogen deficiency (Liang et al., 2012). In addition, involvement
of miR160 and miR170 has been shown in altering root structure
architecture of plants in response to nitrogen deficiency (Liang
et al., 2012). Nodule development under nitrogen deficiency has
been shown to be regulated by miR169 and miR172 reported in
(Combier et al., 2006; Yan et al., 2013). These miRNAs up regulate
nitrate transporters under nitrogen deficiency conditions. Recent
studies using genome-wide expression analysis and functional
genomics approaches have identified differentially expressed
miRNAs and their regulatory roles in different nutrient as well as
other metal stresses including Copper (Cu), Iron (Fe), Manganese
(Mn), and, Zinc (Zn). miRNAs including miR397, miR408, and
miR857, have been observed to be up-regulated during Cu
starvation and functions in the regulation of Cu levels in plants
(Abdel-Ghany and Pilon, 2008). Under Fe-deficiency in plants,
eight conserved miRNA genes of five families including miR854,
were observed to be up-regulated. Analysis of cis-regulatory
elements upstream of these miRNA genes revealed presence of
IDE1/IDE2 (Iron-deficiency responsive cis-Elements 1 and 2)
motifs in their promoter regions (Kong and Yang, 2010). Notably,
the induction of miRNAs modulate expression of array of genes
and thus facilitate nutrient homeostasis in plants. In this review,
recent progress and updates related to sRNAs-mediated mineral
nutrient uptake, sensing and signaling have been reviewed. The
focus of the review is on the nutrients P and S, which are essential
for the growth and stress response in plants.

PHOSPHORUS (P)

Uptake and Transport System
Phosphorus, is an important constituent of many organic
molecules such as nucleic acid, sugars, ATP, and phospholipids,
which provides energy and help in the growth and development
of living organisms. Plants acquire phosphorus in the inorganic
form (Pi) by high affinity transporters (PHTs) and Pi/H+
symporters (Mlodzinska and Zboinska, 2016). In Arabidopsis,
PHT gene family is divided into four groups (PHT1, PHT2,
PHT3, and PHT4) are involved in different functions. PHT1;1
and PHT1;4 are high affinity transporters which acquire P
from the soil, PHT1;5 is responsible for the source to sink
translocation, PHT1;8 and PHT1;9 carry out root-shoot Pi
mobilization (Nussaume et al., 2011; Ye et al., 2015). PHT2;1
is the low affinity transporter and is involved in the Pi
translocation between root and shoot. Other Pi transporter,
PHO1 (Phosphate 1), contains SPX domain and EXS [Early
Responsive to Dehydration1 (ERD1)], is involved in Pi loading
into the xylem as pho1 mutant exhibits lower Pi levels in shoots
(Liu et al., 2014; Wege et al., 2016). PHO2 (PHOSPHATE2;
ubiquitin-conjugating enzyme E2) acts as a negative regulator of
Pi uptake and degrades phosphate transporters (PHT1;1, PHT1;2,
PHT1;3, PHT1;4, PHO1) and phosphate transporter facilitator1
(PHF1; Huang et al., 2013). The identification and detailed
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TABLE 1 | Various signaling pathway components involved in Pi-related response.

Factor Signal Experiment Effect Reference

miR399 overexpression Long distance Vascular grafting Suppression of PHO2; increased Pi transporter;
increased Pi acquisition

Lin et al., 2008; Pant et al., 2008, 2009

Pi-deficiency in one of the
root partner

Systemic/Local Split-root Entire sets of PSI transcripts regulated
systemically; other groups of PSI gene
transcripts are regulated locally

Thibaud et al., 2010

Shoot Pi concentration Systemic Split-root Cluster root growth; citrate exudation (White
Lupin); repression of the plant genes involved in
AM symbiosis

Shane et al., 2003; Shane and
Lambers, 2006; Breuillin et al., 2010;
Balzergue et al., 2011

Auxin Systemic Exogenous
application in
P-sufficient roots

Mimics Pi-deficiency, i.e., reduced primary root
length, higher lateral root density, root hair
elongation

