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Cereal crop species including bread wheat (Triticum aestivum L.), barley (Hordeum
vulgare L.), rice (Oryza sativa L.), and maize (Zea mays L.) provide the bulk of human
nutrition and agricultural products for industrial use. These four cereals are central
to meet future demands of food supply for an increasing world population under
a changing climate. A prerequisite for cereal crop production is the transition from
vegetative to reproductive and grain-filling phases starting with flower initiation, a key
developmental switch tightly regulated in all flowering plants. Although studies in the
dicotyledonous model plant Arabidopsis thaliana build the foundations of our current
understanding of plant phenology genes and regulation, the availability of genome
assemblies with high-confidence sequences for rice, maize, and more recently bread
wheat and barley, now allow the identification of phenology-associated gene orthologs in
monocots. Together with recent advances in next-generation sequencing technologies,
QTL analysis, mutagenesis, complementation analysis, and RNA interference, many
phenology genes have been functionally characterized in cereal crops and conserved
as well as functionally divergent genes involved in flowering were found. Epigenetic and
other molecular regulatory mechanisms that respond to environmental and endogenous
triggers create an enormous plasticity in flowering behavior among cereal crops to
ensure flowering is only induced under optimal conditions. In this review, we provide
a summary of recent discoveries of flowering time regulators with an emphasis on four
cereal crop species (bread wheat, barley, rice, and maize), in particular, crop-specific
regulatory mechanisms and genes. In addition, pleiotropic effects on agronomically
important traits such as grain yield, impact on adaptation to new growing environments
and conditions, genetic sequence-based selection and targeted manipulation of
phenology genes, as well as crop growth simulation models for predictive crop breeding,
are discussed.

Keywords: flowering time, phenology, photoperiod, yield, barley, wheat, maize, rice

INTRODUCTION

An essential foundation of agriculture was the domestication of grasses from the Poaceae
family about 15,000 years ago in the Fertile Crescent of the Eastern Mediterranean region (Gill
et al., 2004). Since then, grasses have diversified across a range of ecological niches and are
now cultivated in each of the different world climates. Barley (Hordeum vulgare L.) and rye
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(Secale cereale L.) are adapted to cooler temperate regions, wheat
(Triticum aestivum L.) and oats (Avena sativa L.) to temperate
regions, and rice (Oryza sativa L.) and maize (Zea mays L.) to
tropical and warmer temperate zones. Wheat, rice, and maize
provide about two-thirds of all energy in human diets, whereas
barley grain contributes to the human diet indirectly as animal
feed, and directly as a substrate for malting, brewing, and
distilling industries (Cassman, 1999). These four cereal crops are
central in current efforts to increase arable crop yield and other
agronomic outputs in an attempt to secure future food supply
security for an increasing world population under a changing
climate (Rötter et al., 2015).

Flowering sets the switch from vegetative to reproductive
development. The genetic regulation of flowering time is more
sensitive to environmental cues than many other agriculturally
relevant traits. A crucial phenological developmental step of
crops is the floral initiation and timing of flowering, also known
as heading or ear emergence date and defined as first anther bust
on spikes in cereals. Heading date and photoperiod sensitivity are
the fundamental traits that determine adaptation to geographic
environments and different cropping systems, and are controlled
by an endogenous genetic network as well as environmental cues
including day length (photoperiod) and temperature (Andres and
Coupland, 2012). The optimal timing of this transition directly
affects grain yield as it needs to occur during specific seasons to
avoid abiotic (such as cold, frost, heat, and drought) and biotic
stresses (including fungi, bacteria, viruses, nematodes, or insects).

Considerable differences exist between cereals grown in
temperate and tropical climates, as these climates have different
seasons best suited for reproduction. In tropical regions, the
majority of plants flower when the days become shorter during
the cooler seasons of the year to avoid hot temperatures during
summer and are described as short-day (SD) plants. By contrast,
among many temperate species, flower development is controlled
in response to changes in both photoperiod and prolonged
exposure to cold temperature (vernalization). This ensures
that autumn-sown crops flower during spring when growth
conditions are more favorable than during winter (Greenup et al.,
2009). Floral induction is delayed under short day conditions
(8 h of light), and enhanced under long day conditions (16 h of
light); therefore, many temperate species are described as long-
day (LD) plants. Compared to autumn-sown winter cultivars,
spring cultivars are sensitive to low temperatures, insensitive to
photoperiod, and do not require vernalization (von Zitzewitz
et al., 2005). In day-neutral plants, such as temperate maize
(Zea mays ssp mays) cultivars, there is no specific photoperiod
requirement as flowering is promoted almost exclusively through
the coordinated action of autonomous regulatory pathway genes
(Mascheretti et al., 2015).

The topic of this review is to summarize, compare and
contrast the current understanding of flowering time regulation
in the four major cereal crop species wheat, barley, rice, and
maize. We will highlight how different flowering time regulatory
mechanisms have evolved between SD, LD, and day-neutral
plants and how evidence is accumulating that miRNA and
epigenetic regulation play a major role in controlling phenology
gene action in cereals. We will describe how genetic variation

in flowering time genes paved the way for adaptation to new
growing environments. A detailed understanding of flowering
mechanisms is the cornerstone of future developments for
genetic sequence-based selection and targeted manipulation of
phenology genes. In the final part of this review, we will discuss
how this knowledge can inform crop simulation models as well as
gene-based models developed to predict phenology, the current
status of development and use of these models, and how their
findings can translate into an improved yield on the field.

A BRIEF HISTORY OF FLOWERING TIME

Like the cereal crops wheat and barley, Arabidopsis is an LD
plant sensitive to vernalization and photoperiod and adapted to
temperate climates (Greenup et al., 2009). With some marked
exceptions, genes and proteins with analogous function and
similar molecular mechanisms found in Arabidopsis also control
seasonal flowering responses in temperate grasses. These genes
and proteins are part of complex signaling pathways that revolve
around a set of main flowering time integrator genes that
react to endogenous triggers including genes belonging to the
circadian clock, autonomous, age, and gibberellin pathways,
as well as environmental signals such as ambient temperature
and photoperiod. Since recent reviews give comprehensive
descriptions of flowering genes and mechanisms in Arabidopsis,
the model plant for flowering time control (Song J. et al., 2013;
Ó’Maoiléidigh et al., 2014; Johansson and Staiger, 2015; Song
et al., 2015), only a brief overview of the main integrator genes is
given in this section. This will provide a basis for a more detailed
discussion of gene networks controlling cereal phenology in
bread wheat, barley, rice, and maize, particularly for components
absent in Arabidopsis.

FLOWERING LOCUS T: Uncovering the
Identity of Florigen
For nearly 80 years, researchers were trying to characterize
the elusive florigen, a hormone-like substance believed to be
responsible for promotion or stimulation of flowering in plants.
The term was first coined by Russian scientist Chailakhyan
(1936) while experimenting on phototropism. Early grafting
experiments demonstrated that this floral signal is produced in
the leaves, and transferred to the shoot apical meristem (SAM)
through the phloem (Zeevaart, 1976). However, after these initial
successes, the exact identity of florigen remained unknown until
the beginning of the 21st century when the first plant genome
sequences were made publicly available and provided the genetic
tools to investigate flowering time in more detail. In 2005, three
independent groups from Germany (Wigge et al., 2005), Japan
(Abe et al., 2005), and Sweden (Huang et al., 2005) reported
having identified a gene that controls flowering time named
FLOWERING LOCUS T (AtFT). Published in the journal Science,
Huang et al. (2005) reported AtFT mRNA as the transmissible
signal required for flowering. However, the journal article was
retracted after 2 years (Bohlenius et al., 2007) as the results
could neither be supported by other research groups (Lifschitz
et al., 2006) nor could be replicated in their laboratory (Huang
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et al., 2005). Many more genetic components of flowering time
were identified in the following years (Conti and Bradley, 2007;
Sawa et al., 2007), but none provided evidence of how FT is
transported from leaves to the shoot apex. In 2007, studies in
Arabidopsis (Corbesier et al., 2007) and rice (Tamaki et al., 2007)
independently reported that the FT protein itself is the mobile
flowering signal, supporting the previous results found in tomato
(Lifschitz et al., 2006).

