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Vineyards are characterized by their large spatial variability of solar irradiance (SI) and

temperature, known to effectively modulate grape metabolism. To explore the role of

sunlight in shaping fruit composition and cluster uniformity, we studied the spatial pattern

of incoming irradiance, fruit temperature and metabolic profile within individual grape

clusters under three levels of sunlight exposure. The experiment was conducted in a

vineyard of Cabernet Sauvignon cv. located in the Negev Highlands, Israel, where excess

SI and midday temperatures are known to degrade grape quality. Filtering SI lowered

the surface temperature of exposed fruits and increased the uniformity of irradiance and

temperature in the cluster zone. SI affected the overall levels and patterns of accumulation

of sugars, organic acids, amino acids and phenylpropanoids, across the grape cluster.

Increased exposure to sunlight was associated with lower accumulation levels of malate,

aspartate, and maleate but with higher levels of valine, leucine, and serine, in addition

to the stress-related proline and GABA. Flavan-3-ols metabolites showed a negative

response to SI, whereas flavonols were highly induced. The overall levels of anthocyanins

decreased with increased sunlight exposure; however, a hierarchical cluster analysis

revealed that the members of this family were grouped into three distinct accumulation

patterns, with malvidin anthocyanins and cyanidin-glucoside showing contrasting trends.

The flavonol-glucosides, quercetin and kaempferol, exhibited a logarithmic response to

SI, leading to improved cluster uniformity under high-light conditions. Comparing the

within-cluster variability of metabolite accumulation highlighted the stability of sugars,

flavan-3-ols, and cinnamic acid metabolites to SI, in contrast to the plasticity of

flavonols. A correlation-based network analysis revealed that extended exposure to SI

modified metabolic coordination, increasing the number of negative correlations between

metabolites in both pulp and skin. This integrated study of micrometeorology and

metabolomics provided insights into the grape-cluster pattern of accumulation of 70

primary and secondary metabolites as a function of spatial variations in SI. Studying

compound-specific responses against an extended gradient of quantified conditions

improved our knowledge regarding the modulation of berry metabolism by SI, with the

aim of using sunlight regulation to accurately modulate fruit composition in warm and

arid/semi-arid regions.

Keywords: solar irradiance, microclimate, spatial heterogeneity, grape composition, phenylpropanoids,

metabolite profiling, climate change, shading
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INTRODUCTION

Plasticity is the ability of an organism to adapt its phenotype
in response to changes in the environment. For plants, it is
an important adaptive strategy to cope with environmental
variability (Svanback and Eklov, 2006) and facilitates the use
of the same cultivar in a wide range of growing conditions
(Dai et al., 2011). However, at the single-field scale, phenotypic
plasticity may be regarded as a significant cause for within-field
variation. Field systems, such as vineyards experience a large
range of microclimate conditionsmanifested in significant spatial
variation of SI and temperature (Oyarzun et al., 2007; Matese
et al., 2014).

Grape and wine quality reflects the levels and composition
of a large number of primary and secondary metabolites
that shape the overall sensory experience of its derived
product. Primary metabolites are largely accumulated in
the pulp and include sugars, organic acids, and amino
acids. Grape secondary metabolites predominantly include the
phenylpropanoids, typically found in the berry skin, and
comprise flavonoids, phenolic acids, stilbenes, and viniferins
(Anesi et al., 2015). While sugars are largely imported to the
fruit through the plant vascular tissues (Ollat et al., 2002), the
overall levels and composition of organic acids, amino acids, and
secondary metabolites at harvest are determined by the sum of
complex metabolic processes occurring in the fruit during its
lifetime (Conde et al., 2007; Deluc et al., 2007; Dai et al., 2013).
Indeed, metabolic shifts caused by changes in climatic conditions
in the immediate vicinity of the fruit (i.e., microclimate), such as
light and temperature, are well-known to affect fruit composition
(Jackson and Lombard, 1993; Downey et al., 2006).

Studies exploring the effect of microclimate on fruit primary
metabolites largely agree that sunlight, and specifically an
increase in the temperature load of the fruit, highly modulate
malic acid levels, leading to a corresponding decrease in overall
fruit acidity (Kliewer, 1965; Jackson and Lombard, 1993; Conde
et al., 2007; Sweetman et al., 2014). However, results regarding the
effect on the relatively stable tartaric acid are still controversial
(Rienth et al., 2016; Young et al., 2016). Discrepancies also
exist regarding the effect on amino acids, owing in part to the
differential response of cultivated varieties. For example, filtering
UV-B irradiance was found to increase the overall levels of amino
acids in the juice of Riesling cv. (Schultz et al., 1998), but had no

Abbreviations: GABA, gamma-Aminobutyric acid; Cyan-3-glu, Cyanidin-3-

O-glucoside; Pet-3-glu, Petunidin-3-O-glucoside; Peo-3-glu, Peonidin-3-O-

glucoside; Mal-3-glu, Malvidin-3-O-glucoside; Delph-3-glu, Delphindin-3-O-

glucoside; Delph-3-acet, Delphinidin-3-O-(6′′-acetyl-glucoside); Cyan-3-acet,

Cyanidin-3-O-(6′′-acetyl-glucoside); Pet-3-acet, Petundin-3-O-(6′′-acetyl-

glucoside); Mal-3-acet, Malvindin-3-O-(6′′-acetyl-glucoside); Peo-3-acet,

Peonidin-3-O-(6′′-acetyl-glucoside); Delph-3-coum, Delphinidin-3-O-(6′′-

p-coumaroyl-glucoside); Mal-3-caffe, Malvidin-3-O-(6′′-caffeoyl-glucoside);

Cyan-3-coum, Cyanidin-3-O-(6′′-p-coumaroyl-glucoside); Pet-3-coum,

Petunidin-3-O-(6′′-p-coumaroyl-glucoside); Peo-3-coum, Peonidin-3-O-(6′′-p-

coumaroyl-glucoside); Mal-3-coum, Malvidin-3-O-(6′′-p-coumaroyl-glucoside);

Myr-3-glr, Myricetin-3-O-glucuronide; Rutin, Quercetin-3-O-rutinoside; Myr-

3-glu, Myricetin-3-O-glucoside; Quer-3-glr, Quercetin-3-O-glucuronide;

Quer-3-glu, Quercetin-3-O-glucoside; Kaemp-3-glr, Kaempferol-3-O-

glucuronide; Kaemp-3-glu, Kaempferol-3-O-glucoside; Narin-chalc-glu,

Naringenin-chalcone-4-O-glucoside; Hex., Hexoside.

effect on the levels and composition of amino acids in Sauvignon
Blanc cv. grapes at harvest (Gregan et al., 2012).

With regards to grape specialized metabolism, studies
underline the flavonoids as a highly responsive group to light
and temperature perturbations (Chalker-Scott, 1999; Winkel-
Shirley, 2002). For instance, flavonol glucoside concentrations in
the fruit positively correlated with increased SI on the cluster
(Haselgrove et al., 2000; Spayd et al., 2002), and were found to
be the most significant metabolites distinguishing the metabolic
profile of shaded berries from that of exposed berries (Pereira
et al., 2006). Fruit sunlight exposure was found to modulate the
composition of anthocyanins, such as the proportion of acylated
and coumarylated forms, the ratio between di-hydroxylated and
tri-hydroxylated anthocyanins (Haselgrove et al., 2000; Spayd
et al., 2002; Downey et al., 2004; Tarara et al., 2008; Chorti
et al., 2010), and the proportion of ortho-di phenol anthocyanins
(Rustioni et al., 2011). However, the overall accumulation
of anthocyanins showed higher dependency on temperature
conditions than on SI (Downey et al., 2006), with the effect of
the interaction between incoming SI and fruit temperature on
grape anthocyanin levels exhibiting a synergistic or antagonistic
character, depending on the ranges of both factors (Tarara et al.,
2008; Azuma et al., 2012).

