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This perspective paper proposes that endogenous apoplastic fructans in fructan
accumulating plants, released after stress-mediated cellular leakage, or increased by
exogenous application, can act as damage-associated molecular patterns (DAMPs),
priming plant innate immunity through ancient receptors and defense pathways that
most probably evolved to react on microbial fructans acting as microbe-associated
molecular patterns (MAMPs). The proposed model is placed in an evolutionary
perspective. How this type of DAMP signaling may contribute to cross-tolerance and
multistress resistance effects in plants is discussed. Besides apoplastic ATP, NAD
and fructans, apoplastic polyamines, secondary metabolites, and melatonin may be
considered potential players in DAMP-mediated stress signaling. It is proposed that
mixtures of DAMP priming formulations hold great promise as natural and sustainable
alternatives for toxic agrochemicals.
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INTRODUCTION: DAMP SIGNALING IN PLANTS AND IN
ANIMALS

Throughout their lifecycle, plants are prone to different sorts of stresses, many of which
cause cellular rupture. In case of biotic stress, the recognition of molecular patterns from
microbes (microbe-associated molecular patterns, MAMPs) or herbivores (herbivore-associated
molecular patterns, HAMPs) is well-known, especially for MAMPs. However, more recently
the importance of damaged-self recognition has come to light. The manuscript by Duran-
Flores and Heil (2016) highlights the significance of DAMPs (damage-associated molecular
patterns) in response to cellular disruption. The role of DAMPs in animals has been proposed
as the so-called danger model (Matzinger, 1994). Different molecules were proposed as DAMPs,
including extracellular ATP and mitochondrial DNA (Krysko et al., 2011; Crišan et al., 2016).
Recently, Martin (2016) proposed members of the IL-1 (interleukin 1) family of cytokines as
the canonical DAMPs in animals, indicating how well-studied molecular structures can have a
yet unknown function as DAMPs. However, research on DAMP signaling in plants is still in
its infancy, although DAMP-mediated signaling was proposed as one of the central players in

Abbreviations: ATP, adenosine triphosphate; BFO, burdock fructooligosaccharides; DAMP, damage-associated molecular
pattern; DORN1, does not respond to nucleotides 1; DP, degree of polymerization; FEH, fructan exohydrolase; FOS,
fructooligosaccharides; HAMP, herbivore-associated molecular pattern; IL-1, interleukin 1; LPS, lipo-oligosaccharides;
MAMP, microbe-associated molecular pattern; mFOS, microbial fructooligosaccharides; NAD, nicotinamide adenine
dinucleotide; PA, polyamine; pFOS, plant fructooligosaccharides; PM, plasma membrane; ROS, reactive oxygen species;
SNF1, sucrose non-fermenting 1; SnRK1, SNF1-related kinase 1; Suc, sucrose; TLR, toll-like receptor.
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plant defense priming (Martinez-Medina et al., 2016). As of late,
Heil (2012), Heil and Land (2014), Heil et al. (2016) have put the
debate on DAMPs into the spotlight by discussing evolutionary
benefits as well as features ascribable to DAMPs.

SUGARS AS DAMPs: THE CASE OF
PLANT FRUCTANS

In their latest manuscript, Duran-Flores and Heil (2016) include
sucrose (Suc), a central transport and signaling sugar in plants
(Smeekens and Hellmann, 2014) for the first time as a DAMP
in their scheme, associated with plant defense responses. The
recently launched “sweet immunity” concept attempts to explain
the role of (sweet) small sugars, and by extension, less sweet
carbohydrates with a higher degree of polymerization (DP)
in plant innate immunity responses. Considering biotic stress
responses, small metabolic sugars are not only a possible food
source for the pathogen, but can act as signaling molecules to
induce plant defense response (Bolouri Moghaddam and Van den
Ende, 2012, 2013), with a central role for the SnRK1 energy sensor
(Van den Ende and El-Esawe, 2014; Hulsmans et al., 2016).

Fructans are polysaccharides synthesized in the vacuole of 15%
of flowering species (Van den Ende et al., 2004). Fructose moieties
are added to Suc by various fructosyltransferases. Different types
of fructans are found in plants, depending on the linkage type and
branching, including inulins, levans, graminans, and neokestose-
type inulins and levans as well as complex, mixed-type fructans
from Agave sp., the agavins (Mancilla-Margalli and López, 2006;
Valluru and Van den Ende, 2008; Van den Ende, 2013).