Gilbert et al., 2000; Williamson et al.,
2001; López-Bucio et al., 2002

Ethylene Systemic Transcriptome
analysis of
Pi-deficient plants

Upregulation of ethylene responsive genes;
antagonistic to auxin signaling

López-Bucio et al., 2002; Ma et al.,
2003; Uhde-Stone et al., 2003; Zhang
et al., 2003; He et al., 2005;
Morcuende et al., 2007; Kim et al.,
2008; Thibaud et al., 2010

Cytokinin Systemic Phosphate deficient Repress induction of PSI genes; increase in
intracellular Pi concentration

Martín et al., 2000; Franco-Zorrilla
et al., 2005

investigation of other transporters involved in Pi homeostasis is
required to understand the transport, cellular metabolism, and
nutrient fluctuations in plants.

The Phosphate Starvation Response 1 (PHR1) is a central
regulator of Pi homeostasis and up-regulates the expression
of PHT and Pi-starvation induced genes through binding to
the PHR1-binding sequences in the promoter region of many
Pi-related genes (Chiou and Lin, 2011; Sobkowiak et al., 2012;
Wang et al., 2013). Under phosphate deficient conditions,
systemic and local signaling pathways are activated for the
regulation of Pi uptake, assimilation, and redistribution inside
the plant (Scheible and Rojas-Triana, 2015). A series of
signaling events regulated by different factors take place leading
to modulation in root structure architecture/morphology by
increasing root hair length as well as lateral root formation to
enhance Pi uptake from the external environment (Table 1)
(Linkohr et al., 2002; Svistoonoff et al., 2007; Fang et al., 2009;
Shukla et al., 2015). In addition to above signaling events,
secondary messengers such as Ca2+, inositol polyphosphates
(IPs), and reactive oxygen species (ROS) play an important role
in regulating Pi homeostasis in plants (Chiou and Lin, 2011). As
root development and architecture is a complex trait, detailed
studies related to hormonal cross-talk and secondary messengers
will help in better understanding of the mechanism and overall
plant’s efficiency to adapt and combat nutrient deficiency.

Regulation of Pi Homeostasis by Small
RNA
Various studies identified an array of genes involved in the Pi
signaling network mechanisms (Liang et al., 2014). In addition,
involvement of sRNAs in regulating the expression of genes
involved in phosphate uptake and assimilation in different
plant species including Arabidopsis, maize, soybean, rice, and
tomato has been demonstrated (Lundmark et al., 2010; Pei
et al., 2013; Xu et al., 2013; Zhao et al., 2013; Gu et al.,
2014). Identification of these phosphate starvation responsive

miRNA families (Table 2) has been identified via various
approaches including high throughput sRNA sequencing. These
miRNAs mediate regulation of phosphate uptake, transport, and
assimilation in plants through targeting a set of genes. Studies
suggest that miRNA families such as miR156, miR159, miR166,
miR319, miR395, miR398, miR399, miR447, and miR827 are
commonly responsive to Pi-deficiency among different species
and are presumably involved in conserved Pi-deficiency signaling
networks (Sun et al., 2012; Sunkar et al., 2012). In most of these
studies, enhanced levels of miR156, miR399, miR778, miR827,
miR2111 and repressed levels of miR169, miR395, and miR398
were observed under Pi-deficiency (Hsieh et al., 2009). However,
abundance of miR778 and miR2111 is reduced by approximately
twofold after the addition of Pi (Pant et al., 2009). Apart
from Pi-deficiency, role of miR2111 has been demonstrated in
N-starvation (Liang et al., 2012). Similarly, miR827 and miR399
are responsive to N-starvation and target Nitrogen Limitation
Adaptation (NLA) gene and enhances the expression of PHO2
transporter. Analysis of proximal promoters of Pi-responsive
MIRNA genes suggest presence of conserved motifs which might
be involved in regulated expression under Pi-deficiency (Zeng
et al., 2010). Detailed characterization of these cis-elements and
interacting proteins will help in the better understanding of
the molecular regulation mechanism of genes involved in Pi
acquisition and transport.