While the overall environmental effect on grape has been
investigated, few studies have addressed the within-cluster spatial
profile of compound accumulation and variability. Pisciotta et al.
(2013) characterized berry anthocyanin content considering its
vertical position on the rachis and external and internal faces of
the cluster (i.e., facing the inter-row or the canopy). However, no
data regarding micrometeorological conditions were presented,
hampering the interpretation of the results with respect to
environmental conditions. Zhang et al. (2015) found greater
polyphenol content in regions of the cluster characterized by
lower berry surface temperature in Shiraz cv. More recently,
by using model-generated microclimate data, Pieri et al. (2016)
related the overall levels of berry flavonols, anthocyanins, and
amino acids to cluster exposition and its impact on the estimated
levels of SI and berry surface temperature (BST). Taken together,
these works indicate thatmicro-scale environments play an active
role in generating the spatial patterns of metabolite accumulation
that affect fruit composition, as well as the uniformity of the
crop. Optimizing crop uniformity is generally regarded as an
important aspect in the overall improvement of wine quality
(Keller, 2010), owing to its significant role in the composition
of the harvested grape, and final wine (Kontoudakis et al.,
2011; Liu et al., 2016). However, recent attempts to minimize
field heterogeneity through the use of common vineyard
management techniques, such as deficit irrigation and cluster
thinning, were found inefficient (Calderon-Orellana et al., 2014).
This stresses the importance of exploring the effectiveness of
other potential techniques, including the modulation of cluster-
zone microclimate, to form more homogeneous conditions.
As a key factor determining fruit intercepted irradiance and
temperature (Smart and Sinclair, 1976), practical interventions
to ameliorate fruit microclimate generally involve the regulation
of sunlight exposure. Practices, such as basal leaf removal, or
shading, whether by the use of artificial nets or by the use of
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extended canopies, are routinely used in the industry. However,
integrated studies encompassing a gradient of sunlight exposure,
profiling of metabolic data, and a quantitative characterization of
microclimate conditions are lacking. Hence, our understanding
of how sunlight regulation influences the spatial heterogeneity of
fruit microclimate and its effect on fruit metabolic processes and
coordination is currently limited.

In this study, we performed a spatial characterization of
micrometeorological conditions and metabolic profiles within
individual grape clusters subjected to differing levels and
directions of sunlight exposure. The extended range of SI
intensities allowed us to explore the responses of a large number
of primary and secondary (phenylpropanoids) metabolites to a
range of microclimate conditions typically found in the field.
This study’s insights will aid in defining strategies for sunlight
regulation aimed at improving fruit composition and uniformity
in challenging environments.

MATERIALS AND METHODS

Site Description
The experiment was conducted during the 2014 and 2015
growing seasons, in a vineyard located in the heart of the Negev
Desert, Israel (30◦36′55.22′′N, 34◦45′12.00′′E, 800m altitude).
This is an arid region with an average annual precipitation
rate of 70mm (Israel Meteorological Service), which, during
the growing season, is characterized by stable meteorological
conditions including high SI and elevated midday temperatures
(Supplementary Figure 1). The vineyard was planted in 2007 with
Vitis Vinifera L. cv. Cabernet Sauvignon grafted on 140 Ruggeri
rootstock, irrigated using a covered drip-irrigation system as is
common in the region. Rows are orientated north-south with
a 30◦ angle to the north-east\south-west, and are trained in
vertical shoot positioning (VSP). Three experimental rows were
selected, with one border row between every two experimental
rows. In each row, three groups of nine adjacent vines were
marked as field repetitions, and the basal leaves in the vicinity
of the clusters (up to 30 cm above the cordon) were completely
removed at the onset of veraison. Each field repetition was further
assigned one of three shading treatments: fully exposed, i.e., no
net (Exposed), 30% shading net (30% shaded) and 60% shading
net (60% shaded), using UV-stabilized woven mesh shading nets
for agriculture (Ginegar, Israel) with the percentage representing
the PAR filtering capacity as published by the manufacturer. The
nets were placed using thin metal support wires, one next to each
vine, in a manner that created a shading tunnel with a diameter
of about 80 cm around the cluster zone in order to facilitate wind
flow and prevent an increase in relative humidity (Supplementary
Figure 2). Shading was placed from the onset of veraison (the
day of basal leaf removal) until harvest date. Treatments were
repeated once on each row in a way that represented all locations
along the row to minimize effects of spatial differences both
between and within the rows.

Meteorological Measurements
During the 2015 growing season, a detailed study of cluster-
scale micrometeorological conditions was performed. Incoming

SI, air temperature, relative humidity (RH%), and wind speed
and direction were continuously monitored in 15-min intervals
from veraison to harvest by placing a multi-sensor (WS501-
UMB, Lufft, Fellbach, Germany) connected to a data logger
(CR200, Campbell Scientific, Utah, USA) 1m above the canopy,
positioned in the field to allow for a maximum fetch in the
direction of the prevailing winds (northwest). The distance
between the sensor and the most distant experimental vine was
approximately 90m.

Cluster-zone air temperature and RH% were measured
continuously every 15 min from veraison to harvest by placing
sensors equipped with an internal data logger (Hobo ProV2,
Onset, MA, USA) at a shaded spot in the immediate vicinity of
the clusters. Two sensors were placed at each treatment site to
verify repeatability.

The SI intensity on the clusters was measured simultaneously
at four horizontal axes: parallel and perpendicular to the vine
row, and vertically, to the sky (Supplementary Figure 3). This
was done by constructing a box positioning all five pyranometers
(LI200R, Li-Core, NE, USA) and connecting them to a single
data logger (21X, Campbell Scientific, UT, USA). The sensors
were stabilized and leveled on a tripod and placed at the cluster
zone, with representative locations and distances from adjacent
clusters verified to simulate cluster conditions. This system was
continuously rotated every 3 days between field treatments and
normalized to the SI measured above the canopy to allow for
a comparison between measurements made on different dates.
Measurements were done on the east side of the canopy for
the shaded treatments and on both sides of the canopy for the
exposed treatment.

Berry surface temperature (BST) was measured on 28 July
(post-veraison) and 19 August (pre-harvest) 2015, during two
diurnal field campaigns from 6:00 to 20:00 using an infrared
camera (T640, FLIR systems, OR, USA). Every hour, photos were
taken from two representative clusters on each treatment, from
each side of the canopy, for a total of 12 clusters. Each cluster
was divided into three faces, north- and south-facing, and facing
the inter-row (east for east-located clusters and west for west-
located clusters). Data analysis included a careful selection of
berries located in the middle section of the cluster’s vertical axis
(i.e., middle height) in each photo and the exclusion of pixels
representing non-grape background data.

Berry Sampling
Sampling during both seasons was done several days prior
to harvest date scheduled at 24◦Brix, to represent final berry
composition and the potential of accumulated spatial differences.
Samples were taken at pre-dawn in order to prevent any
differences between sunlit and shaded berries at the time of
sampling. Four vines per shading treatment were sampled,
located in two out of the three field repetitions. Selected vines
for sampling were at least four vines apart (Figure 1A). In each
vine, four to six exterior-located clusters (furthest from the trunk
toward the inter-row) were selected from each canopy side, to
avoid possible shading by the canopy apart from midday hours.
Each cluster was dissected into four horizontal orientations
(Figure 1B), and samples were taken from the middle height
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FIGURE 1 | Sampling layout illustrating the selection of experimental vines (A), and the dissection of clusters of both canopy sides to the four orientations (B).

of each orientation. Berries from a single vine and canopy side,
located on the same cluster plane, were pooled together and
immediately frozen in liquid nitrogen. In the lab, skin, pulp and
seeds were carefully separated while kept frozen on dry ice, placed
in Eppendorf tubes, and stored at−80◦C until further processing.
Analysis included grape skin tissues sampled during both seasons
and pulp tissues sampled during the 2015 season.