According to the current status of research in Arabidopsis and
rice, FT protein travels via the phloem to the SAM, where it binds
to bZIP transcription factors FLOWERING LOCUS D (AtFD)
and FD PARALOG (FDP) (Abe et al., 2005; Wigge et al., 2005)
(Figure 1). This activates the expression of several floral meristem
identity genes that induce the transition toward reproductive
development. A central floral meristem identity gene is LEAFY
(AtLFY), which is activated by transcription factors AGAMOUS-
LIKE24 (AtAGL24), SUPPRESSOR OF OVEREXPRESSION OF
CONSTANS1 (AtSOC1), and SHORT VEGETATIVE PHASE
(AtSVP). AGL24 and SVP were shown to enhance expression
of a MADS-box transcription factor encoding gene APETALA
1 (AtAP1), as well as two genes closely related to AP1,
CAULIFLOWER (AtCAL) and FRUITFUL (AtFUL) (Ferrandiz
et al., 2000; Wigge et al., 2005; Grandi et al., 2012; Jaeger
et al., 2013). In addition to activating the expression of floral
meristem identity genes, AtLFY and AtAP1 also repress negative
regulators of AtFT, such as TERMINAL FLOWER1 (AtTFL1),
TEMPRANILLO1 (AtTEM1) and AtTEM2 (Kaufmann et al.,
2010).

Gibberellin: A Key Phytohormone
Influencing Flowering Time
Gibberellins (GAs) are diterpene phytohormones that regulate
multiple aspects of plant growth, including flower and seed
development (Yamaguchi, 2008). Many GA metabolism enzymes
are multifunctional, accepting several substrates to produce a
diverse set of GAs. Only a subset of all GAs has a bioactive
function, including GA1, GA3, and GA4. Different forms
of GA are converted via the action of a series of various
enzymes, most notably encoded by AtGA20OX genes which
catalyze the conversion of non-bioactive to bioactive forms
of GA. In Arabidopsis, GA signaling is required at the apex
during floral induction and involves binding of GA to the
GIBBERELLIN INSENSITIVE DWARF1 (AtGID1) receptors
to promote degradation of DELLA proteins via the ubiquitin
proteasome pathway (Murase et al., 2008). GA further influences
flowering time by regulating the expression of AtSOC1 and AtLFY
(Moon et al., 2003). Very recently, SQUAMOSA PROMOTER
BINDING PROTEIN-LIKE 15 (AtSPL) was demonstrated to be
regulated by miR156 and to promote flowering under non-
inductive conditions (Hyun et al., 2016).

CONSTANS: Operator of the Flowering
Time Checkpoint
Genetic regulatory mechanisms of flowering time consist of a
series of feedback loops through which individual components of
the circadian clock sequentially or reciprocally repress each other

(Johansson and Staiger, 2015). Putterill et al. (1995) identified
a late-flowering mutant under LD conditions and cloned the
corresponding CONSTANS (AtCO) gene. The corresponding
protein CO is a nuclear B-Box zinc-finger (BBX) protein
with a C-terminal CCT (CO, CO-like, and TIMING OF CAB
EXPRESSION 1, TOC1) DNA binding domain, located in the
leaves, and responsible for regulating flowering in response to day
length.

In addition to genetic regulation via feedback circuits, post-
translational processes contribute to adjusting clock protein
oscillations to LDs. Under SDs, CO expression is repressed in
the morning by CYCLING DOF FACTOR (AtCDF) proteins that
bind to its promoter (Fornara et al., 2009). During the day, AtCO
mRNA levels increase with a peak before dusk but are ultimately
degraded at night so that AtFT expression remains repressed.
In SDs, GIGANTEA (AtGI) and FLAVIN BINDING, KELCH
REPEAT, F-BOX1 (AtFKF1) clock proteins are asynchronously
expressed and do not interact, but synchronize their expression
under LDs (Sawa et al., 2007). AtFKF1 recognizes AtCDF
proteins via its Kelch-repeat domain, whereas the LOV domain
absorbs blue light, crucial for the interaction with AtGI. Only in
response to LDs, AtCDF degrades via the ubiquitin-proteasome
pathway through the action of the GI-FKF1 complex. As a
result, AtCO mRNA can accumulate during the day to induce
transcription of AtFT, and the AtFT protein is then transferred
via the phloem to the SAM (Corbesier et al., 2007).

CRYPTOCHROMES and
PHYTOCHROMES: Timekeepers
of the Endogenous Clock
AtCO is regulated at the protein-level by phytochromes
and cryptochromes that either stabilize or destabilize AtCO
mRNA (Devlin, 2002). The blue-light-dependent interaction
of AtFKF1with AtGI to antagonistically control CO transcript
stability is one example of a plant molecular mechanism
that adjusts the period of clock protein oscillations to a 24-h
rhythm. Depending on the intensity, periodicity, and spectral
quality (such as blue, red and far-red light) of incoming
sunlight, photosensory pigments trigger transduction chains
that alter gene activity of clock genes further downstream
(Fankhauser and Staiger, 2002). In addition to AtFKFI,
its homologs ZEITLUPE (AtZTL) and LOV KELCH
PROTEIN 2 (AtLKP2), as well as the red/far-red-absorbing
PHYTOCHROMES A–E (AtPHYA–PHYE) and the blue light-
absorbing CRYPTOCHROMES (AtCRY1, AtCRY2) modulate
gene activity to influence plant growth and development (Devlin,
2002).

Changes in light and temperature at dawn and dusk reset the
circadian clock, thus allowing the plant to adjust physiologically
and metabolically to changing day lengths during different
seasons of the year, crucial for ensuring flowering occurs at
the optimal time. Very recently, a molecular mechanism was
proposed by which endogenous circadian clocks converge with
light-signaling pathways through the interaction of AtTOC1 and
PHYTOCHROME-INTERACTING FACTORS (AtPIFs), which
belong to a subfamily of basic helix–loop–helix transcription
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FIGURE 1 | Major flowering pathway genes of Arabidopsis thaliana. Positive and negative regulatory connections are indicated by arrows and lines with
T-ends, respectively. White and black arrows or T-ends indicate regulatory connections occurring primarily under long days and short days, respectively. Gene name
abbreviations are explained in Supplementary Table 1.

factors (Soy et al., 2016). Arabidopsis phytochromes AtPHYA–
PHYE regulate the PIF pathway and downstream targets of
PIF by inducing degradation of AtPIF1, AtPIF3, AtPIF4, and
AtPIF5 (Leivar and Monte, 2014). While the phytochromes
remain photo-activated during the day, PIF levels remain low,
but increase when the levels of photoactivated phytochromes
decline particularly during long nights (Soy et al., 2012). AtPIF
protein level oscillations facilitate timing of hypocotyl elongation
growth rates to the optimum time just before dawn when
AtPIF is most abundant in the circadian cycle. AtTOC1 directly
represses the transcriptional activator activity of AtPIF3 protein
in SDs after dusk by binding to the AtPIF3 promoter despite
high AtPIF3 abundance (Soy et al., 2016). This mechanism
regulates dawn-phased growth-related and hormone-associated
genes in controlling early hypocotyl growth in diurnal SD
conditions.

FLOWERING LOCUS C: Major Flowering
Repressor with an Epigenetic Memory
for Cold
The major repressor of flowering is the MADS-box transcription
factor gene FLOWERING LOCUS C (AtFLC) (Song Y.H.

et al., 2013). AtFLC is expressed in mitotically active regions
such as the SAM and the root apical meristem, the primary
tissues of cold perception. When active alleles of the flowering
time regulator gene FRIGIDA (AtFRI) are present, AtFLC
expression is enhanced in a dose-dependent manner up to a
level that prevents flowering (Michaels and Amasino, 1999).
The promotion of flowering after exposure to prolonged cold
temperatures, a process termed vernalization which occurs
during winter or can be induced artificially, silences AtFLC and
allows flowering in the following spring. Such silencing was
shown to involve a Polycomb-based epigenetic memory system
and requires polycomb repressive complex 2 (AtPRC2)-mediated
methylation of H3K27 to form facultative heterochromatin,
which allows for the maintained AtFLC repression even
after warmer conditions have returned (Bastow et al., 2004;
Wood et al., 2006). The extensive natural variation present
for both the vernalization requirement and response to cold
has played a key role in the adaptation of many plant
species over a wide latitudinal range. For example, naturally
occurring AtFLC, AtFRI, and AtPHYC polymorphisms result
in varying flowering times and are involved in adaptations
to different climates in Arabidopsis (Mendez-Vigo et al.,
2011).
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FLOWERING TIME IN CEREAL CROPS: A
COMPLEX INTERPLAY BETWEEN
GENES AND ENVIRONMENT

Although studies in the model dicot Arabidopsis were
fundamental to deciphering flowering time mechanisms,
recent research in rice has extended our knowledge of flowering
processes to a model monocot species. However, considerable
differences between cereals grown in temperate and tropical
climates exist, thus compromising the relevance of rice as a
model cereal for phenology. As an example, key regulatory genes
for long day and short day photoperiodic control of flowering are
conserved in the SD plant rice and LD plants wheat and barley,
but the regulation of these genes is often reversed (Hayama et al.,
2003).