Genes encoding SPX subfamily proteins, SPX-MFS (Major
Facility Superfamily) are reported to be involved in the
Pi-sensing/transport and are targeted by miR827 (Pacak et al.,
2016). In addition, miR398a has been shown to regulate the
expression of a set of genes under P, N, and C deficiency and
helps in the maintenance of mineral balance in plants (Dugas
and Bartel, 2008). Studies also suggest that phloem enriched
sRNAs respond to P-deficiency. Grafting studies carried out
on Arabidopsis wild type and the miRNA processing hen1-1
mutant plants identified miR399 and miR395 as phloem sap
sRNAs that are transported from shoot to root and target genes
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TABLE 2 | Plant micro RNA (miRNA) families responsive to Pi-deficiency.

miRNA families Plant species Reference

Up-regulated Down-regulated

miR156, miR157, miR159, miR163, miR164,
miR165, miR166, miR167, miR171, miR172,
miR319, miR391, miR393, miR399, miR408,
miR447, miR778, miR780, miR822, miR824,
miR827, miR828, miR843, miR865, miR866

miR169, miR395, miR398, miR402,
miR779, miR823, miR860, miR2111

Arabidopsis thaliana Hsieh et al., 2009; Pant
et al., 2009; Lundmark
et al., 2010

miR399, miR827 Oryza sativa Zhou et al., 2008; Lin et al.,
2010

miR156, miR160, miR166, miR168, miR171,
miR395, miR396, miR399, miR437, miR447,
miR472, miR477, miR809, miR818, miR830,
miR845, miR854, miR857, miR863, miR866,
miR896, mir903, miR904, miR1222

miR159, miR164, miR166, miR167,
miR319, miR390, miR395, miR396,
miR397, miR447, miR530, miR810,
miR818, miR857, miR893, miR895,
miR1211

Lupinus albus Zhu et al., 2010

miR156, miR157, miR159, miR167, miR168,
miR319, miR396, miR474, miR482, miR894,
miR1509

miR160, miR165, miR166, miR168,
miR396, miR398, miR834, miR854,
miR1118, miR1311, miR1427, miR1436,
miR1450, miR1507, miR1508, miR1511,
miR1846, miR1858, miR1879, miR1881

Glycine max Zeng et al., 2010

miR156, miR157, miR170, miR319, miR393,
miR399

miR160, miR167, miR169, miR317,
miR397, miR398, miR408, miR1511,
miR1513, miR1515, miR1516, miR2118

Phaseolus vulgaris Valdés-López et al., 2010

miR171, miR172, miR394, miR395, miR398,
miR399, miR779, miR837, miR839, miR840,
miR847, miR860, miR861, miR862, miR867

miR158, miR169, miR172, miR319,
miR398, miR771, miR775, miR158,
miR169, miR319, miR172, miR771,
miR775

Solanum lycopersicum Gu et al., 2010

Unique miRNAs are indicated in Bold.

in the roots of the seedlings exposed to nutrient deficiency
(Buhtz et al., 2010). miRNA-mediated post-transcriptional and
ubiquitin-mediated post-translational regulatory pathways have
been shown to modulate Pi transport activity in response to
external Pi status (Lin et al., 2014). Interestingly, responsiveness
of many miRNAs is species- and tissues/organs-specific under
Pi-deficiency. In response to phosphate starvation, miR395 is
down-regulated in the Arabidopsis shoots but up-regulated in the
shoots of white lupin (Lupinus albus; Zhu et al., 2010).