Analysis of Skin Phenylpropanoids
Grape skin samples were analyzed using Ultra Performance
Liquid Chromatography coupled to a Quadrupole
Time-of-Flight Mass-Spectrometer (UPLC QTOF-MS, Waters,

MA, USA), following an extraction protocol for metabolite
profiling as described in Weckwerth et al. (2004). Skin
tissues were lyophilized and ground under liquid nitrogen
using a RETSCH-mill (Retsch, Haan, Germany) with pre-
chilled holders and grinding beads. The powder was weighed
(40mg), and metabolites were extracted in a 1-ml pre-chilled
methanol:chloroform:water extraction solution (2.5:1:1 v/v).
Internal standards, i.e., 0.2mg/ml ribitol in water, 1 mg/ml
ampicillin in water, 1 mg/ml corticosterone in methanol, were
subsequently added. The mixture was then briefly vortexed, and
100 µl of methanol was added; the mixture was then placed on a
horizontal shaker for 10 min at 1000 rpm. The samples were later
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sonicated for 10min (Elmasonic S30, Elma, Singen, Germany)
and centrifuged for 10 min (20,817 × g, microcentrifuge 5417R,
Eppendorf, Hamburg, Germany). The supernatant was decanted
into new tubes, mixed with 300 µl of chloroform and 300 µl of
MiliQ water (Millipore, MA, USA), vortexed for 10 s and then
centrifuged at 20,817 × g for 5 min. Next, the water/methanol
phase was separated, filtered (0.22 µmMillipore, MA, USA) and
transferred to UPLC vials for analysis.

LC/MS Conditions
UPLC-QTOF-MS conditions were exactly as described
previously by Hochberg et al. (2013).

LC/MS Annotation
MassLynxTM software (Waters) version 4.1 was used for system
control and data acquisition.Metabolite annotationwas validated
using the standard libraries described in Arapitsas et al. (2012),
based on retention time order, given in Degu et al. (2014).
Metabolites were also annotated based on fragmentation patterns
searched against the Chemspider metabolite database (http://
www.chemspider.com/), the consistency of their retention times
with those of identified metabolites, and comparison with the
data in the current scientific literature.

Analysis of Pulp Primary Metabolites
Pulp samples were manually crushed with a mortar and
pestle while kept frozen with liquid nitrogen. Next, 100mg of
crushed, frozen powder was weighed and extracted by adding
a methanol:chloroform:water solution (2.5:1:1), similar to the
aforementioned phenylpropanoid extraction. Then, 70 µl of
the extract were dried using a Concentrator Plus (Eppendorf,
Hamburg, Germany) and derivatized exactly as described in
Hochberg et al. (2015) with sorbitol as the internal standard.
Glucose, fructose, tartaric and malic acids were quantified using
a calibration curve of standards (Sigma-Aldrich, MO, USA) with
10 concentration points from 50 to 900 ng for glucose and
fructose and 2.5 to 45 ng for malic and tartaric acids. A split
ratio of 50:1 was used to correctly determine the levels of glucose,
fructose, malic and tartaric acids, due to their relatively high
abundance in the pulp. The GC-MS conditions were exactly as
described previously by Hochberg et al. (2013).

The Xcalibur data system V2.0.7 was used for system control
and data acquisition. Annotation was based on spectral searching
supported by the National Institute of Standards and Technology
(NIST, Gaithersburg, MA, USA) against RI libraries from the
Max-Plank Institute for Plant Physiology (Golm, Germany).

Statistical Analysis
Statistical analysis was performed using R v3.3.1 in RStudio. A
profile analysis, from the “profileR” package, was used in order
to compare the spatial profiles of clusters from exposed and
shaded treatments and both canopy sides. This analysis tested
the multivariate spatial data with two separate null hypotheses:
a) the multivariate profile between groups is parallel; and b)
the multivariate levels between groups are equal. This was done
separately for each of the 70 annotated metabolites. In addition,
within-cluster differences were tested for significance using the

aov() function for ANOVA and the post-hoc Tukey test using the
“agricolae” package. The same method was used for comparing
the within-cluster coefficient of variance for each metabolite
between different shading treatments, to highlight significant
differences in cluster homogeneity caused by shading. Differences
in malate/tartaric acid levels were tested for significance by using
the built-in t-test() function.

The Pearson correlation of the “corrplot” package was used
in order to construct separate metabolite correlation matrices for
fully exposed and 60% shaded clusters, based on the entire set of
samples from each treatment.

A regression analysis of each metabolite with daily incoming
SI levels was done using the entire set of samples obtained
from all treatments and cluster orientation, for which irradiance
data was available. Linear and logarithmic regressions were
assessed by the built-in lm() function, using non-transformed
and log-transformed irradiance data, respectively. The R2-values
of metabolites found to have significant regressions were then
calculated by using the mean of four biological replicates, in
order to minimize the effect of within-group variability on this
coefficient.

Heatmap figures were generated using TMeV v4.9, using the
mean of four biological replicates. Hierarchical clustering of the
heatmaps was based on the Pearson correlation.

Network Analysis
Correlation networks were constructed based on the data
obtained from Pearson correlation analyses performed in R
(detailed above), separately for exposed and 60% shaded
treatments, and for metabolites detected in pulp and skin
tissues (i.e., primary and secondary metabolites). Visualization
and computation of network properties were performed using
the “MetScape” application and the NetworkAnalyzer tool,
respectively, available in Cytoscape V3.4.0. Correlations were
incorporated into the network if the r-value was r > 0.5 or
r < (−0.5).

RESULTS

The Spatial Distribution of
Micrometeorological Conditions across
the Cluster Differed in Response to
Shading and Position
Cluster-zone shading successfully filtered the incoming SI as
shown in Table 1. Clusters shaded with 30% and 60% shading
nets received 64% and 34%, on average, of the incoming SI
measured for fully exposed clusters, respectively. This did not
lead to measured differences in the cluster-zone air temperature
and relative humidity between treatments (data not shown).
Comparing the different orientations in the east-facing cluster,
the east-south orientation (orientation 1) received the largest
amount of daily SI, followed by east-north (orientation 2) and
finally west-south (orientation 3). The higher SI recorded for
east-north compared to west-south may be attributed to the sun’s
zenith relative to the row orientation at the time of direct sunlight
exposure on the corresponding sensors.
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Interestingly, a comparison between the exposed and the 30%
shaded clusters, and the 30% shaded and the 60% shaded clusters
revealed that incoming SI differences within a cluster exceeded
the differences between treatments. Finally, while the percentage
of SI intercepted by the different cluster orientations, compared
to the reference of each treatment, remained unaffected, lowering
the overall incoming SI levels to the cluster, by shading, effectively
minimized the within-cluster heterogeneity in SI. Shading
reduced the incoming energy differences between orientations 1
and 3 by 3-fold, from 6.8 to 2.3MJ/m2/day for exposed and 60%
shaded clusters, respectively.