The release of genome sequences for rice (Goff et al.,
2002), maize (Schnable et al., 2009), barley (International
Barley Genome Sequencing Consortium, 2012), and bread
wheat (Mayer et al., 2014), coupled with advancements in
molecular biology techniques [including DNA sequencing,
RNA interference, and quantitative trait locus (QTL) analysis]
as well as comparative genetics approaches, have enabled
the isolation and functionally characterization of many
phenology genes in cereal crops. Blast searches and phylogenetic
analyses between Arabidopsis, rice, wheat, barley, and maize
sequences identified many conserved as well as functionally
divergent genes involved in flowering (Calixto et al., 2015).
Several key pathways linked to specific environmental signals
were uncovered and characterized, including temperature
(thermoperiod and vernalization), day length (photoperiod),
as well as autonomous and gibberellin-responsive pathways.
More recently, miRNA-based regulation of gene expression at
the post-transcriptional level has come into the focus of research
efforts on flowering-related pathways (Teotia and Tang, 2015).
In this section, we will summarize phenology genes and genetic
regulation, and highlight how different flowering time regulatory
mechanisms have evolved between SD, LD, and day-neutral
plants.

Regulation of Flowering Time in
Long-Day Plants Bread Wheat and
Barley
Since originating from the Eastern Mediterranean region, the
closely related Triticeae cereal crops bread wheat and barley
have been adapted to a wide range of agricultural environments.
Traditional breeding and phenotypic selection of natural genetic
variants at flowering loci was used to optimize flowering time
within a given production environment to achieve greater yields
(Jung and Müller, 2009). This selection was also often associated
with improved adaptations to abiotic and biotic stress factors.

Bread wheat and barley are facultative LD plants adapted to
short growing seasons, with LDs promoting flowering in spring,
while SDs delay reproductive development. Photoperiod and
vernalization regulate the initiation of the reproductive phase and
are the two main seasonal signals in temperate cereal crops. Many
Pooid grasses, including wheat and barley, are vernalization

responsive and photoperiod sensitive, which is believed to have
evolved early during diversification as a crucial adaptation to
allow for their transition into the temperate zone (Fjellheim
et al., 2014). Temperate regions with long growing seasons and
sufficient water supply allow cereal crops to flower late in the year
and accumulate more biomass, whereas early flowering avoids
abiotic and biotic stresses such as drought and pathogen attack
late in the season. To date, only a relatively small number of
major flowering time genes and pathways have been identified in
wheat and barley (Figure 2). The following two sections on wheat
(Flowering Time in Bread Wheat) and barley (Flowering Time in
Barley) will give a detailed account of the current understanding
of flowering time regulation in these two temperate cereal crops.

Flowering Time in Bread Wheat
Genetic regulation of photoperiod response
The process of wheat domestication involved several
hybridization events between tetraploid progenitor species
Triticum turgidum L. (AABB genomes) and diploid Aegilops
tauschii (DD genome) that gave rise to hexaploid bread wheat
(AABBDD genomes) about 8,000 years ago (Wang et al.,
2013). As a hexaploid, bread wheat displays a high level of
gene redundancy (one copy of the homoeologous gene in each
genome), and therefore the precise function of many flowering-
related genes and the current understanding of the complexity
of the gene networks controlling flowering is still incomplete.
Table 1 provides a summary of the current understanding of
wheat phenology genes which are either functional orthologs or
homologs of Arabidopsis thaliana genes.

Rapid genomic changes in polyploid wheat facilitated wheat
adaptation to different growing environments. In particular,
wheat crop expansion is associated with the exploitation of
natural variation in the photoperiod (PPD), vernalization (VRN),
and EARLINESS PER SE (EPS) genes. In bread wheat, PPD
genes are relatively well understood and molecular markers
have been developed to aid selection for breeders (Beales et al.,
2007; Cane et al., 2013). Three copies of the gene (homeologs)
that control photoperiod response in wheat, namely TaPPD-A1,
TaPPD-B1 and TaPPD-D1, are located on the short arm of the
homoeologous group 2 chromosomes. The region containing
TaPPD-D1 in wheat is colinear with the barley photoperiod
gene HvPPD-H1 on chromosome 2HS (Laurie, 1997). TaPPD-D1
encodes a pseudo-response regulator (PRR) family protein gene
orthologous to the Arabidopsis PRR7 gene, and is more distantly
related to AtCO and AtVRN2 (Yan et al., 2004; Turner et al.,
2005).

The wild ancestors of wheat were photoperiod-sensitive, and
photoperiod insensitivity in many cultivated wheat varieties is
the result of mutations in PPD genes (Thomas and Vince-Prue,
1997). Dominant PPD alleles induce constitutive activation of the
photoperiod pathway irrespective of day length and significantly
reduce sensitivity to photoperiod. This leads to an early flowering
phenotype in both SDs and LDs, which has been associated with
pleiotropic effects in certain agricultural environments including
in southern Europe (Worland, 1996) and Australia (Richards
et al., 2014) resulting in increased grain yields. The potencies of
the homoeologous group-2 PPD genes for insensitivity are ranked
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FIGURE 2 | Major flowering pathway genes of bread wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.). Positive and negative regulatory
connections are indicated by arrows and lines with T-ends, respectively. White arrows or T-ends indicate regulatory connections occurring primarily under long days.
Gene name abbreviations are explained in Supplementary Table 1.

TABLE 1 | Wheat functional orthologs or homologs of Arabidopsis thaliana genes.

Wheat Arabidopsis Function Chromosome Reference

Functional orthologs

TaCO1/TaHD1 AtCO Flowering promoter under inductive LD
conditions

4A Nemoto et al., 2003;
Shimada et al., 2009

TaFT1 (VRN3) AtFT Flowering promoter 5D Yan et al., 2006

TaGI1 AtGI Flowering promoter 3H Zhao et al., 2005

TaRHT-B1,
TaRHT-D1

AtGAI Gibberellin metabolism 2D Pearce et al., 2013;
Boden et al., 2014

Homologs with pleiotropic or divergent function

TaTOC1 AtTOC1/AtPRR1 tae-miR408-mediated oscillation regulator,
affects flag leaf angle and plant height

6A/6B/6D Zhao et al., 2016

TaPPD1 AtPRR7 Photoperiod sensitivity and flowering time 2D Beales et al., 2007

TaVRN1 AtAP1/AtCAL/AtFUL Flowering promoter in response to vernalization 5A Yan et al., 2003;
Shimada et al., 2009

TaVRN2 AtCOL Flowering repressor 4B, 5A Yan et al., 2004

TaVRN4 AtAP1/AtCAL/AtFUL Paralog of TaVRN-A1, modulates vernalization
response

5D Kippes et al., 2015

Functional orthologs have a conserved function; homologs have a pleiotropic or divergent function. Gene name abbreviations are explained in Supplementary Table 1.
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in the order TaPPD-D1 > TaPPD-B1 > TaPPD-A1 (Worland
et al., 1998).

Pseudo-response regulator proteins are commonly found in
plants and involved in circadian clock-associated pathways,
including PRR1 (TOC1) (Mizuno and Nakamichi, 2005). The
mRNA of TOC1 starts to accumulate at the beginning and
reaching its maximum level at the end of the light period, where it
directly represses the transcription of the myeloblastosis (MYB)
transcription factors LATE ELONGATED HYPOCOTYL (LHY)
and CCA1. In wheat, Zhao et al. (2016) recently demonstrated
that the microRNA tae-miR408 targets and down-regulates
expression levels of all three wheat paralogs of TaTOC1 (TaTOC-
A1, TaTOC-B1, and TaTOC-D1) under both LDs and SDs,
thereby regulating heading time and associated agronomic traits.