Among all Pi-responsive miRNAs, miR399 is the most studied
phosphate starvation responsive sRNA which is up-regulated
under Pi-stressed conditions (Bari et al., 2006; Chiou et al.,
2006; Phillips et al., 2007). In Arabidopsis, all the six members
of MIR399 genes (MIR399A–F) are induced under Pi-deficiency
(Kuo and Chiou, 2011). Overexpression of miR399 in transgenic
Arabidopsis led to the enhanced Pi uptake and allocation to
the shoots (Aung et al., 2006; Chiou et al., 2006). Interestingly,
overexpression of Arabidopsis miR399 in tomato exhibited
increased Pi accumulation and secretion of acid phosphatase in
the roots causing hydrolysis of soil organic P and dissolution of Pi
(Gao et al., 2010). Studies suggest that miR399 targets three genes;
Pi transporter (PHT1;7), a DEAD box helicase and PHO2 which
encodes putative ubiquitin-conjugating enzyme (UBC) under Pi
deficient condition (Fujii et al., 2005). miR399 acts as a positive
regulator and enhances Pi uptake and translocation under Pi
deficient condition, while PHO2 functions as a negative regulator
and suppress these activities to prevent excess Pi uptake under
Pi sufficient condition (Lin et al., 2008; Yuan and Liu, 2008).

In addition, miR399 also serves as a long-distance signal from
shoot to suppress PHO2 expression and maintain Pi homeostasis
in plants. Furthermore, miR399 has been shown to function
in multiple nutrient deficiency responses in rice. GeneChip
analysis of the OsmiR399 overexpressing plants revealed up
regulation of number of genes involved in multiple nutrient stress
conditions such as iron, potassium, sodium, and calcium (Hu
et al., 2015).

In Arabidopsis, the non-protein coding gene IPS1 (Induced
by phosphate starvation1) was identified to contain a motif
with sequence complementarity to miR399. IPS1 was found
to sequester miR399 due to the interrupted pairing of IPS1-
miR399. Consequently, overexpression of IPS1 resulted in the
reduction of Pi levels in shoots due to the enhanced accumulation
of miR399 target PHO2 (Franco-Zorrilla et al., 2007). It is
noteworthy to mention that identification and analysis of
regulated expression of additional endogenous target mimics
will help in developing strategies and approaches to withstand
environmental constraints by the plants.

Expression and functional genomics approaches have
demonstrated the complex network of regulatory genes involved
in Pi-deficiency (Hammond et al., 2003; Wu et al., 2003;
Hammond and White, 2008). Under Pi-deficiency, the major
transcriptional regulatory system involving PHR1, SIZ1, miR399,
and PHO2 has been suggested in Arabidopsis thaliana (Fujii
et al., 2005; Schachtman and Shin, 2007). In addition, PHR1-
miR399-PHO2 signaling pathway has also been shown to operate
in rice in response to Pi-deficiency. OsPHR2, the homolog of
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AtPHR1, is a key regulator involved in Pi-starvation signaling
in rice (Zhou et al., 2008). A recent study suggests that under
Pi-deficiency, AtMYB2 regulates miR399f expression by directly
binding to MYB-binding site in the promoter region of the
miR399f precursor. The over expression of AtMYB2 also affects
root system architecture causing reduction in the primary root
growth and enhancement in root hair development (Baek et al.,
2013).

Interestingly, Pi-responsive miR399 was observed to be
induced by Candidatus liberibacter infection which causes
Huanglongbing (HLB) disease of citrus. sRNA profiling of
infected and healthy sweet orange plants identified number of
miRNAs and siRNAs induced in response to the infection. The
induction of miR399 is in correspondence to Pi-deficiency in
the infected plants as compared to the healthy plants (Zhao
et al., 2013). This suggests existence of interplay of sRNAs under
nutrient deficiency and biotic stresses in plants.

Various studies demonstrated that miR827 and miR2111 are
induced in response to phosphate starvation but not under
other nutrient deficiency conditions (Hsieh et al., 2009). miR827
target gene encoding proteins containing SPX domain, which
is involved in Pi-sensing, and transport in yeast and xylem
loading in plants (Hackenberg et al., 2013). miR2111 target
gene encodes F-box protein, which is a component of SCF
ubiquitin ligase complexes. Notably, all the three inducible
miRNAs (miR399, miR827, and miR2111) target genes involved
in the ubiquitin-mediated protein degradation pathway, which
suggest that the post-translational regulation of genes is a
key component in the adaptive response of Pi-deficiency.
Intriguingly, phosphate starvation responsive miRNAs such as
miR828 regulates ta-siRNAs (TAS4) transcript which produces
clusters of phased transacting, siRNAs (Hsieh et al., 2009). It
has been reported that TAS4-siR81(-), which is one of the
dominant TAS4 siRNAs, targets the transcripts of a group of
MYB transcription factors involved in anthocyanin biosynthesis
(Rajagopalan et al., 2006). Anthocyanin accumulation is a
common stress response and induction of TAS4-siR81(-) under
N deficiency indicates autoregulation mechanism in plants.