As expected, filtering the incoming SI caused a reduction in
BST (Figure 2A). As shown by the percentiles, during direct

sun exposure hours (e.g., morning for east-facing clusters),
shading reduced the maximum BST, while having no effect on
the minimum values, which represent the temperature of the
shaded cluster faces. Notably, during the afternoon, when the
east-facing clusters were exposed only to diffused radiation,
the minimum BST of the 60% shaded clusters increased, while
it remained stable for the 30% shaded and fully exposed
clusters. Shading clusters with 60% shading nets decreased their
maximum temperature by up to 7.1◦C and daytime (6:00–20:00)
mean BST by 0.7◦C (Table 2). Examining the distribution of BST
within a cluster, presented in histograms (Figure 2B), revealed
that shaded clusters were more homogeneous than exposed ones.
While maximum differences in BST within an exposed cluster

TABLE 1 | Sums of daily irradiance by cluster orientation in the three shading treatments.

Orientation Sum of daily irradiance (MJ/m2/day) Relative sum of daily irradiance

Exposed 30% shaded 60% shaded Exposed 30% shaded 60% shaded

1 14.0 9.4 4.9 100% 100 (67.2)% 100 (35.2)%

2 10.1 6.7 3.4 72.4% 70.8 (65.7)% 68.4 (33.3)%

3 7.2 4.6 2.6 51.5% 48.5 (63.4)% 53.1(36.3)%

4 – – – – – –

5 – – – – – –

6 5.7 3.7* 1.9* 40.9% 38.9 (64)% 39.5 (34)%

7 11.2 7.2* 3.8* 80.2% 76.3 (64)% 77.4 (34)%

8 11.5 7.4* 3.9* 82.2% 78.2 (64)% 79.3 (34)%

Station 26.8

Sums of daily irradiance, measured within the cluster-zone to represent the different cluster orientations.Values marked by * are estimated based on the mean filtering efficiency of

each shading net. Relative sums of daily irradiance values represent the percentage compared to the daily irradiance in orientation 1 of each treatment separately. Values enclosed in

parentheses represent the percentage compared to the daily irradiance of the exposed treatment for each orientation separately. Data were not collected for orientations 4 and 5.

FIGURE 2 | (A) Percentile bars showing the diurnal trend of berry surface temperature, measured on August 19, 2015 on clusters located on the east side of the

canopy, subjected to three sunlight exposure levels: fully exposed clusters (exposed), clusters shaded with 30% shading nets (30% shaded) and clusters shaded with

60% shading nets (60% shaded). Red lines highlight the median values. (B) Density plot of the data shown for 11:00.
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TABLE 2 | Berry surface temperature by cluster orientation in the three shading treatments.

Orientation Mean of daily BST (◦C) Maximum daily BST (◦C)

Exposed 30% shaded 60% shaded Exposed 30% shaded 60% shaded

1 28.0 27.6 27.8 50.0 49.6 43.9

2 27.5 26.9 27.6 46.8 45.9 42.2

3 27.9 27.5 27.7 48.2 48.8 43.0

4 – – – – – –

5 – – – – – –

6 26.2 25.1 26.7 45.5 41.3 41.8

7 27.1 25.9 27.0 48.3 43.9 44.6

8 26.6 25.7 26.8 48.7 43.9 42.9

Station 25.8 33.4

Berry surface temperature (BST) calculations based on hourly spatial measurements of representative clusters acquired on August 19, 2015. Data were not collected for orientations 4

and 5.

reached 17◦C (33 to 50◦C at 11:00), they were 9.6◦C in 60%
shaded clusters (34.3 to 43.9◦C at 12:00).

Cluster Spatial Profile of Metabolite Level
Was Affected by SI Intensity and Cluster
Position
The spatial profile analysis, i.e., the levels and pattern
of metabolite accumulation in response to the berry
position/orientation, was conducted separately for the
primary (Figure 3) and secondary metabolites (Figure 4),
and summarized in Supplementary Table 1.

The Impact of Cluster Shading on the Spatial Pattern

and Overall Levels of Fruit Metabolites

Pulp primary metabolites
Shading affected the spatial pattern (i.e., the pattern of
accumulation in the different cluster orientations) of leucine,
beta-alanine, and citrate in east-located clusters, increasing from
internal to external orientations in exposed clusters, while shaded
clusters had the opposite trend. Shading increased the levels of
maleate and aspartate by 1.6- and 1.8-folds, respectively, and
decreased the levels of tartaric acid, valine, and leucine by 1.3-,
2.2-, and 2.2-folds, respectively, in east-located clusters. In west-
located clusters, shading decreased the levels of phosphoric acid,
erythritol, beta-alanine, valine, leucine, and GABA by 1.3-, 1.4-,
1.3-, 1.9-, 1.6-, and 2.1-folds, respectively.

Skin phenylpropanoids
Shading significantly affected the levels of 11 and 12
phenylpropanoids in the east- and west-located clusters,
respectively, in 2015. Shading increased the levels of procyanidin
B1 and epicatechin by 1.5- and 1.2-folds, respectively, and
decreased the levels of the anthocyanins cyan-3-glu and
cyan-3-acet (1.8- and 2-folds, respectively), phenylalanine and
narin-chalc-glu (2.1- and 3-folds), and the flavonols myr-3-glu,
myr-3-glr, quer-3-glu, kaemp-3-glu, and kaemp-3-glr by 1.7-,
1.4-, 2.1-, 4-, and 2.5-folds, respectively, in east-located clusters.
In west-located clusters, shading significantly increased the levels

of both mal-3-acet and mal-3-coum by 1.3-fold, and decreased
the levels of cyan-3-glu, phenylalanine, narin-chalc-glu, and
hydroxybenzoate hex (1.8-, 1.8-, 3-, and 1.5-folds), the stilbenes
delta-viniferin and piceid (1.8- and 4.2-folds), and the flavonols
myr-3-glu, quer-3-glu, kaemp-3-glu and kaemp-3-glr by 1.6-,
2.6-, 5.6-, and 2.8-folds, respectively.

The Impact of Cluster Canopy Side on the Spatial

Pattern and Overall Levels of Fruit Metabolites

Pulp primary metabolites
The canopy side of the cluster significantly affected the spatial
pattern of malate, galactarate, maleate, threonine, glucose, and
fructose in shaded clusters, while no significant effect was
found in exposed clusters (Figure 3B). All mentionedmetabolites
followed a trend in which external cluster orientations had lower
values than the internal ones, resulting in an opposite east-
north-south-west pattern between the two sides of the canopy,
corresponding with SI. In addition, canopy side significantly
affected the overall levels of glucose and fructose in shaded
clusters, and of lumichrome, beta-alanine, and GABA in exposed
clusters. With the exception of lumichrome, all were found to be
higher in clusters from the west side of the canopy than in those
from the east.

Skin phenylpropanoids
Canopy side affected the spatial profile of 15 and 24
phenylpropanoid metabolites in exposed and shaded clusters,
respectively, in the 2015 season (Figure 4). These included all
the anthocyanins, with the exception of cyan-3-glu and vitisin
A, the flavan-3-ols epigallocatechin and catechin, narin-chalc-
glu and phenylalanine, and the entire set of flavonols, with
the exception of myr-3-glu. In the 2014 season, canopy side
significantly affected the spatial profile of only four and five
phenylpropanoid metabolites, in exposed and shaded clusters,
respectively; of these, mal-3-glu and peo-3-coum, in exposed
clusters, and the flavonols rutin, quer-3-glr, quer-3-glu, and
kaemp-3-glu, in shaded clusters, repeated in both years. Canopy
side had no significant effect on the levels of phenylpropanoids
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FIGURE 3 | Cluster spatial level results for primary metabolites detected by GC-MS in berry pulp tissues sampled from different cluster orientations

and shading treatments. (A) Illustrations of the daily irradiance levels in each cluster orientation including estimations based on diffusive light measurements and the

measured mean filtering capacity of the shading nets. (B) Organic acids, amino acids, sugars, sugar alcohols, and other compounds found to be significantly affected

by SI levels, cluster position and/or cluster orientation. Levels represent relative abundance based on ion count. Numbers on the X axis represent cluster orientations.