Genetic regulation of vernalization response
The extensive natural variation for both the requirement and
responsiveness to cold temperature has played a major role
in the adaptation of many species over a wide latitudinal
range. Unlike the model monocot crop rice, wheat and barley
flower in response to LDs. The photoperiod and vernalization
pathways intersect at the regulation of TaVRN3, which is a gene
encoding a phosphatidylethanolamine-binding protein (PEBP)
homologous to the Arabidopsis flowering time gene AtFT1 (Yan
et al., 2006). Similarly, VRN3 also encodes a mobile protein
that is transported from the leaves to the SAM, where it
becomes part of a flowering complex that induces TaVRN1
transcription by binding to its promoter. TaVRN1 is an AP1 clade
MADS-box transcription factor, homologous to the Arabidopsis
meristem identity gene AtAP1, and present on the long arms of
chromosomes 5A, 5B, and 5D, respectively (TaVRN-A1, TaVRN-
B1, and TaVRN-D1) (Yan et al., 2003). While vernalization in
Arabidopsis results in silencing of the flowering repressor AtFLC,
it induces transcription of the flowering activator TaVRN1 in
wheat and other monocots. TaVRN1 is expressed in the leaves
where it represses transcription of TaVRN2, which encodes a
protein with a putative zinc finger and a CCT protein–protein
interaction domain (Yan et al., 2004; Kippes et al., 2015). TaVRN2
represses TaVRN3 expression in LDs to prevent flowering during
unfavorable conditions in autumn before vernalization. In the
absence of TaVRN2, the increase in day length during spring
results in the up-regulation of TaVRN3 expression, which leads
to a further increase of TaVRN1 transcription trough a positive
feedback loop, and ultimately to an irreversible acceleration of
flowering.

A fourth vernalization locus, TaVRN-D4, was recently
identified on the short arm of chromosome 5D (Kippes et al.,
2015). It was shown to be paralogous to TaVRN-A1, as it
originated from an insertion of a large segment on chromosome
5AL containing the TaVRN-A1 gene into chromosome 5DS. The
first intron of TaVRN-A1 contains binding sites for the RNA-
binding protein GLYCINE-RICH RNA-BINDING PROTEIN 2
(TaGRP2), which binds to TaVRN-A1 pre-mRNA and represses
TaVRN-A1 expression (Xiao et al., 2014). The inserted copy
of TaVRN-A1 carries mutations in its coding and regulatory
regions including single nucleotide polymorphisms (SNPs) in
the first intron that impedes binding of TaGRP2. Protein

modification of TaGRP2 by O-linked β-N-acetyl glucosamine (O-
GlcNAcylation) mediates interaction with VERNALIZATION-
RELATED 2 (TaVER2), a carbohydrate-binding jacalin lectin,
which relieves repression of TaVRN1 expression via TaGRP2
when vernalization occurs.

The genetic regulation of vernalization response in wheat (and
other monocots) has some distinct differences from Arabidopsis.
Comparative genomics studies detected Arabidopsis FLC-like
genes in monocots, but they have yet to be shown to produce
proteins of similar function in wheat or other temperate cereals
(Ruelens et al., 2013). AtFLC is positively regulated by AtFRI,
but to date also no functional AtFRI homologs were detected
in wheat. The AtFT1 and AtFRI promoters and first introns
were shown to contain cis-regulatory sites important for the
transcriptional regulation of these genes in Arabidopsis (Tiwari
et al., 2010; Sanchez-Bermejo and Balasubramanian, 2015).

Only comparatively little is currently known about genetic
sequence variations and non-gene elements that regulate
phenology gene expression in wheat. Autumn-sown winter
cultivars that contain the ancestral VRN1 allele require
vernalization during winter. By contrast, spring wheat varieties
carrying mutations in regulatory regions including in the
TaVRN1 promoter, first intron of TaVRN1, or in the TaVRN4
region (Fu et al., 2005; Kippes et al., 2015; Muterko et al.,
2015), do not require vernalization and are sown in spring. Very
recently, Kippes et al. (2016) developed a triple TaVRN2 mutant
that contained three non-functional TaVRN2 alleles. This mutant
flowered early, had a limited vernalization response, and spring
growth habit. In a different study, an insertion in the promoter
of TaVRN3 led to increased TaVRN3, bypassing the delay of
flowering by TaVRN2 (Yan et al., 2006). Sequence variations in
TaVRN3 genes were shown to cause early flowering in wheat
(Ó’Maoiléidigh et al., 2014). As another recent example, copy
number variation (CNV) was shown to play a major role in global
wheat adaptation. Wheat lines with an increased copy number
of TaVRN-A1 showed an increased requirement for vernalization,
and lines with an increased copy number of TaPPD-B1 led to early
flowering (Würschum et al., 2015).

Genetic regulation of autonomous pathways
The third class of genes responsible for fine-tuning of wheat
flowering time are EPS genes, which can be defined as the
least number of days to reproductive growth independent of
vernalization and photoperiod. Also known as earliness in the
narrow sense, intrinsic earliness, or basic development rate, EPS
genes are hypothesized to function as a fine tune adjustment
of flowering time (Zikhali and Griffiths, 2015). They are often
considered as polygenic and of small genetic effect, and can be
detected in both winter and spring wheats. Variation in EPS genes
was shown to lead to minor or major differences in flowering
time under field conditions, reported in the range of a few days
up to a few weeks (Appendino and Slafer, 2003; Zikhali et al.,
2014). To date, no EPS genes have been cloned, there is only
a limited understanding of gene function, and furthermore, no
known homologs in Arabidopsis exist that could help to fill the
knowledge gaps. Instead, several studies used near isogenic lines
(NILs) to narrow down the location of EPS loci on the wheat
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genome, and to identify several potential candidate genes (Zikhali
et al., 2014, 2015). The genes MOLYBDENUM TRANSPORTER
1 (TaMOT1), FILAMENTATION TEMPERATURE SENSITIVE
H (TaFtsH4) (Faricelli et al., 2010), and EARLY FLOWERING
3 (TaELF3) (Zikhali et al., 2014) were proposed as candidate
genes underlying the EPS -Am1 locus. Gawroński et al. (2014)
suggested a cereal ortholog of Arabidopsis circadian clock gene
LUX ARRHYTHMO/PHYTOCLOCK 1 (AtLUX/PCL1) as the
candidate gene underlying the EPS -3Am locus in einkorn
wheat (Triticum monococcum L.). These recent findings question
the previous assumption that EPS acts independently of the
environment, but the exact nature of the environmental impact
on EPS gene function remains unclear.

Genetic regulation of gibberellin response pathways
Previously, Dubcovsky et al. (2006) showed that an inductive
LD photoperiod is needed to induce additional genes for normal
spike development as the induction of TaVRN1 alone proved
insufficient. Pearce et al. (2013) hypothesized that GAs may be
involved in wheat spike development during LDs, which points
to a functionally different role compared with Arabidopsis where
GAs function in non-inductive SD conditions (Hyun et al., 2016).
Pearce et al. (2013) applied exogenous GA to in wheat lines grown
under non-inductive SDs, which resulted in an accelerated spike
development only wheat lines expressing TaVRN1. Both GA and
TaVRN1 are required for the up-regulation of the floral meristem
identity genes TaSOC1 and TaLFY and the development of the
wheat spike. Furthermore, GA biosynthetic gene expression was
found to be elevated in the apices of plants transferred from SDs
to LDs as well as in photoperiod-insensitive and transgenic wheat
plants with increased TaFT transcription under SDs. Wheat genes
for components of the GA biosynthetic pathway were identified
based on homology with Arabidopsis, rice, and Brachypodium
distachyon (Pearce et al., 2015), but due to the lack of a fully
sequenced wheat genome, it is currently not possible to accurately
determine the final number of genes in each family.

GA-sensitive and insensitive dwarfing genes have had an
impact on all the main cereal crop species (Jia et al., 2009). Semi-
dwarfing wheat varieties containing alleles of the REDUCED
HEIGHT (RHT) DELLA genes were key factors to increasing
yield during the “Green Revolution” (Flintham et al., 1997; Peng
et al., 1999). Reduced crop height protected against lodging and
improved harvest index, high spikelet fertility, and grain numbers
per ear. RHT encodes a negative regulator of the GA signaling
pathway (Pearce et al., 2013; Boden et al., 2014).

Flowering Time in Barley
Genetic regulation of photoperiod response
It is estimated that the common ancestor of barley and
Arabidopsis shared about two-thirds of the circadian clock and
clock-associated genes (Calixto et al., 2015) (Table 2). After
separation into monocot and dicot classes, these genes further
diversified due to extensive gene duplication and deletion events
(Campoli et al., 2012a). Although some core clock genes were
identified in barley based on map-based cloning (Yan et al.,
2003), positional cloning (Yan et al., 2004), or homology with
Arabidopsis (Yan et al., 2006), only a few are well characterized.

Some of these genes were found to perform similar functions as
their orthologs, whereas there is currently little evidence for other
genes that would support their involvement in flowering.