Here, we propose a possible role of fructans as DAMPs
in fructan accumulating plants. Livingston and Henson (1998)
detected an increase in apoplastic fructan content after subzero
acclimation in oat (Avena sativa). Their presence in the apoplastic
environment after a stress event may suggest a possible role as
DAMPs. Recently, it was found that short inulin-type fructans
(fructooligosaccharides, FOS) from Arctium lappa or burdock
(burdock fructooligosaccharides, BFO) prime plant defenses in
different pathosystems. (Wang et al., 2009; Zhang et al., 2009; Sun
et al., 2013). Priming, a process believed to occur at the expense
of minimal amounts of ATP, brings plants in a “ready-to-go”
status, preparing them for a faster and stronger response to future
(a)biotic stresses (Conrath, 2015).

BACTERIAL FRUCTANS ACTING AS
MAMPs IN PLANTS?

Although, the above-mentioned plant fructan priming function
may involve DAMP signaling in fructan accumulating plants,
it is important to realize that fructans are also present in
bacteria and fungi. While levan-type fructans are widespread
in microorganisms, inulin-type fructans are only found in
certain genera of gram-positive bacteria (Toksoy et al., 2016
and references therein). Genera such as Lactobacillus and
Streptococcus produce levans extracellularly. In Lactobacillus,
production of either levans or inulins has been found in related

strains (Ozimek et al., 2006; Anwar et al., 2010). Fructans increase
virulence of pathogenic species through mechanisms such as
biofilm formation and Ca2+-chelation to suppress host defenses,
as reported in Erwinia amylovora (Koczan et al., 2009; Ordax
et al., 2010; Ichinose et al., 2013).

Importantly, the DP of these bacterial fructans is much higher
than those occurring in plant fructans (Toksoy et al., 2016). Thus,
bacterial fructans are likely immobile within the plant cell wall.
More likely, FOS derived from their (partial) hydrolysis by plant
apoplastic fructan exohydrolases (FEHs) (Van den Ende et al.,
2004) may readily diffuse through the plant apoplast to trigger
potential defense-related receptors present in the plant plasma
membrane (PM). As such, bacterial FOS may be recognized as
MAMPs in plants, sensed by so far unidentified receptors.

A POSSIBLE COMPARISON WITH
FRUCTAN-MEDIATED IMMUNE
SIGNALING IN ANIMALS?

Referring to the situation in animals and humans, inulin-type
fructans, besides indirectly activating microorganisms in the
colon, are believed to be directly recognized by host receptors
in the gut system, such as toll-like receptors 2 and 4 (TLR2
and TLR4) (Vogt et al., 2013; Peshev and Van den Ende, 2014;
Franco-Robles and López, 2015). This primes innate immunity
and contributes to better health. Fructans interact with a lower
affinity with TLR2 and TLR4 as compared to bacterial lipo-
oligosaccharides (LPS) (Takeuchi et al., 1999).

So far, most research is focused on inulin-type fructans
derived from chicory (Cichorium intybus), but other types of
plant fructans such as agavins (Agave tequilana, López-Velázquez
et al., 2015) and graminans (cereals, Verspreet et al., 2015) are
under study. Dietary fructans are degraded by fructan-degrading
enzymes from microbes in the colon, since animals lack fructan-
degrading enzymes (Capitán-Cañadas et al., 2014; Peshev and
Van den Ende, 2014). Dietary supplements of bacterial levans
are also known to improve growth and defense responses in
different animal species (Li and Kim, 2013; Huang et al., 2015).
Anti-tumor and immunomodulatory effects have been ascribed
to some bacterial levans (Yoo et al., 2004; Xu et al., 2006).
Since animals and humans lack enzymes that can biosynthesize
fructans, fructans cannot act as DAMPs. It can be speculated
that TLR2 and 4 may both recognize bacterial and plant-derived
fructans, although this remains to be proven. Bacterial fructans
can be considered as MAMPs in this case. Since TLR2 and TLR4
homologs are absent in plant genomes, it seems that other, so far
unidentified fructan receptors were recruited in the evolutionary
lineage leading to plants.