Yellow bars represent fully exposed clusters, and dark gray bars represent 60% shaded clusters. Error bars are standard error (n = 4). Bars of the same cluster

location and treatment, marked by different letters, represent significantly different values (α < 0.05). Information given in the boxes details the significant effects of

treatment (upper box) for clusters located on the east (E) and the west (W) side of the canopy, as well as canopy side (lower box), on the spatial pattern and profile

levels of metabolite accumulation in fully exposed (Ex) and 60% shaded (Sh) clusters. Asterisks in upper box indicate a significant effect of treatment on the spatial

pattern of compound accumulation. Yellow and gray boxes indicate a significantly higher overall compound level in the exposed and 60% shaded treatments,

respectively. Asterisks in lower boxes indicate a significant effect of canopy side on the spatial pattern and overall compound levels.
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FIGURE 4 | Cluster spatial level results for phenylpropanoid metabolites detected by UPLC-QTOF-MS in berry skin tissues sampled from different

cluster orientations and shading treatments. Included are pivotal phenylpropanoids and stilbenes, flavan-3-ols, flavonols, and anthocyanins found to be

significantly affected by SI levels, cluster position and/or cluster orientation. Levels represent relative abundance based on ion count. Numbers on the X axis represent

cluster orientations. Yellow bars represent fully exposed clusters, and dark gray bars represent 60% shaded clusters. Error bars are standard error (n = 4). Bars of the

same cluster location and treatment, marked by different letters, represent significantly different values (α < 0.05). Information given in the boxes details the significant

effects of treatment (upper box) for clusters located on the east (E) and the west (W) side of the canopy, as well as canopy side (lower box), on the spatial pattern and

profile levels of metabolite accumulation in fully exposed (Ex) and 60% shaded (Sh) clusters. Asterisks in upper box indicate a significant effect of treatment on the

spatial pattern of compound accumulation. Yellow and gray boxes indicate a significantly higher overall compound level in the exposed and 60% shaded treatments,

respectively. Asterisks in lower boxes indicate a significant effect of canopy side on the spatial pattern and overall compound levels. Illustrations of the daily irradiance

levels in the corresponding cluster orientation are given in Figure 3A.

Frontiers in Plant Science | www.frontiersin.org 9 February 2017 | Volume 8 | Article 70

http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive


Reshef et al. Cluster Microclimate and Berry Metabolite Profiling

in 2015, while in 2014, mal-3-glu was higher in the east-
located clusters than in the west; the opposite was found for
phenylalanine.

Overall, the proportion of metabolites showing significant
responses to canopy side and shading were higher in the
phenylpropanoids than in the primary metabolites, with sugars
and hydroxy-cinnamates being the least affected chemical groups
in pulp and skin tissues, respectively.

Common and Differential Responses of
Metabolite Groups to SI
Hierarchical clustering of primary metabolites (Figure 5A)
highlighted three major compound groups. The first group was
composed mainly of nitrogenous compounds, including the
amino acids leucine, valine, alanine, serine, and GABA, the
biogenic amines putrescine and ethanolamine, and two sugar
alcohols, galactinol, and erythritol. This group’s compounds
showed an increase from shaded to fully exposed clusters. In
addition, in 30% shaded and fully exposed clusters, a generally
higher abundance was found in external cluster orientations (i.e.,
facing the inter-row), especially for clusters located at the west
side of the canopy, than in the internal orientations (i.e., facing
the canopy), as seen for orientations 7 and 8 (external) compared
to 4 and 5 (internal). The second group included metabolites
associated with the TCA cycle, such as citrate, fumarate, malate,
as well as the closely linked aspartate and maleate, in addition to
glycolate, gluconate, and raffinose. These compounds showed a
gradual decrease from the densely shaded to the fully exposed
samples. In addition, their content was greater in the internal
cluster orientations than in the external ones, irrespective of the
treatment, as seen for orientations 4 and 5 compared to 1 and 8,
respectively. The third group, comprising tartaric acid, the amino
acids proline, beta-alanine and threonine, sucrose, glucose-
6-phosphate, phosphoric acids, galactarate, malonate, trans-
caffeate, pyroglutamate, anhydro-gluopyranose, myo-inositol,
and lumichrome, had a less pronounced pattern of change
between treatments and cluster orientations.

Clustering the phenylpropanoids using the 2015 season data
(Figure 5B) grouped together compounds according to their
chemical properties and biochemical pathways, such as those
belonging to the flavonols, flavan-3-ols and hydroxy-cinnamates.
In general, the flavonols showed a strong increase from the
densely shaded to the exposed clusters, while the flavan-3-
ols and cinnamates had the opposite trend. In contrast to
the mentioned groups, the anthocyanins showed metabolite-
specific trends. Cyanidin (glycosylated and acetylated) and
peonidin (glycosylated) increased from the densely shaded to
the exposed clusters and were grouped with the flavonols, as
well as phenylalanine and the stilbene piceid, exhibiting an
opposite trend to that of the malvidin metabolites. The rest of the
anthocyanins were grouped together and exhibited an optimum
in the 30% shaded cluster samples.

The 2014 season data (Supplementary Figure 4), based on
fully exposed and 60% shaded clusters, yielded similar trends.
However, in contrast to the 2015 results, in the 2014 season, the
coumaroylated forms of cyaniding, delphinidin, and petunidin
clustered with the flavonols, while the glycosylated cyanidin and

peonidin, together with the majority of the anthocyanins, formed
a separate group.

Within-Cluster/within-Vine Heterogeneity
of Metabolite Abundance Was Affected by
Exposure to SI
To study how the within-cluster heterogeneity of metabolite
content was affected by shading, metabolite abundance values in
samples taken from different orientations of an individual cluster
were normalized to that specific cluster median. A hierarchical
clustering of the samples (i.e., based on cluster orientations)
from the 2015 season (Supplementary Figure 5) was used as
a qualitative assessment of cluster heterogeneity where the
magnitude of change from the cluster median is represented by
the intensity of red and blue colors. Spatial patterns common
to all treatments were evident, as samples from the internal
orientations (i.e., samples 4 and 5) were clustered together and
apart from the external ones (i.e., samples 1 and 8). Among
the primary metabolites (Supplementary Figure 5A), organic
and amino acids were the most heterogeneous compounds in
all treatments, in contrast to the sugars glucose, fructose, and
sucrose that were relatively uniform across cluster orientations.
Finally, a subtle gradual increase in cluster heterogeneity
was visible from the more uniform 60% shaded clusters to
the more heterogeneous exposed clusters for the nitrogenous
compounds putrescine, pyroglutamate, and ethanolamine, and
the compounds trans-caffeate, lumichrome, and erythritol.
Among the different phenylpropanoid groups (Supplementary
Figure 5B), the flavonols were the most heterogeneous;
furthermore, their within-cluster variability clearly increased
with increasing levels of shading.

To further verify this trend, the coefficient of variance
of each metabolite was calculated per vine (i.e., within all
samples originating in a single vine). Values were compared
between treatments, and a significant treatment effect on the
coefficient of variance was found for five out of the total
70 metabolites (Supplementary Figure 6). Among the primary
metabolites, putrescine had a significantly lower coefficient
of variance in the 60% shaded clusters than in the 30%
shaded and fully exposed clusters, showing an improvement
in uniformity with shading. In the phenylpropanoid group,
the glucuronide and glycosylated forms of the flavonols
quercetin and kaempferol had a significantly higher coefficient
of variance in the 60% shaded clusters than in the 30%
shaded and fully exposed clusters, showing an improvement
in cluster uniformity with an increasing degree of sunlight
exposure.