The major genes controlling flowering time in barley in
response to environmental cues are HvVRN-H1, HvVRN-H2,
HvVRN-H3 (HvFT1), HvPPD-H1, and HvPPD-H2 (HvFT3)
(Figure 2). The epistatic relationship of three genes involved
in flowering regulation is well established: HvVRN-H1 and
HvVRN-H2, with roles in vernalization, as well as the floral
pathway integrator gene VRN-H3, which is synonymous to
HvFT1 (Kikuchi et al., 2009).

Similarly as for Arabidopsis and wheat, FT-like genes in barley
such as HvFT1 trigger flowering in response to LDs. HvFT1 plays
a key role in promoting flowering and integrates the photoperiod
and vernalization pathways: Under LDs, HvFT1 expression is low
until induced by low temperatures in winter varieties that have
a vernalization requirement (Yan et al., 2006). HvFT1 expression
is primarily regulated by the major photoperiod response genes
HvPPD-H1 and HvPPD -H2 (Laurie et al., 1994). Photoperiodic
flowering under LDs is up-regulated by HvPPD-H1, which is a
homolog of the Arabidopsis clock gene PRR7 (Turner et al., 2005).
A mutation in the CCT domain of HvPPD-H1 is associated with
lower transcript levels of HvFT1 and delayed flowering under
LDs compared with the wild-type HvPPD-H1 allele, but it is not
related to flowering variation under SDs (Turner et al., 2005;
Hemming et al., 2008). HvPPD-H2 (with its proposed candidate
gene HvFT3) enhances the expression of HvFT1 and promotes
flowering under non-inductive SDs, whereas recessive mutant
alleles confer delayed flowering under SDs, aiding the flowering
repression over winter (Kikuchi et al., 2009).

In contrast to Arabidopsis, HvFT1 expression is induced via
HvCO1 (the closest ortholog of Arabidopsis CO in barley) in both
SDs and LDs (Campoli et al., 2012a). There is a high level of
redundancy in both CO-like and FT-like genes, with currently
nine and five members in barley, respectively (Faure et al., 2007).
HvCO1 and HvCO2 are believed to be paralogs that exist due
to a duplication event in temperate cereals. This functional
diversification is important for the modulating of flowering
responses and adaptation to different growing environments.
Several studies demonstrated that functional polymorphisms in
the HvFT1 gene alter its regulation, including mutations in the
first intron that differentiate dominant from recessive alleles
(Yan et al., 2006), and polymorphisms in the HvFT1 promoter
region that lead to distinct phenotypic effects (Casas et al.,
2011).

Genetic regulation of vernalization response
In barley, the VRN-H2 locus consists of three homologous
CO-like genes, HvZCCT-Ha, HvZCCT-Hb, and HvZCCT-Hc
(Dubcovsky et al., 2005; Karsai et al., 2005). VRN-H2 functions
as a floral repressor of HvFT1 (VRN-H3) to delay flowering
in plants that have not been vernalized (Trevaskis et al., 2006;
Hemming et al., 2008). VRN-H2 is only expressed under LD
conditions controlled by components of the circadian clock.
Mutations in HvELF3 resulted in the expression of VRN-H2
under SD conditions due to an increased expression of PPD-H1
and, consequently, HvFT1 (Faure et al., 2012; Turner et al., 2013).
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TABLE 2 | Barley functional orthologs or homologs of Arabidopsis thaliana genes.

Barley Arabidopsis Function Chromosome Reference

Functional orthologs

HvCO1 AtCO Floral promoter 7H Campoli et al., 2012a

HvELF3 (EAM8) AtELF3 Photoperiod sensitivity 1H Faure et al., 2012;
Zakhrabekova et al., 2012

HvFT1 (VRN3) AtFT Floral promoter 7H Faure et al., 2007

HvLUX1 (EAM10) AtLUX ARRHYTHMO Circadian clock and photoperiodic response 3H Campoli et al., 2013

HvPHYC (EAM5) AtPHYC Light signaling, photoperiodic regulation 5H Pankin et al., 2014

Homologs with pleiotropic or divergent function

HvCEN (EPS2 locus) AtTFL1 Flowering time variation, affects yield and
thousand kernel weight

2H Comadran et al., 2012

HvPPD-H1 AtPRR7 Photoperiod sensitivity and flowering time 2H Turner et al., 2005; Campoli
et al., 2012b

HvPPD-H2 (HvFT3) AtFT Floral promoter under SD conditions, affects
grain yield

1H Cuesta-Marcos et al., 2009

HvVRN1 AtAP1/AtCAL/AtFUL Floral promoter in response to vernalization,
affects growth rate, spike length, yield

5H Trevaskis et al., 2006;
Rollins et al., 2013

HvVRN-H2 AtCOL Floral repressor, affects growth rate, spike
length, yield

4H Trevaskis et al., 2006

Functional orthologs have a conserved function; homologs have a pleiotropic or divergent function. Gene name abbreviations are explained in Supplementary Table 1.

In winter barley cultivars, vernalization induces VRN-H1 to
repress VRN-H2 which promotes the transition from vegetative
to reproductive development (Trevaskis et al., 2006; Hemming
et al., 2008). Sequence variations in the first intron of VRN-
H1 alter the vernalization requirement for activation and,
consequently, the repression of VRN-H2 and overall flowering
behavior (Hemming et al., 2008, 2009). A recent survey showed
that the down-regulation of VRN2 by cold is exclusively found in
Pooid grasses including wheat and barley (Woods et al., 2016).

By contrast, spring barley cultivars are characterized by
natural mutations at PPD-H1 and by deletions of the VRN-H2
locus and thus do not require vernalization (Dubcovsky et al.,
2005). HvCO2 overexpression in spring barley was shown to
induce flowering due to an increased expression of PPD-H1
and, as a direct result, HvFT1 (Mulki and von Korff, 2016). By
contrast, overexpression of HvCO1/CO2 increased HvVRN-H2
expression in winter barley carrying the VRN-H2 locus, which
led to lower HvFT1 levels and delayed flowering independently
of photoperiod. Putative additional epistatic interactions of
HvVRN-H2 with HvGI and HvCO1 point toward a role of
HvVRN-H2 as an integrator of photoperiod and vernalization
signals (Maurer et al., 2015).

Genetic regulation of autonomous and gibberellin response
pathways
In addition to the photoperiod and vernalization pathway
genes, flowering time in barley is controlled by the EARLY
MATURITY (EAM) loci referred to as EARLINESS PER SE
(EPS) in wheat. The red/far-red light photoreceptor HvPHYC,
an ortholog of Arabidopsis PHYC, was identified to underlie
the EARLY MATURITY 5 (EAM5) QTL (Pankin et al., 2014).
HvPHYC was found to promote light signal transmission to the
circadian clock, modulating photoperiodic regulation of floral
transition. It was also shown to interact with the PPD-H1

pathway and to increase HvFT1 expression not associated with
the circadian clock (Nishida et al., 2013; Pankin et al., 2014).
Similar mechanisms were discovered in wheat, where TaPHYC
was found to activate TaPPD1 and TaVRN3 in inductive LDs
(Chen et al., 2014).

The circadian clock gene HvLUX1, an ortholog of the
Arabidopsis circadian gene LUX ARRHYTHMO, was detected
as a candidate underlying the barley EAM10 locus (Campoli
et al., 2013). As shown for barley plants carrying a mutation
in EAM5 (HvPHYC), mutations in EAM10 (HvLUX1) altered
the expression of HvPPD-H1 (as well as CCA1 in barley) and
accelerated flowering under both LDs and SDs independently
of the circadian clock. Furthermore, as shown for barley EAM8
mutants (Faure et al., 2012), early flowering of EAM10 mutants
was linked with an up-regulation of HvFT1 transcription under
SDs. In both cases this led to an induction of the LD photoperiod
pathway under non-inductive (SD) conditions, suggesting that
EAM10 acts as a repressor of HvPPD-H1.

In barley, HvCEN, a homolog of Antirrhinum majus
CENTRORADIALIS, was identified at the EARLINESS PER SE
2 (EPS2) locus on chromosome 2H (Comadran et al., 2012).
Antirrhinum cen mutants produce terminal flowers instead
of indeterminate inflorescences common for wild-type plants
without, affecting flowering time (Bradley et al., 1996). Analysis
of the HvCEN alleles of a diverse set of spring and winter
barley cultivars revealed that HvCEN facilitated the geographic
range extension as well as the gradual separation between spring
and winter cultivars (Comadran et al., 2012). A collection of
flowering mutants was used to confirm sequence variations
within HvCEN to be responsible for the observed variation
in flowering time. While CEN homologs have been identified
and characterized in rice (Nakagawa et al., 2002) and maize
(Danilevskaya et al., 2008a), none have been identified to date in
hexaploid wheat.
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TABLE 3 | Rice functional orthologs or homologs of Arabidopsis thaliana genes.