SULFUR (S)

Uptake and Transport System
Plants take up sulfur in the form of sulfate (SO4

2−) from
the soil via sulfate transporters located on the epidermal and
cortical plasma membrane of the roots (Liu et al., 2009). Sulfate
transporter gene family has been characterized in different plant
species (Takahashi, 2010; Kumar et al., 2011, 2015). Arabidopsis
genome encodes 14 sulfate transporters, which are divided into
five groups on the basis of their sequence similarity, substrate
affinity, and tissue specific localization (Grossman and Takahashi,
2001; Kumar et al., 2011). Group 1 transporters are high affinity
sulfate transporters involved in the uptake of sulfate from the
soil (Howarth et al., 2003; Yoshimoto et al., 2007). Group 2
transporters are low affinity sulfate transporters responsible for
the long-distance transport of sulfate (Takahashi, 2010). Group 3
comprises transporters that work in cooperation with low affinity

transporters and mainly translocate sulfate from root to shoot
(Kataoka et al., 2004). Vacuoles are considered to be the ‘store
house’ of sulfate, and during sulfate limiting condition, sulfate
is mobilized from vacuoles to the cytoplasm. The sulfate efflux
transporters are located on the tonoplast and are classified in
Group 4 (Zuber et al., 2010). The transporters belonging to
group 5 are also termed as molybdenum transporters due to
their involvement in transport of molybdenum inside the plant
(Shinmachi et al., 2010). Under sulfur deficiency, predominantly,
the expression of high affinity transporters (Group 1) increases
which helps in uptake of sulfate from the soil to maintain sulfate
homeostasis inside the plant (Kumar et al., 2011).

After sulfate acquisition, S is assimilated into the plastid by the
sulfur assimilation pathway (Jez et al., 2016). Sulfate is converted
to adenosine 5′-phosphosulfate (APS) by ATP sulphurylase, the
first step of this pathway. Further, sulfate is reduced to sulfite
by enzyme APS reductase and subsequently to sulfide by sulfite
reductase enzyme. This sulfide is incorporated into cysteine,
which is a precursor for various sulfur containing compounds
such as phytochelatins, metallothioneins, and glutathiones
playing important role in stress tolerance (Leustek and Saito,
1999; Dixit et al., 2015a,b,c).