FRUCTAN: MAMPs, DAMPs, OR BOTH?

Both MAMPs and DAMPs are currently accepted as immune
response inducers (Cook et al., 2015). So are fructans MAMPs,
DAMPs, or both? The model that we propose suggests both,
with the speculation that an evolutionary event resulted in a

Frontiers in Plant Science | www.frontiersin.org 2 January 2017 | Volume 7 | Article 2061

http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive


fpls-07-02061 January 9, 2017 Time: 11:30 # 3

Versluys et al. Fructans as DAMPs in Plants

FIGURE 1 | Role of fructans as MAMPs/DAMPs. Pathogens exert evolutionary pressure on host animals/plants. In case of fructan producing pathogens, these
mFOS can function as a virulence factor. However, during biotic interactions, they may be recognized as MAMPs by the host. Selection will favor hosts that
recognize mFOS through specific receptors that induce immune responses. In animals, microbial fructooligosaccharides (mFOS) from fructan producing pathogens
are recognized by TLRs, thereby activating innate immune responses. A similar mechanism may be present in plants, where mFOS from fructan producing
phytopathogens bind to currently unknown receptors to induce defense responses. Besides a MAMP recognition mechanism, fructans may also be involved in
damaged-self recognition in certain plant species. 15% of flowering species synthesize and store fructans (plant fructooligosaccharides or pFOS) in the vacuole. In
these plants, pFOS can be perceived as DAMPs by the unknown fructan receptors involved in MAMP recognition. Cellular rupture after (a)biotic stress will leak the
stored pFOS into the apoplastic environment, triggering neighboring cells to upregulate immune responses after pFOS recognition by these receptors. As such, mild
abiotic stresses may enhance disease resistance against future pathogen attack. DAMP, damage-associated molecular pattern; MAMP, microbe-associated
molecular pattern; mFOS, microbial fructooligosaccharides; pFOS, plant fructooligosaccharides; TLR, toll-like receptor.

switch of fructan perception from MAMP to DAMP in fructan
accumulating plants (Figure 1). In animals, the recognition of
microbial fructans by PM-localized TLRs has been documented
(see above), thus activating innate immunity. The possibility
exists that the same holds true in plants, where shorter microbial
fructooligosaccharides (mFOS) diffuse through the cell wall
acting as MAMPs to activate immune responses. However, a
receptor for fructans has not been described so far. Fructans are
stored in the vacuole of fructan-accumulating plants. Within the
damaged-self context, lysed cells releasing their fructan content
may lead to partial fructan degradation in the apoplast. The
derived plant fructooligosaccharides (pFOS) are expected to
be more mobile, diffusing to neighboring cells where they are
possibly sensed by ancient receptors (putatively localized in the
PM), that are actually involved in fructan MAMP recognition
(Figure 1).

FRUCTANS, DAMP SIGNALING, AND
CROSS-TOLERANCE

Within such framework (Figure 1), mild abiotic stresses may
positively influence disease tolerance. If only some cells are
damaged, the released mixture of DAMPs (including fructans
and other compounds, see below) can prime the surrounding
cells, hence priming their native immune system, thus increasing
tolerance to a future pathogenic attack. The process in which
resistance toward a specific stress is achieved through exposure
to another (milder form of) particular stress is known as
cross-tolerance. After exposure to a first stress stimulus, the plant
is in a primed or hardened state, allowing it to respond to future

stresses in a faster and stronger way (Rejeb et al., 2014; Savvides
et al., 2016). Some examples can be found in the literature
where abiotic stress exposure leads to increased biotic stress
resistance. In Arabidopsis thaliana, ozone exposure triggers an
induced resistance, associated with the expression of numerous
defense-related genes, while drought stress increases resistance
to pathogen infection through ROS in Nicotiana benthamiana
(Sharma et al., 1996; Ramegowda et al., 2013). Thus, the
damaged-self hypothesis and sweet immunity model predict an
induction of plant defenses under mild stress conditions. During
severe drought, however, Ramegowda and Senthil-Kumar (2015)
proposed that massive cellular leakage of nutrients in the apoplast
promotes infection. One possible scenario is that promotion of
microbial growth by sugars in excess (or any and other nutrients)
overrules signaling effects that could lead to increased plant
protection.