Rice Arabidopsis Function Chromosome Reference

Functional orthologs

OsELF3 AtELF3 Floral promoter 6 Zhao et al., 2012

OsGI AtGI Floral promoter 1 Hayama et al., 2002,
2003

HD3A AtFT Floral promoter 6 Tamaki et al., 2007

OsMADS14 AtAP1 Meristem identity 3 Komiya and
Shimamoto, 2008

OsMADS50 AtSOC1 Floral promoter 3 Ryu et al., 2009

OsPRR37 AtPRR3/7 Floral repressor 7 Murakami et al., 2007

OsRFT1 AtFT Floral promoter 6 Komiya et al., 2009

Homologs with pleiotropic or divergent function

HD1 AtCO Floral repressor in LDs, floral promoter in SDs,
affects several agronomic traits

6 Yano et al., 2000;
Zhang et al., 2012;
Nemoto et al., 2016

Unique genes

EHD1 – Floral promoter in SDs 10 Xue et al., 2008

GHD7 – Floral repressor in LDs 7 Xue et al., 2008

GHD7.1 AtPRR7 Floral repressor in LDs, floral promoter in SDs,
affects several agronomic traits

7 Yan et al., 2013

GHD8 AtHAP3b Floral repressor in LDs, floral promoter in SDs,
affects several agronomic traits

8 Yan et al., 2011

OsID1 – Floral promoter in SDs 10 Matsubara et al., 2008

OsMADS51 – Floral promoter in SDs 1 Kim et al., 2007

Functional orthologs have conserved function, homologs have a pleiotropic or divergent function, and unique genes have currently no known functional orthologs nor
homologs in Arabidopsis. Gene name abbreviations are explained in Supplementary Table 1.

The circadian clock gene HvELF3, an ortholog of Arabidopsis
ELF3, was identified to underlie the EARLY MATURITY 8
(EAM8) QTL (Faure et al., 2012; Zakhrabekova et al., 2012).
Mutations in EAM8, also known as praematurum.a-8 (mat-
a-8), were used since 1961 to facilitate short growing season
adaptation and expansion of the geographic range in commercial
barley varieties (Zakhrabekova et al., 2012). A loss-of-function
mutation of HvELF3 led to an increased expression of HvFT1
compared with wild-type plants, causing a day-neutral early
flowering phenotype (Faure et al., 2012). Boden et al. (2014)
investigated barley plants carrying mutations in the HvELF3 gene
and characterized them as early flowering under non-inductive
SD photoperiods. The enhanced expression of HvGA20OX2
increased GA biosynthesis and expression of HvFT1. In
spring barley, HvELF3 is necessary to maintain photoperiodic
sensitivity through repression of HvFT1 and production of
active GA via HvGA20OX2, a link not previously shown for
AtELF3.

The phytohormone GA promotes flowering in barley and is
essential for normal flowering of spring barley under inductive
photoperiods (Boden et al., 2014). One of the gibberellin 20-
oxidase genes, HvGA20OX2, was identified as the candidate gene
underlying the allelic dwarfing gene sdw1/denso. sdw1/denso is
an important locus selected for in barley breeding programs as
the resulting semi-dwarf phenotype has reduced plant height
and improved lodging resistance associated with higher yields
and quality traits. The sdw1 mutant was distinguished from the
denso mutants based on the more strongly reduced expression
of HvGA20OX2 which was also linked to reduced plant height,

enhanced grain yield, and lower grain quality (Jia et al.,
2011).

Regulation of Flowering Time in
Short-Day Plants Rice and Maize
Rice and maize are tropical SD plants and, unlike wheat and
barley, do not require vernalization. However, a high level of
conservation of photoperiod pathway genes with more distantly
related plants like Arabidopsis and temperate cereals is found
in both rice and maize. If similar genes controlling flowering
are involved in plants that flower under LD photoperiods
(such as temperate cereals and Arabidopsis), which regulatory
mechanisms generate the reverse response to photoperiod in
rice?

Flowering Time Regulation in Rice
Genetic regulation of photoperiod response
Two independent pathways act in response to different
photoperiods to control flowering time in rice. Day-light periods
of less than 13.5 h accelerate flowering of rice (Itoh et al.,
2010). Under inductive SD conditions, a HEADING DATE
1 (HD1)-dependent pathway is activated in which the AtCO
homolog HD1 accelerates flowering via activation of the AtFT
ortholog HEADING DATE 3A (HD3A) (Kojima et al., 2002). This
pathway is conserved between Arabidopsis and rice (Table 3).
For heading initiation under non-inductive LD conditions, an
HD1-independent pathway is activated (Yano et al., 2000). The
activity of genes unique to rice play a major role in conferring
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FIGURE 3 | Major flowering pathway genes of rice (Oryza sativa). Positive and negative regulatory connections are indicated by arrows and lines with T-ends,
respectively. White and black arrows or T-ends indicate regulatory connections occurring primarily under long days and short days, respectively. Gene name
abbreviations are explained in Supplementary Table 1.

the different seasonal flowering responses when compared to LD
plants such as Arabidopsis and are highlighted in the following
sections.

HD1-independent pathway under a non-inductive (LD)
photoperiod. As rice does not require vernalization, the
photoperiodic pathway is of great significance to control
flowering, often referred to as heading date. Similarly as for
Arabidopsis, the mobile flowering signal HD3A is expressed
in leaves and the protein is translocated to the SAM where it
accelerates floral development (Kojima et al., 2002). The key
difference between the genetic regulation of Arabidopsis and rice
flowering time is that unlike its ortholog AtFT, HD3A is only
expressed under SD conditions (Figure 3).

HD1 is expressed with a diurnal rhythm similar to AtCO, with
a peak in expression in the afternoon in LD photoperiods (Yano
et al., 2000). However, unlike AtCO, which activates AtFT in LDs,
high HD1 activity in LDs is associated with low expression of
HD3A (Hayama et al., 2003). OsGI is also expressed with a diurnal
rhythm similar to its ortholog AtGI, and likely has a similar role
in regulating HD1 expression (Hayama et al., 2002, 2003).

Other components of the circadian clock modify the activity of
genes acting in the photoperiod pathway in rice. For example, the

transcript of the VRN2-like CCT-motif gene GRAIN NUMBER,
PLANT HEIGHT, AND HEADING DATE 7 (GHD7) is activated
by red light signaling via phytochromes in the morning of
LDs (Xue et al., 2008). GHD7 represses the expression peak
of the B-type response regulator EARLY HEADING DATE 1
(EHD1), a gene without a known homolog in Arabidopsis, at
the start of the light period to delay flowering under LD. EHD1
is known to confer promotion of flowering under SDs (the
exact mechanism is currently unknown), and mutations in the
DNA-binding domain or gene suppression via RNAi decreased
HD3A expression under SD photoperiods (Doi et al., 2004; Kim
et al., 2007). Another gene with a CCT motif, OsPRR37, is an
ortholog to the circadian clock gene AtPRR3/7, and although
expressed independently of photoperiod, is only functional to
repress HD3A under LDs (Murakami et al., 2007). GHD7 was
also found to suppress the expression of HD3A and to delay
flowering in LDs but does not affect HD3A expression under SDs,
indicating that GHD7 is further upstream of both HD3A and
EHD1 in the gene network that controls rice flowering.

Cultivated rice is widely grown throughout Asia, including
geographical areas in northern Asia with long light periods of
up to 14.5 h per day during the growth period (Izawa, 2007).
To avoid cold temperatures during grain filling common to
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these regions, photoperiod insensitive, early flowering and rice
cultivars are required (Izawa, 2007). Although flowering in rice
is normally restricted to SDs, rice cultivars were developed with
the ability to flower under LD conditions. The pathway involved
in floral activation under LD conditions involves OsMADS50, a
homolog of AtSOC1, which activates EHD1 expression, which
in turn activates expression of RICE FLOWERING LOCUS T
1 (OsRFT1), the closest homolog of HD3A (Komiya et al.,
2009; Ryu et al., 2009). HD3A and OsRFT1 are both mobile
flowering signals, located very closely on the same chromosome,
but with inverse functions - HD3A is activated under LD,
whereas OsRFT1 expression is activated under SD conditions.
Also, natural variation of OsPRR37 (Koo et al., 2013) and major-
effect HD-QTLs (HD1, HD2, HD4, and HD5) (Li X. et al., 2015),
were found to modulate photoperiod sensitivity and to adapt rice
varieties to cultivation at a wide range of latitudes. To date, no
homologs in Arabidopsis or temperate cereals are known for any
genes of this alternate pathway.