Regulation of S Homeostasis by Small
RNA
A number of studies have been carried out to identify and
validate function of S-responsive miRNAs. These S-responsive
miRNAs generally target different transcription factors involved
in auxin signaling pathway and stress response (Li et al.,
2016) and regulate sulfate uptake, transport and assimilation
in plants (Figure 1). Deep sequencing identified 27 conserved
miRNAs and five novel miRNAs, which express under SO2
stress in Arabidopsis (Li et al., 2016). The novel miRNAs;
miR66 and miR67 were up-regulated more than sixfold whilst
miR14, miR20 and miR43 were down-regulated sevenfold in
the SO2−treated samples in comparison to control (Table 3).
Comparative deep sequencing of Arabidopsis sRNAs treated with
different nutrient deficiency including C, N, and S revealed
that the targets of differentially expressed miRNAs were related
to cellular and metabolic processes, signal transduction, and
nutrient homeostasis. miR169b/c, miR826, and miR395 were
specifically induced under C, N, and S deficiency, respectively.
On the contrary, different miRNAs; miR167, miR172, miR397,
miR398, miR399, miR408, miR775, miR827, miR841, miR857,
and miR2111 were repressed under the C, N, and S deficient
conditions (Liang et al., 2015). Sequencing of sRNA population
in Brassica napus identified conserved and novel miRNAs
responsive to S deficiency and Cd stress (Huang et al., 2010).
This indicated that miRNA genes and their corresponding
targets coordinately participate in both the stresses. Deep
sequencing analysis of miRNAs in Chlamydomonas reinhardtii
identified differential expression of miRNAs under S deficient
and sulfur starved conditions (Shu and Hu, 2012). In addition,
studies suggest binding of sulfur-responsive transcription factors
particularly, Prohibitin (PHB), Squamosa-Promoter Binding
(SPB), and Sulfur Limitation 1 (SLIM1) to the promoter of
nutrient responsive miRNAs (Panda and Sunkar, 2015).
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FIGURE 1 | miRNA mediated regulation of Phosphate and Sulfate uptake, transport and assimilation in plants. (A) Phosphate (Pi) uptake is regulated by
phosphate high affinity transporters. PHO1 and PHO2 are responsible for the xylem loading of Pi. PHO2 act as a negative regulator of Pi loading whereas PHO1
helps in Pi loading into xylem. Various miRNAs regulation under Pi starved and sufficient conditions are shown in orange boxes. The miR399 and isoforms act as
primary regulator of Pi uptake, transport and assimilation by negatively regulating PHO2 under Pi starved conditions. Induced by phosphate starvation1 (IPS1) pairs
with miR399 and causes its sequestration. (B) Sulfate uptake, transport and assimilation involves different transporters. Groups 1 and 2 sulfate transporters are
involved in the sulfate uptake from soil to roots. Group 3 is associated with root to shoot transport of sulfate. The expression of various miRNAs under sulfate starved
condition has been shown in orange boxes. miR395 has been reported to be sulfate-specific miRNA and acts as a primary regulator of sulfate deficient responsive
pathway. Under sulfate deficient condition, miR395 positively regulates expression of a low affinity transporter AtSul2;1 to help in the sulfate uptake and transport to
shoot and leaves.

Intriguingly, miR395 plays an important role in sulfate
homeostasis by regulating the expression of genes involved in
the sulfate uptake, transport and assimilation (Chiou, 2007; Zeng
et al., 2014). It has been observed that miR395 is specifically
responsive to S deficiency (Hsieh et al., 2009). The MIR395
loci present in many monocots and dicots express in the
vascular system of roots, root tips, and leaves (Kawashima
et al., 2009). Arabidopsis genome encodes six miR395 genes
which are located in two clusters (miR395a,b,c and miR395d,e,f)
whereas in rice 24 genes encoding miR395 are clustered into
four clusters (Jones-Rhoades and Bartel, 2004; Guddeti et al.,
2005).

In Arabidopsis, out of four ATP sulphurylases (APSs), APS1,3,
and 4 are located in the plastid and APS2 is found in the
cytosol (Hatzfeld et al., 2000). miR395 target the mRNAs of
three APSs (APS1, APS3, and APS4; Figure 1) which catalyze
the initial activation step of sulfate assimilation into cysteine
(Jones-Rhoades and Bartel, 2004; Sunkar et al., 2012). This clearly
suggests that miR395 regulates the plastidial sulfate assimilation

as sulfate is reduced and assimilated into cysteine in the plastid
(Rotte and Leustek, 2000). Sulphation reaction occurs in the
cytosol in which 5′-adenylsulfate is used for the synthesis of
glucosinolates (Chiou, 2007). Under S deficiency, the regulation
of miR395 remains elusive as induction of miR395 represses the
expression of APS1 (Jones-Rhoades and Bartel, 2004) whereas in
Arabidopsis and Brassica roots expression of APS1 and APS3 and
total APS activity increases. Moreover, transcript level of APS1
decreases twofold in the shoots of sulfate deficient conditions.
Apart from regulating S assimilation, miR395 also regulates
S uptake by targeting the gene encoding low affinity sulfate
transporter Sul2;1 which is localized in the vascular tissues of
roots and leaves (Takahashi et al., 2000; Allen et al., 2005; Kruszka
et al., 2012; Zeng et al., 2014).