In particular, the effects of cold stress on disease resistance
have been well-described. Gene expression assays in Vitis
amurensis indicate an upregulation of genes involved in innate
immune system responses after cold acclimation (Wu et al.,
2014; Moyer et al., 2015). Most research has focused on cold
hardening and subzero acclimation of fructan accumulating
cereals. In wheat (Triticum aestivum), fructan accumulates in
response to low temperatures (Meguro-Maoka and Yoshida,
2016) through an increase in enzymatic activity of enzymes
involved in fructan biosynthesis (Kawakami and Yoshida, 2002,
2005). Interestingly, the DP of these fructans increases from
autumn to winter. Subzero acclimated plants have high contents
of graminan-type fructans, characterized by branched structures
(Yoshida and Kawakami, 2013). This process is most likely
associated with increased apoplastic fructan levels, as observed
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in subzero acclimated oat (Livingston et al., 1993; Livingston
and Henson, 1998), and correlates well with increased tolerance
against snow mold infections. Snow molds are fungi with the
ability to infect plants under snow at around 0◦C (Gaudet and
Laroche, 1997). Resistant wheat cultivars display higher fructan
levels toward early winter and lower fructan degradation under
snow in comparison to susceptible cultivars (Yoshida et al., 1998;
Iriki et al., 2005; Nishio et al., 2008; Kawakami and Yoshida,
2012).

DAMP MIXTURES FOR MULTISTRESS
RESISTANCE

Designating fructans as damaged-self signaling molecules in
fructan accumulating plants may not be so far-fetched. If
the receptors involved are evolutionarily conserved, fructan
accumulating plants may sense endogenous fructans as DAMPs,
and bacterial fructans as MAMPs. A signaling function for less
common sugars, like we propose here for fructans, has been
described before. In gentians, gentiobiose appears to be involved
in signaling budbreak in overwintering buds (Takahashi et al.,
2014). Nevertheless, although we propose fructans as DAMPs
in fructan accumulating plants, we must keep in mind that
these are only one of many (possible) DAMPs that are released
into the apoplast after cellular rupture. Thus, their contribution
to priming innate immunity may be limited. Likely, a mixture
of DAMPs rather than one released compound will induce an
efficient priming.

What are other powerful DAMPs putatively involved in
defense priming? Extracellular ATP is a central signaling
molecule in plant stress responses, sensed by the PM receptor
DORN1 (Cao et al., 2014). Similarly, extracellular NAD was
proposed to act as a DAMP in Arabidopsis (Zhang and Mou,
2009; Pétriacq et al., 2016). Polyamines (PAs) such as spermine,
spermidine, and putrescine are generally found in plant cells
(Hussain et al., 2011; Minocha et al., 2014; Pál et al., 2015)
and exogenous application revealed good priming potential (Li
et al., 2015; Nahar et al., 2015), suggesting that they may
be considered to be candidate DAMPs as well. Accordingly,
mild salt stress increases apoplastic PA levels (Moschou et al.,
2008). It is well-known that apoplastic PAs play important roles
in plant-pathogen interactions, leading to significant changes
in host susceptibility to different kinds of pathogens (Marina
et al., 2008). Although, these have been explained by hydrogen
peroxide-mediated signaling originating from PA oxidation in
the apoplast, the view that apoplastic PAs may directly trigger
immune receptors in the PM involved in DAMP signaling should
be reconsidered.

Similarly, secondary metabolites such as naringenin,
quercetin, and rutin may be considered as candidate DAMPs as
well. Indeed, exogenous naringenin treatment led to increased
drought tolerance (Pourcel et al., 2013), while quercetin and rutin
priming led to increased resistance against bacterial pathogens
in Arabidopsis (Jia et al., 2010; Yang et al., 2016). A screening of
an array of mutants revealed that flavonoids are determinants of
freezing tolerance and cold acclimation in Arabidopsis (Schulz

et al., 2016). Taken all together, this suggests that some secondary
metabolites can be used as signaling compounds to counteract
both abiotic and biotic stresses.