HD1-dependent pathway under an inductive (SD)
photoperiod. Inductive SD conditions activate a conserved
pathway between rice and Arabidopsis, in which HD1 promotes
flowering via activation of HD3A (Kojima et al., 2002). Therefore,
HD1 has two opposing functions in the flowering network – to
promote flowering under SD, but also to inhibit flowering under
LD photoperiods via interaction with HD3A. Similarly, OsELF3,
orthologous to AtELF3, has a dual role, as it promotes flowering
in SDs via activation of EHD1, but also represses GHD7 to
promote flowering in LDs (Zhao et al., 2012). Very recently, a
novel flowering time pathway unique to monocot plants was
discovered with HD1, GHD7, and EHD1 as its key genes: HD1
was shown to directly interact with GHD7 to form a complex
that specifically bind to a cis-regulatory region in EHD1 resulting
in repression of EHD1 gene expression only under non-inductive
LD conditions (Nemoto et al., 2016).

As a gene unique to rice, EHD1 is a key enabler of flowering
transition under SD conditions by enhancing expression of
HD3A and OsRFT1 independently of HD1 (Doi et al., 2004).
EHD1 expression is activated by blue light in the morning and
controlled via OsGI.EHD1 was found to be up-regulated by the
MADS-box gene OsMADS51 (Kim et al., 2007), which itself is
also positively regulated by OsGI (Kim et al., 2007). The gene
INDETERMINATE1 (OsID1) triggers the expression of HD1 and
HD3A for flowering under SDs (Matsubara et al., 2008), and as for
OsMADS51, no known homologs in Arabidopsis were detected.

The heterotrimeric heme activator protein (HAP) complex
regulates flowering in Arabidopsis through binding to the CCAAT
box, a cis-acting element (Ben-Naim et al., 2006). The gene
GRAIN NUMBER, PLANT HEIGHT, AND HEADING DATE 8
(GHD8) encodes a CCAAT box-binding protein belonging to the
HAP3 subfamily in rice, and was recently cloned (Yan et al., 2011).
GHD8 is homologous to AtHAP3b and acts upstream of EHD1,
HD3A, and OsRFT1 in the rice flowering pathway. Under SD
conditions, GHD8 enhances, and under LD conditions inhibits
gene expression of EHD1, HD3A, and OsRFT1 via a coordinated
interaction with GHD7.1, a PSEUDO-RESPONSE REGULATOR
(PRR) gene (Yan et al., 2013). GHD7, GHD8, and GHD7.1 have

pleiotropic effects on heading date, grain yield and plant height,
and together with HD1 are the key rice genes that defines grain
yield and environmental adaptability to rice growing regions.

Genetic regulation of gibberellin response pathways
GA signaling affects floral organ development and pathways
are largely conserved between rice and Arabidopsis. The casein
kinase I (CKI) gene EARLY FLOWERING1 (OsEL1) is associated
with the negative regulation of GA-responsive signaling via
post-translational modification of SLENDER RICE 1 (OsSLR1)
protein. Mutations in OsEL1 lead to an enhanced response to GA
signaling, and as a consequence to early flowering, lower spikelet
fertility and thus lower grain yield under non-inductive LDs.
However, a few extremely early flowering rice cultivars contain
the mutation in OsEL1 but can maintain normal GA signaling
through a currently unknown mechanism.

The rice gene SEMI-DWARF1 (OsSD1) contributed to the
major increases in rice yield during the “Green Revolution”
and is involved in GA signaling and biosynthesis (Peng et al.,
1999). A similar reduced-height phenotype is the result of a loss-
of-function mutation in OsGA20OX2, orthologous to the GA
biosynthetic gene HvGA20OX2 in barley (Spielmeyer et al., 2002).
HvGA20OX2 was proposed as the candidate gene underlying
sdw1/denso locus and confers a reduced plant height phenotype
in barley (Jia et al., 2011).

Flowering Time Regulation in Maize
Genetic regulation of photoperiod response
Maize was domesticated about 9,000 years ago from the wild
grass teosinte (Zea mays ssp. parviglumis), a native to tropical
Central America (Matsuoka et al., 2002). Teosinte requires
SD photoperiods to flower, and domesticated maize has been
adapted since then to cooler temperate regions of North America
and Europe (Chardon et al., 2004). Maize post-domestication
breeding was particularly driven by selection for genes and
loci to adapt flowering time to new growth environments
(Mascheretti et al., 2015). Photoperiod insensitive (day-neutral)
maize varieties are cultivated in temperate climates, whereas
photoperiod sensitive maize varieties are grown in tropical
regions.

Flowering time in maize can range from only 35 up to
120 days, highlighting the high level of genetic diversity in maize
phenology genes (Colasanti and Muszynski, 2009). Only a few
mutations in flowering time genes have been identified so far,
which contributes to the lack of current understanding of genetic
and regulatory factors that determine maize phenology. Our
current knowledge about maize flowering time is mainly based
on results from QTL meta-analysis, (transposon) mutagenesis,
and comparative genomics studies with the Arabidopsis and rice
genomes (Buckler et al., 2009; Wei et al., 2015). Key phenology
genes are listed in Table 4.

Maize contains a large family of Zea CENTRORADIALIS
(ZCN) genes and related to both AtFT and AtTFL (Danilevskaya
et al., 2008a). The most likely candidate for the FT ortholog
in maize is Zea CENTRORADIALIS8 (ZmZCN8), a gene
encoding a PEBP with high sequence similarity to the
Arabidopsis flowering time gene AtFT1. In addition, a second
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TABLE 4 | Maize functional orthologs of Arabidopsis thaliana genes.

Maize gene Arabidopsis gene Function Chromosome Reference

Functional orthologs

ZmD8 AtGAI Gibberellin metabolism 1L Thornsberry et al., 2001

ZmDLF1 AtFD Floral activator 7 Danilevskaya et al.,
2008a

ZmMADS1 AtSOC1 Floral promoter 9 Alter et al., 2016

ZmPHYA,
ZmPHYB, ZmPHYC

AtPHYA, AtPHYB,
AtPHYC

Light signaling, photoperiodic regulation 1, 9, 5 Sheehan et al., 2004

ZmZCN8 AtFT Floral promoter 8 Lazakis et al., 2011;
Meng et al., 2011

ZmZCN6 AtTFL1 Floral promoter 4 Danilevskaya et al., 2011

ZmZFL2 AtLFY Meristem identity 10 Bomblies et al., 2003

Unique genes

ZmID1 – Floral promoter, autonomous pathway 1 Colasanti et al., 2006

Functional orthologs have a conserved function, and unique genes have currently no known functional orthologs nor homologs in Arabidopsis. Gene name abbreviations
are explained in Supplementary Table 1.

FIGURE 4 | Major flowering pathway genes of maize (Zea mays). Positive and negative regulatory connections are indicated by arrows and lines with T-ends,
respectively. White, black, and gray arrows or T-ends indicate regulatory connections occurring primarily under long days, short days, or independently of day length,
respectively. Gene name abbreviations are explained in Supplementary Table 1.

maize florigen, the ZmZCN8 paralog ZmZCN7, was proposed
(Mascheretti et al., 2015). Displaying florigen-like characteristics,
ZmZCN8 is expressed only in the leaf phloem of mature
leaves and interacts with the FD-like bZIP protein DELAYED
FLOWERING1 (ZmDLF1) in the SAM (Figure 4). ZmZCN8
expression is elevated following a diurnal cycle under SDs in

photoperiod-sensitive tropical maize, whereas ZmZCN8 levels
remained unchanged in day-neutral temperate maize (Muszynski
et al., 2006; Meng et al., 2011). Ectopic expression of ZmDLF1
resulted in an early flowering phenotype whereas silencing led to
a severe delay flowering, as found for its functional equivalent
OsID1 in rice (Matsubara et al., 2008). A putative AtCO
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ortholog in maize, ZmCONZ1, was located at a chromosome
region syntenic with the rice ortholog HD1 and exhibits a
diurnal expression pattern dependent on photoperiod (Miller
et al., 2008). However, and there is currently no evidence that
ZmCONZ1 can directly activate ZmZCN8 expression in SDs.