The miR395 overexpression in Arabidopsis suppressed the
expression of target genes APS1, APS3, APS4, and Sul2;1
(Liang and Yu, 2010). At the same time, overexpression of
OsmiRNA395h in tobacco impaired S homeostasis and affected
S distribution among leaves of different ages (Yuan et al.,

Frontiers in Plant Science | www.frontiersin.org 6 March 2017 | Volume 8 | Article 285

http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive


fpls-08-00285 March 8, 2017 Time: 16:13 # 7

Kumar et al. Small RNA and Nutrient Sensing

TABLE 3 | Plant miRNA families responsive to S deficiency.

miRNA families Plant species Reference

Up-regulated Down-regulated

miR160, miR164, miR169, miR173,
miR319, miR395, miR400, miR403,
miR771, miR826, mir829, mir833, miR837,
miR846, miR864, mir842, miR5638,
miR8172

miR167, miR 171, miR172, miR390,
miR391, miR397, miR398, miR399,
miR408, miR775, miR825, miR827,
miR841, miR845, miR850, miR857,
miR863, mR1888, miR2111

Arabidopsis thaliana Barciszewska-Pacak
et al., 2015; Liang
et al., 2015

miR156, miR159, miR164, miR393,
miR394, miR395

miR160, miR167, miR168 Brassica napus Huang et al., 2010

miR156, miR159, miR160, miR162,
miR164, miR166, miR167, miR168,
miR169, miR171, miR172, miR319,
miR390, miR393, miR394, miR395,
miR396, miR397, miR398, miR399,
miR403, miR408, miR530, miR535,
miR3627, miR-c4, miRc-10

Carica papaya Liang et al., 2013

miR51, miR62, miR84, miR182, miR196,
miR906, miR909, miR910, miR912,
miR914, miR1144, miR1147, miR1148,
miR1149, miR1150, miR1153, miR1155,
miR1156, miR1158, miR1159, miR1160,
miR1164, miR1166, miR1172

Chlamydomonas reinhardtii Shu and Hu, 2012

Unique miRNAs are represented in Bold.

FIGURE 2 | Future perspectives in regulation of nutrient uptake/transport and assimilation in plants. The figure illustrates the role of various factors in
maintenance of nutrient uptake, assimilation and transport. The post-transcriptional and epigenetic modifications have driven the nutrient sensing, uptake and
transport in the plants. However, new perspectives in the nutrient regulation such as miRNA-PEPs (miPEPs), circular RNAs (circRNAs), and micro RNA (miRNA)
target mimicry are required to generate more information about the pathways and regulators of nutrient homeostasis in plants. The information acquired in these
areas will eventually lead to better nutrient acquisition and utilization by the crop plants. The square boxes are the known factors whereas the factors in circular/oval
boxes represent the knowledge voids (questions marks) that need further investigation in near future. The arrows represent the relationship between the
interconnected events.

2016). miR395 overexpressing Brassica napus transgenic plants
accumulate higher biomass and sulfur content in Cd treated
plants as compared to wild type. In addition, transgenic plants

accumulated high level of Cd, with less translocation from root
to shoot suggesting miR395 is involved in detoxification of Cd in
Brassica napus (Zhang et al., 2013).
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Furthermore, the transcription factor of the ethylene-
insensitive like (EIL) family, SLIM1, has been observed to directly
or indirectly regulate the expression of miR395 (Figure 1) to
maintain S homeostasis under deficiency (Kawashima et al.,
2011; Matthewman et al., 2012). Under S deficiency, GSH level
decreases, which further modulates the expression of genes
involved in S metabolism and enhances the expression of miR395.
As GSH is an important component of cellular redox signaling,
involvement of redox signaling was suggested in the induction
of miR395 under S deficiency (Jagadeeswaran et al., 2014). In
addition, analysis of miRNA395 over expressing Arabidopsis
plants, slim1-1 mutants, and plants with reduced miR395
activity by target mimicry depicted the interplay of SLIM1 and
miR395 in the sulfate assimilation in Arabidopsis (Todesco et al.,
2010; Kawashima et al., 2011). Thus, the S-deficiency induced
expression of miR395 represents a link between redox signaling
and SLIM1 transcription factor.