Modulation of Metabolite-Specific
Abundance by Sunlight
The metabolite profiles of berries exposed to a gradient of
SI intensity resulted in a significant linear regression between
33, out of 70, metabolites and the sum of daily SI. Figure 6
shows the regression of 12 metabolites of interest that obtained
R2 > 0.5, highlighting major metabolic shifts in the fruit in
response to SI. Among the primary metabolites (Figure 6A),
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FIGURE 5 | Heatmap of grape pulp primary metabolites (A) and skin phenylpropanoids (B) across eight orientations (see Figure 1) of clusters subjected to three

sun exposure treatments: fully exposed clusters (exposed), clusters shaded with 30% shading nets (30% shaded) and clusters shaded with 60% shading nets (60%

shaded). The heatmap was generated using the mean values of four biological replicates following normalization to the median of each metabolite based on all

samples, and log2 transformation. The Pearson correlation was used for hierarchical clustering of the metabolites.

the two most abundant organic acids, malate and tartaric acid,
were found to have contrasting responses to incoming SI levels,
showing negative and positive regressions with incoming SI
levels, respectively. This caused a significant increase in the ratio
of tartaric acid/malate in fully exposed clusters compared to

shaded ones (Supplementary Figure 7). As with malate, fumarate
and aspartate showed similar negative responses. In contrast,
a large number of nitrogenous compounds, including beta-
alanine, the branch-chained amino acids, valine and leucine,
stress-related proline and GABA, and the biogenic amines,
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FIGURE 6 | Twelve selected metabolites of primary (A), and phenylpropanoid (B) metabolism, showing a significant linear or logarithmic regression with the sum

of daily irradiance across the dataset, obtained from different orientations and locations of grape clusters subjected to three sun exposure treatments: fully exposed

clusters (exposed), clusters shaded with 30% shading nets (30% shaded) and clusters shaded with 60% shading nets (60% shaded). R2 values are based on a

regression of means of four biological replicates. Regression analysis was based on the entire dataset (α < 0.05, n = 4).
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putrescine and ethanolamine, had positive regressions with SI
levels (Figure 6A and Supplementary Table 2).

Among the phenylpropanoids (Figure 6B and Supplementary
Table 2), the flavan-3-ols catechin, epicatechin, epigallocatechin,
and procyanidin B1 had negative regressions with SI levels. A
similar negative trend was found for malvidin anthocyanins,
and acetylated and coumaroylated peonidin, while cyanidin-
glucoside showed a contrasting response, verifying the preceding
results shown in Figure 5B. As expected, the flavonols
showed positive regressions with incoming SI. In addition,
the logarithmic trend that best fitted the response of the
glycosylated kaempferol and quercetin was in accordance with
the higher variability of these metabolites found by within-cluster
hierarchical clustering (Supplementary Figure 5), and calculated
as an increase in the coefficient of variance, observed under
low-light conditions (i.e., 60% shaded clusters) in Supplementary
Figure 6.

Metabolic Coordination in Response to SI
Differed between Exposed and Shaded
Clusters
Correlationmatrices were separately constructed for primary and
phenylpropanoid metabolites based on samples obtained during
the 2015 season, from all cluster orientations and canopy sides of
the same treatment. This allowed a comparison of the metabolite
coordination of exposed vs. 60% shaded clusters in response
to changes in SI (Figures 7A–D). For both metabolite groups,
exposed clusters had a higher number of negative correlations
between metabolites and a lower number of positive correlations
compared to the 60% shaded clusters. The same trend was found
in the phenylpropanoid data obtained in 2014.

Primary metabolites (Figures 7A,B) had 136 negative
correlations with r < −0.5 in exposed clusters compared to 36
in the 60% shaded clusters, and 270 positive correlations with
r > 0.5 compared to 384, respectively. In the exposed clusters,
the amino acids serine, alanine, leucine and valine, the biogenic
amine putrescine, and galactinol were found to negatively
correlate with glucose-6-phophate, glycolate, myo-inositol,
glucopyranose, trans-caffeate, and gluconate, as well as with
malate, fumarate, maleate, aspartate, and threonine. Fumarate,
gluconate and aspartate were also negatively correlated with
tartaric acid, glucose, fructose, GABA, beta-alanine, erythritol,
and raffinose. Tartaric acid and galactarate were negatively
correlated in addition to a strong negative correlation of
proline and ethanolamine with malate. GABA, beta-alanine
and erythritol were strongly positively correlated, as well as
glucose and fructose, fumarate and gluconate and the group
of glucose-6-phosphate, malate, glycolate, maleate, myo-
inositol, and threonine. In the 60% shaded clusters, alanine was
negatively correlated with the associated citrate, malate and
maleate, the amino acids GABA and proline and trans-caffeate.
Pyroglutamate had a strong negative correlation with leucine,
while gluconate was negatively correlated with raffinose. In
contrast, a large group of metabolites, comprising serine,
threonine, aspartate, GABA, myo-inositol, fumarate, phosphoric
acid, maleate, glycolate, citrate, malonate, galactarate, sucrose,

glucopyranose, and erythritol, were positively correlated, in
addition to a strong positive correlation between tartaric acid,
malate and glucose.

The phenylpropanoids (Figures 7C,D) shared 88 negative
correlations with r < −0.5 in exposed clusters compared to 74
in the 60% shaded clusters and 506 positive correlations with
r > 0.5 compared to 610, respectively. In the exposed clusters,
phenylalanine was found to negatively correlate with a large
number of metabolites, including all the annotated flavan-3-ols
and anthocyanins, and to positively correlate with the flavonols
of kaempferol, as well as quercetin conjugates (excluding quer-
3-glr). The latter flavonols, in addition to hydroxy-benzoate,
were negatively correlated with a large number of anthocyanins,
including all malvidin metabolites and the acetylated forms
of peonidin, petunidin and delphinidin, but not with their
glycosylated and coumaroylated forms, nor with any of the
cyanidin metabolites. In contrast, in the 60% shaded clusters,
phenylalanine showed only few, weak negative correlations,
and correlations between flavonols and anthocyanins were
strongly positive. Instead, epicatechin and coumarate hex showed
differing degrees of negative correlations with the entire set
of annotated anthocyanins. Finally, correlations between the
stilbene delta-viniferin and flavonols, which were slightly positive
in the exposed clusters, were strongly negative in the shaded
clusters.

Four networks were created based on the correlation matrices
of the four datasets (Supplementary Figures 8A–D), two
treatments (exposed and 60% shaded clusters), and twometabolic
groups (primary and phenylpropanoid metabolites), across the
different cluster locations and orientations. At r > 0.5 and
r < −0.5, shading slightly increased the number of edges in
the primary metabolite network from 157 to 169, the network
density from 0.28 to 0.301, the clustering coefficient from 0.486
to 0.537 and the average node degree from 9.24 to 9.94. In the
phenylpropanoid networks, shading increased the number of
edges from 303 to 340, the network density from 0.481 to 0.54,
the clustering coefficient from 0.71 to 0.77 and the average node
degree from 16.83 to 18.89. Shading caused an at least 2-fold
increase in the nodal degree of the primary metabolites glycolate,
galactarate, phosphoric acid, maleate, malonate, beta-alanine,
and fructose, and an at least 2-fold decrease in the nodal degree
of the nitrogenous compounds valine, serine, leucine, proline,
putrescine, ethanolamine and pyroglutamate, as well as glycerate
and tartaric acid. In the phenylpropanoids, shading caused an
at least 2-fold increase in the nodal degree of the flavonols
quer-3-glu, rutin, kaemp-3-glu, and kaemp-3-glr, the flavan-3-
ols catechin and Epicatechin, and the stilbene delta-viniferin, and
an at least 2-fold decrease in the nodal degree of phenylalanine,
the hydroxy-cinnamates p-coumarate and coutarate, hydroxy-
benzoate hex, procyanidin B1, vitisin A, and the stilbene piceid.