Also melatonin, an indoleamine, has a strong priming
potential when applied exogenously (Shi et al., 2014).
Furthermore, a link between melatonin and sugar metabolism
and signaling has been suggested in the context of biotic
stress (Zhao et al., 2015). Recently, Jiao et al. (2016) isolated
endophytic bacterial strains that live in the plant apoplast and
secrete melatonin. Colonization by one such strain protected
plants from adverse effects of salt or drought stress through
upregulation of intracellular melatonin biosynthesis in the
host plant. Thus, apoplastic melatonin levels somehow interact
with intracellular melatonin levels, and such mechanisms may
be tightly interlinked to damage-self recognition processes
originating in the apoplastic continuum under various stresses.

Recently, Bruce et al. (2016) and Savvides et al. (2016) discuss
the possibilities of chemical priming on multistress resistance, a
popular topic in current research focusing on developing natural
and sustainable alternatives for toxic agrochemicals. It is likely,
that mixtures of priming agents can lead to synergistic effects and
increased multistress tolerance by reflecting to what occurs when
a complex mixture of intracellular metabolites is released in the
apoplast after cellular rupture. Therefore, future research should
focus on the priming efficacy of cocktails of the above-mentioned
compounds in combination with different types of fructans from
plant and microbial origin.

FRUCTANS AND GLUCANS: A
COMPARISON

The view that fructans act as MAMPs and/or DAMPs may also
hold true for other classes of polysaccharides such as β-glucans,
containing glucose- instead of fructose moieties. β-1,3- and β-1,6-
glucans represent a significant part of fungal cell walls (Dalonso
et al., 2015). β-1,3- and β-1,4-glucans are also present in the
cell walls of most plants of the Poaceae and in Equisetum, as
well as in bryophytes. The highest abundance is found in cereals
(Gibeaut et al., 2005; Burton and Fincher, 2009). The recognition
of fungal β-glucans by the Dectin-1 receptor in animals was
investigated thoroughly. This receptor has been discovered by
Brown and Gordon (2001) and downstream responses have
been characterized (Brown, 2006; Plato et al., 2015). Recently,
Sahasrabudhe et al. (2016a) reported that pre-digestion of oat
β-glucan with an endo-glucanase enhances the activation state of
the Dectin-1 receptor in human dendritic cells. This observation
fits well with the idea that shorter DP glucans, as well as fructans,
may be considered as priming agents boosting native immunity
both in animals and in plants.

In plants, only a few examples of β-glucan recognition are
present. In soybean (Glycine max) it has been shown that
a β-glucan binding protein can recognize β-glucans of the
oomycete Phytophthora megasperma (Fliegmann et al., 2004).
In a recent manuscript, analysis of key enzymes in β-1,6-
glucan biosynthesis in Colletotrichum graminicola revealed a
downregulation of this biosynthesis pathway in biotrophic
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hyphae in order to attenuate immune responses of the host
(Oliveira-Garcia and Deising, 2016). Besides their possible
function as MAMPs, these β-glucans could also function as
DAMPs in cereals.

Other examples include arabinoxylans, which increase
phagocytosis in macrophages and induce anti-inflammatory
effects (Ghoneum and Matsuura, 2004; Kang et al., 2016).
Accordingly, arabinoxylan activates Dectin-1 and modulates
particulate β-glucan-induced Dectin-1 activation (Sahasrabudhe
et al., 2016b).

CONCLUSION

While research on DAMP signaling in plants is still in an early
phase, this perspective paper proposes possibilities for new and
inventive experiments. The potential role of microbial fructans
as MAMP in plants and plant fructans as DAMP in fructan
accumulating plants is explained and compared to the case
of glucans. While microbial fructan perception in animals has
been characterized, the situation in plants is still unclear and

identification of a fructan receptor requires further investigation.
We propose that through such evolutionary ancient mechanism,
plant-derived fructans, as potential DAMPs, may prime the
immune system of fructan accumulating plants. Within this
framework, the role of DAMP signaling in multistress resistance
is discussed and other potential DAMPs, such as PAs and
secondary metabolites, may be important players in (a)biotic
stress tolerance as well. The potential use of mixtures of DAMPs
for priming requires further investigation and may provide
promising alternatives for toxic agrochemicals.
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