CONCLUSION AND FUTURE
PERSPECTIVES

Plants as sessile organisms have evolved several mechanisms
to fulfill any type of nutrient deficiency. The roots and other
aerial parts of the plant act as an extension for various signaling
cascades to form a nexus to adapt to nutrient stress. miRNAs
being an important component of this nexus, have been found
to be riboregulatory in regulation of nutrient sensing, transport
and assimilation, such as miR395 and miR399 for S and P,
respectively. In plants, though lesser number of miRNA gene
clusters exist, existence of miR399 and miR395 clusters reflect the
occurrence of gene duplication events during evolution. This may
be the reason for the coordinated regulation of these miRNAs
under nutrient deficiency in plants. Though, a large number of
nutrient deficiency responsive miRNAs have been identified, role
of these miRNAs in regulating the nutrient stress needs to be
studied. To elucidate various components and networks involved
in nutrient homeostasis in plants, there is need to study different
regulatory aspects (Figure 2) in detail. Future studies required in
these areas are summarized below.

Apart from genetic regulation of gene expression, the
epigenetic regulation also occurs in plants to counter nutrient
deficiency as well as sufficiency. Studies have identified that
alteration in chromatin structure and methylation pattern govern
environmental adaptability in plants under nutrient deficiency
(Sirohi et al., 2016). It has been reported that miRNAs also
regulate gene expression via DNA methylation. For example,
miR165/166 regulate the expression of target genes by DNA
methylation (Bao et al., 2004). Thus, investigation of epigenetic
control during nutrient deficiency can offer clear and insightful
information about the plant adaptability toward environmental
constraints.

The recent study in the field of plant interactome suggested
an insight into the global organization of various biological
processes that constitute a community network of different
hypothetical functional links between proteins and pathways
(Arabidopsis Interactome Mapping Consortium, 2011; Reichel

et al., 2016). Such studies are required to establish sRNA-protein
and protein-protein interaction networks to understand sRNA-
mediated regulation and dynamic rewiring of processes such as
nutrient sensing, uptake, transport, assimilation, and interactions
occurring in plants.

In-depth sequencing of sRNA libraries and target gene
analysis under single or multiple nutrient stress might help
in the better understanding the cohort of sRNA-mediated
stress responses in plant. Identification and characterization
of endogenous target mimics for nutrient responsive miRNAs
may provide deeper understanding about nutrient acquisition
and utilization in plants. Recently, miRNA-PEPs (miPEP) have
been shown to regulate a number of miRNAs (Lauressergues
et al., 2015; Couzigou et al., 2016). It will be interesting
to study whether such miPEPs are encoded by MIR genes
responsive to nutrient deficiency and play role in nutrient
homeostasis. The circular RNAs (circRNAs), a product of back-
splicing of precursor mRNA; interfering eukaryotic processes
by interference of splicing and transcription and also titrates
miRNAs has been reported to regulate and reshape the gene
expression (Lu et al., 2015; Wang and Wang, 2015; Chen,
2016). Thus, a combination of various different approaches
using high throughput technologies could help us uncover
the master regulators and deregulators of plant nutrient
stress.

An insight into the complexity of nutrient-plant interaction,
the root system restructuring and the nutrient stress is essential
for the improvement of crop yield and productivity as
these depend upon ability of plant to utilize surrounding
nutrients. The in situ imaging studies employing non-
destructive X-ray based techniques (Perret et al., 2007)
will be useful in elucidation of the root system growth
dynamics and their restructuring upon various nutrient
stresses. This will provide a que for plant breeders in future
to develop hybrids with well-developed root architecture
that might withstand adversity against many nutrient stresses
and drought conditions. Thus, the exploration of precise
mechanisms involved in sensing, signaling, and cross-talk of
nutrients and miRNAs will help in developing strategies for
improving the nutrient use efficiency and increasing crop
productivity required for the global sustainability and food
security.
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