DISCUSSION

The accumulation levels of the major primary and secondary
metabolites that determine a grape berry’s sensorial profile
vary as a function of the micrometeorological conditions in
its immediate vicinity (Jackson and Lombard, 1993; Downey
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FIGURE 7 | Correlation analysis of grape pulp primary metabolites and skin phenylpropanoids of clusters subjected to two sun exposure treatments:

fully exposed clusters (exposed) and clusters shaded with 60% shading nets (60% shaded). (A) Primary metabolites of exposed, (B) primary metabolites of

60% shaded, (C) phenylpropanoids of exposed, and (D) phenylpropanoids of 60% shaded. The analysis was generated using the Pearson correlation on the mean

values of four biological replicates. The corresponding pie charts show the number of negative correlations (R < −0.5, in red) compared to positive correlations

(R > 0.5, in blue) within the correlation matrices.

et al., 2006). Nevertheless, few studies have investigated how
these conditions vary within a vine and across a single grape
cluster, and how their variation affects the spatial pattern of the
fruit metabolic profile in the vineyard and crop uniformity at
harvest. This study provided a detailed spatial characterization
of metabolite abundance in clusters located on both canopy sides
and subjected to different degrees of sun exposure. The coupling

of this sampling layout with high resolution measurements of
both SI and BST was used to assess the role of sun exposure as a
determining factor in the spatial pattern and variability in grape
clusters’ chemical composition, and to expand current knowledge
regarding compound-specific responses and plasticity to SI.

SI filtering was proven to be an efficient tool to minimize the
within-cluster variability of both incoming irradiance and BST.
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Artificial shading resulted in decreased BST of sunlit berries and
an increased BST of shaded berries. This phenomenon could
not be explained by diffusive light or air temperature, since the
diffusive light intensity was lower in the shaded treatment and
air temperature within the cluster-zone showed no differences
(data not shown). For both SI and BST, differences between
the orientations of the same cluster exceeded those between
treatments, stressing the extent of within-cluster variability and
the range of conditions that can be investigated within a single
grape cluster. Finally, due to the strong correlation between SI
and BST, as previously suggested (Smart and Sinclair, 1976) and
found here, and since SI plays an important role in both the direct
triggering of fruit-located photoreceptors and in fruit thermal
balance, SI was selected as the explanatory variable in this work.

Elevated fruit temperatures have previously been suggested
to increase the metabolic flux toward the TCA cycle and to
modify its regulation, utilizing malate to enhance its anaplerotic
capacity in grapevine berries (Sweetman et al., 2014; Rienth
et al., 2016). The former work related the flux increment to
the enhanced biosynthesis of pyruvate (valine, leucine, serine
and glycine), oxaloacetate (aspartate, threonine and isoleucine)
and 2-oxoglutarate-driven compounds (GABA, proline and
putrescine). Indeed, increased TCA flux and the accumulation
of all or part of the mentioned metabolites have been described
in response to a wide array of abiotic stresses in a number of
plant species, as summarized by Krasensky and Jonak (2012)
and Obata and Fernie (2012). Here, SI conditions (i.e., cluster
location and sun exposure levels) triggered responses in malate
and oxaloacetate-associated compounds (malate, fumarate and
aspartate) that contrasted with those in pyruvate (valine,
leucine and serine) and 2-oxoglutarate-derived (proline, GABA
and putrescine) nitrogenous compounds. Increased SI levels
involve a concomitant increase in tissue temperature, and their
combination is expected to exert oxidative stress (Foyer et al.,
1994). Indeed, redox homeostasis was recently suggested to be
the link between the metabolic modulation of grapevine berries,
found in different leaf-removal studies (Young et al., 2016).
This may explain the increase in the levels of proline, GABA
and the polyamine putrescine, which share a role in mitigating
oxidative stress (Krasensky and Jonak, 2012). Furthermore,
the decrease in TCA cycle metabolites and the increase in
specific amino acids may also have resulted from an arrest in
glycolytic activity coupled with protein degradation, generating
amino acids in a non-biosynthetic manner (Araujo et al., 2011;
Lehmann et al., 2012; Obata and Fernie, 2012). Unfortunately,
current knowledge is lacking regarding the direct effect of SI
on fruit primary metabolism. Hence, such metabolic shifts are
currently attributed to the secondary effects of temperature, UV-
B irradiance and combined stress responses. Future research on
the photo-receptor-mediated modulation of primary metabolism
can greatly contribute to our understanding.

When considering the results of the network analysis, a
higher coordination of the metabolic processes in the central
metabolism was observed in this study in shaded grapes.
Compared to fully exposed grapes, glycolysis, the TCA cycle,
and amino acid metabolism shared a greater number of
correlations, and the relations were mainly positive. The fact

that the acclimation of the exposed and shaded clusters
to perturbations in SI levels resulted in opposite types of
correlations between nitrogen and carbon metabolites points to
a differential coordination, possibly resulting from a comparison
between non-stress (shaded clusters) and stress-related (fully
exposed) responses. As described above, and as shown previously
in potted grapevines and grape cell cultures subjected to short-
term heat treatment (Sweetman et al., 2014; Ayenew et al., 2015),
and berries of vines exposed to water deficit (Hochberg et al.,
2013), a combined stress response could lead to the specific
accumulation of nitrogen metabolites. In contrast, a positive
coordination was maintained between glycolysis sugars and TCA
cycle intermediates in both conditions, emphasizing the tight
co-regulation existing between these two metabolic pathways.

The induction of the flavonoids biosynthesis by fruit-located
photo-receptors was shown in a number of species, including
grapevine, as reviewed in Zoratti et al. (2014). Summarizing a
large number of studies, it can be concluded that while the R2R3
MYB transcription factors family includes both positive and
negative regulators of the flavonoid biosynthesis, light seemed
to strictly induce the expression of positive ones. However, a
more complex interaction is evident, considering the consequent
increase in fruit temperature. As found by a number of studies
(Spayd et al., 2002; Mori et al., 2007; Tarara et al., 2008;
Azuma et al., 2012), above a certain threshold, temperature
causes a reduction in the anthocyanin levels, possibly through
degradation, whether enzymatic or non-enzymatic (Vaknin et al.,
2005; Mori et al., 2007; Chassy et al., 2015). This results in
an expected antagonistic effect of elevated BST and strong
SI conditions, as found in the exposed berries. Under these
assumptions, the response of anthocyanins to increasing SI
levels is expected to reflect the metabolite turnover between
biosynthesis and degradation. The negative linear effect of SI
on the levels of acylated peonidin and malvidin and mal-3-
glu, measured in this study, might not be solely attributed
to the consequent increase in temperature, as the proportion
of acylated anthocyanins was found to increase with rising
temperatures (Downey et al., 2004; Tarara et al., 2008), and
malvidin metabolites were found to be exceptionally stable to
high temperatures in Mori et al. (2007). Instead, considering the
contrasting linear increase in the levels of cyanidin-glucoside,
it is possible that the combined heat and light modulation of
the biosynthesis-related genes’ expression patterns, as found in
Azuma et al. (2012), was involved in the preferential biosynthesis
of upstream metabolites as was observed for cyanidin-glucoside.
This may explain the overall positive net turnover of cyanidin-
glucoside, while downstream metabolites, such as acylated
peonidin and malvidin, showed a clear negative result.

The induction of flavonol accumulation by increasing SI
levels, measured here, is in accordance with a large number of
studies regarding light-induced flavonol biosynthesis in grape
berries (Czemmel et al., 2009; Matus et al., 2009; Carbonell-
Bejerano et al., 2014; Liu et al., 2015) and overall accumulation
(Haselgrove et al., 2000; Downey et al., 2004; Cortell and
Kennedy, 2006; Pereira et al., 2006; Matus et al., 2009; Azuma
et al., 2012), yet the regression between SI and flavonol-glucoside
accumulation in grape skins has been found so far to be purely
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linear (Haselgrove et al., 2000). The extensive gradient and
relatively high SI intensity present in our study may be the
cause for this discrepancy, yet whether this trend is due to a
stagnation in biosynthesis or to an increase in temperature-
driven degradation remains unclear.

The accumulation of monomeric and condensed Flavan-3-
ols in grape skin peaks around veraison, followed by a decrease
during the final stages of ripening (Downey et al., 2004; Fujita
et al., 2007; Cohen et al., 2012). Increased SI exposure was found
to increase flavan-3-ols levels at veraison, yet, since sunlit berries
showed a faster decline during ripening, differences were no
longer evident at harvest (Downey et al., 2004; Fujita et al., 2007).
In this study, conducted between veraison and harvest, the linear
negative effect of SI on the levels of flavan-3-ols metabolites was
in accordance with the cited literature. A possible explanation
could be a delay in the typical post-veraison decrease in the
expression of the biosynthesis-related genes LAR and ANR under
shading, as found in Fujita et al. (2007).

The stilbenes, which play a role in antifungal activity
(Langcake, 1981; Pont and Pezet, 1990; Pezet et al., 2004)
and offer potential health promoting effects (Bradamante et al.,
2004; Baur et al., 2006; Gresele et al., 2011), accumulate in
grapevine tissues in response to biotic and abiotic stresses, such as
mold development, wounding, and UV-C irradiation treatments
(Fritzemeier and Kindl, 1981; Bais et al., 2000; Vannozzi et al.,
2012). Attempts to understand the impact of environmental
factors on the accumulation of stilbenes in grape skin tissues have
yielded confounding results, possibly owing to the importance of
genetic, developmental, and pedological factors (Versari et al.,
2001; Bavaresco et al., 2007, 2008, 2012; Berli et al., 2008;
Carbonell-Bejerano et al., 2014; Degu et al., 2016). In this study,
no significant correlation was found between SI and the levels
of the stilbenes piceid and delta-viniferin. However, their levels
were significantly higher in the exposed, compared to the shaded,
clusters that were positioned on the west side of the canopy but
not the east, an opposite trend to that of the major anthocyanins
Mal-3-acet and Mal-3-coum. Considering the UV-B induction
of stilbene synthase (STS) expression and stilbene accumulation
(Versari et al., 2001; Carbonell-Bejerano et al., 2014), and the fact
that chalcone synthase and STS compete for the same substrate
(Jeandet et al., 1995; Vannozzi et al., 2012), the measured increase
in stilbene accumulation in the exposed, compared to the shaded,
berries may have depended on a combination of increased
STS expression and higher substrate availability, provided by a
possible inhibition of anthocyanin biosynthesis.

The differences in metabolic coordination between the
exposed and shaded clusters in phenylpropanoid metabolism
are intriguing. Exposing clusters to high SI generated a strong
negative association between the precursor of the polyphenol
pathway, phenylalanine, and the anthocyanins, which was not
evident in the shaded clusters. In addition, in the exposed
clusters, anthocyanins were more strongly correlated with narin-
chalc-glu, but less with flavonols, and the correlation between
flavonols and stilbenes shifted from highly negative (shaded)
to partially positive (exposed). Anthocyanin accumulation in
grape-tissue culture was recently shown to be decoupled from
phenylalanine under conditions in which biosynthesis-related

gene expression was down-regulated (Manela et al., 2015). As
a result, the tissue accumulated higher levels of flavonols and
stilbenes. It is possible that a similar phenomenon occurred in
the fully exposed clusters, as biosynthetic gene expression may
have been hampered under conditions that included elevated
temperatures (Azuma et al., 2012). Taken together, these lines of
evidence are in support of a repartitioning of carbon precursors
of the polyphenol pathway from anthocyanin biosynthesis to that
of stilbenes and flavonols. This hypothesis should be confirmed in
future studies by implementing stable isotopes based flux analysis
in detached berries.

Our results revealed that shifting the intensity and direction of
solar irradiance (SI) significantly modulated the spatial patterns
of the accumulation of organic and amino acids, the main sugars
glucose and fructose, and the majority of skin phenylpropanoid
metabolites, across the grape-cluster, while hydroxy-cinnamates
were not affected. In addition, filtering the irradiance intensity
significantly affected the levels of 24 metabolites across the spatial
locations, including organic and amino acids, flavonols, flavan-
3-ols, anthocyanins and stilbenes. The within-cluster spatial
heterogeneity was characterized by large variations in the flavonol
levels, found to be significantly affected by sunlight exposure.
Overall, the effect of SI conditions on skin phenylpropanoids was
comprehensive, while it was found to be more specific in the case
of pulp primary metabolites. Together, these findings suggest that
sunlight plays a major role in shaping the spatial accumulation of
quality-related compounds within a single grape cluster.

The calculated fold changes in metabolite accumulation,
across the spatial dataset presented here (Supplementary Table 3),
summarizes the compound plasticity of 70 primary and
secondary metabolites to light and temperature perturbations,
revealing the potential modulating effect of sunlight regulation
on fruit composition. Considering that a single layer of grapevine
leaves absorbs at least 60–70% of the visible wavelengths
(Schultz, 1996), the gradient of SI intensities and metabolite fold
change values found in this study may represent, yet possibly
underestimate, the range found within a single, non-defoliated,
commercial vine.

CONCLUSIONS

Grape berries’ acclimation to their surrounding environment
involves local metabolic shifts, which affect their chemical
composition and quality at harvest. Sunlight exposure triggers
a complex response through both irradiance-mediated signaling
and accumulated heat. Here, we show that this metabolic
acclimation to sunlight drives the spatial variability of chemical
composition between berries on a single cluster, and that it
involves the interaction and modulation of partitioning between
several biochemical processes in both pulp and skin. These
include the accumulation of pyruvate and 2-oxoglutarate-derived
nitrogenous compounds, at the expense of malate, fumarate and
aspartate in the pulp, and the accumulation of phenylalanine,
narin-chalc-glu, cyan-3-glu and the flavonols, accompanied with
a decrease in flavan-3-ols, hydroxy-cinnamates and malvidin
anthocyanins, in the skin. Figure 8 illustrates the main findings
of the study.
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FIGURE 8 | An illustration summarizing the main findings of the study. Both sides of the canopy refer to the same cluster orientations (mirror image), the left

side displays the results obtained for skin phenylpropanoids, and the right side for pulp primary metabolites. The trapezoid heights represent metabolite abundance

and its pattern of change across the cluster, from internal to external orientations, corresponding with daily incoming SI. Yellow trapezoids represent fully exposed

clusters, while mesh trapezoids represent 60% shaded clusters.

This study characterized, yet did not isolate, the
accompanying climatic components, such as temperature,
that are known to influence fruit metabolic processes. Therefore,
our findings may apply to a defined climate, namely warm and
arid to semi-arid regions. The existing knowledge gap regarding
the intriguing interaction between (SI) and berry temperature, as
well as the contribution of temperature-driven processes to the
overall fruit metabolic response, may hinder the extrapolation
of our findings to systems experiencing different climatic
conditions.

At the practical level, (SI) is the most easily and readily
controlled climatic factor. In the context of climate
change, these results will aid in designing a knowledge-
based use of sunlight regulation as tool to improve grape
composition, under the conditions that are expected to
prevail in an ever-expanding number of commercial vineyards
worldwide.
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