Other genes in the maize flowering time network include Zea
FLORICAULA/LEAFY genes (ZmZFL1 and ZmZFL2) (Bomblies
et al., 2003). ZmZFL1 and ZmZFL2 are orthologous to the
meristem identity genes Antirrhinum majus FLORICAULA
(AmFLO) and AtLFY and share conserved roles in controlling
inflorescence architecture and patterning (Bomblies et al.,
2003). Among other genes with likely conserved functions
between maize and Arabidopsis are phytochromes ZmPHYA,
ZmPHYB, and ZmPHYC (Sheehan et al., 2004). Unique for maize
are Miniature Inverted-Repeat Transposable Element (MITE)
sequence insertions detected in ZmPHYB2 that showed that
the absence of the MITE correlated with enhanced ZmPHYB2
mRNA expression compared to ZmPHYB2 with MITE (Zhao
et al., 2014). This evidence points toward a role of MITEs
to inhibit ZmPHYB2 mRNA expression which ultimately leads
to delayed flowering. Similarly, a MITE insertion into the
VEGETATIVE TO GENERATIVE TRANSITION (VGT1) locus
was associated with early flowering (Castelletti et al., 2014).
The CCT domain-containing protein ZmCCT was found to be
associated with photoperiod sensitivity and to regulate maize
flowering time under LD conditions (Yang et al., 2013). The
insertion of a CACTA-like transposon into its promoter represses
ZmCCT gene transcription and thus reduced maize photoperiod
sensitivity under LDs. Yang et al. (2013) provided evidence
that the CACTA-like transposon was originally inserted in a
tropical maize plant sensitive to SDs and was then accumulated
selectively post-domestication as maize adapted to a range of LD
environments.

Genetic regulation of autonomous and gibberellin response
pathways
Compared to flowering sensitive to vernalization as found in
the temperate grasses wheat and barley or photoperiod-induced
pathways as found in tropical rice, endogenous cues are more
crucial for flowering than environmental signals in day-neutral
temperate maize. The floral promoter INDETERMINATE1
(ZmID1) is a transcriptional regulator of the maize autonomous
flowering pathway that functions in developing leaves to
promote flowering (Wong and Colasanti, 2007). ZmID1 encodes
a monocot-specific C2H2-type zinc finger protein without
any known Arabidopsis ortholog and is hypothesized to act
independently of the photoperiod pathway (Colasanti et al.,
2006). Recent reports show that ZmID1 expression levels are high
in developing leaves, and transcript and protein levels remain
stable throughout the light cycle (Wong and Colasanti, 2007;
Coneva et al., 2007). Mutations in ZmID1 lead to an extended
vegetative phase (Colasanti et al., 2006). Genetic and expression
data has shown that ZmID1 activates DELAYED FLOWERING1
(ZmDLF1) in the SAM, most likely indirectly (Muszynski et al.,
2006; Meng et al., 2011), which is necessary for flowering
through its interaction with ZmZCN8. Subsequent expression
of floral identity genes, such as the floral transition MADS

box gene ZmZMM4, then initiate reproductive development
(Danilevskaya et al., 2008b).

Very recently, transcription and chromatin modifications of
ZmZCN8 and its paralog ZmZCN7, a potential second maize
florigen, were analyzed during floral transition in day-neutral
maize and tropical teosinte (Mascheretti et al., 2015). This study
led to the proposal of an alternative epigenetic mechanism of
ZmID1-mediated regulation of ZmZCN8 expression in which
ZmID1 establishes chromatin modifications in developing leaves
of day-neutral maize to enable the expression of florigen genes
ZmZCN8 and ZmZCN7 in the mature leaf later in development
(Mascheretti et al., 2015). By contrast, a different set of ZmZCN8
chromatin modification patterns were detected in teosinte in
response to inductive SDs, which highlights both conserved
and unique features of epigenetically controlled flowering time
mechanisms between autonomous and photoperiod-dependent
pathways in maize.

GA accumulation and signaling has a direct positive affect on
flowering time in maize (Thornsberry et al., 2001). The maize
gene DWARF8 (ZmD8) encodes a DELLA protein orthologous
to both Arabidopsis GIBBERELLIN INSENSITIVE (AtGAI)
and the wheat REDUCED HEIGHT mutations TaRHT-B1 and
TaRHT-D1, which were used to develop the high-yielding
semidwarf varieties of the “Green Revolution” (Peng et al., 1999).
Polymorphisms in ZmD8 were associated with differences in
flowering time (Thornsberry et al., 2001). Very recently, ZEA
MAYS GA REGULATORY FACTOR (ZmGRF) was identified as
a new member of the bZIP protein transcription factor family in
maize (Xu et al., 2015). ZmGRF transgenic Arabidopsis plants
had enhanced GA levels indicating that ZmGRF has a function
in plant morphology and development, and Arabidopsis has a
currently unknown ortholog of ZmGRF.

FUTURE CLIMATE CHANGE
SCENARIOS: ADAPTATION TO NEW
GROWING ENVIRONMENTS AND
CONDITIONS

Global food production is not increasing fast enough to meet
the needs of the rapidly growing human population, and at
the same time, global warming as a result of climate change
threatens the productivity of existing agricultural land (United
Nations Food and Agriculture Organization, 2009). In cereal
crops, the correct targeting of flowering time to a narrow
seasonal window is directly linked with an increase in grain yield.
Climate change and global warming strongly alter phenological
cycles and decrease yields of cereals and other crops through
rising temperatures and elevated atmospheric carbon dioxide
(CO2) levels, and more frequent extreme weather events such
as drought. This poses a significant challenge to crop growers as
they have to adjust crop management practices including sowing
dates to achieve flowering at the optimal time. Optimal timing
of flowering has also implications for a variety of other traits
such as plant vigor, water-use efficiency, and yield (Ni et al.,
2009; Kenney et al., 2014). Also, susceptibility to abiotic and
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biotic stresses and fertilizer requirements vary during the course
of plant development. A major challenge for crop breeding is
how to plan and adapt breeding efforts to future climate change
scenarios.

Impact of Elevated CO2 on Plant
Phenology
The Intergovernmental Panel on Climate Change Reports (IPCC)
predicts that the current CO2 concentrations will more than
double by 2050, and by 2100 more than triple (IPCC, 2013).
Plants play a central role in mitigating the effects of rising
atmospheric CO2 through photosynthesis which converts solar
energy into energy stored in starch and other carbohydrates.
Elevated CO2 was shown to increase photosynthesis and growth
of many plant species (Long et al., 2004; Wang et al., 2015).
Changes in phenology and plant size due to high CO2 is
believed to be an indirect consequence of the effect of CO2 on
higher photosynthetic rate resulting in enhanced plant growth.
These changes can be highly variable depending on other
environmental factors, plant species, and length and level of
CO2 exposure, with some studies showing that elevated CO2
accelerates flowering particularly of crop species with a weaker
or no effect on many wild plant species (Springer and Ward,
2007). An early study by Reekie et al. (1994) found that elevated
CO2 enhanced flowering in LD plans, but delayed flowering in
all SD plants grown under inductive photoperiods. By contrast,
an experiment that exposed a species-rich temperate grassland
to both pure-CO2 free-air CO2 enrichment (FACE) and infrared
warming only detected an effect of higher temperature on
phenology but no effect of elevated CO2 without experimental
warming (Hovenden et al., 2008).

In a meta-analysis conducted by Taub et al. (2008) elevated
CO2 was found to reduce grain protein concentration of wheat,
barley, and rice of 10–15% compared to levels detected at
ambient CO2 levels. A reduction in protein concentration was
also detected for other crops including potato and soybean,
but the magnitude of the effect varied was dependent on the
experimental facilities and procedures. Such changes in grain
nutritional composition have important implications for the
malting industry for malting barley varieties, as well as the
consumers of crop plant material.

Little research has been conducted so far trying to address
the molecular pathways and mechanisms that drive high-CO2-
mediated changes of flowering time. Elevated CO2 was shown to
alter the accumulation of photosynthates including sugars and
starch (Springer and Ward, 2007). Elevated CO2 was shown to
interact with both sensing and subsequent transduction of light
signals in the Arabidopsis photoperiod pathway, which varied
with the direction and magnitude of photoperiod (Song et al.,
2009). The impact of elevated CO2 on time of flowering was
linked to enhanced plant growth and an increased number of
leaves at flowering. Ward et al. (2012) identified a QTL that affects
flowering time at elevated CO2 levels, also in Arabidopsis, with no
connection to photoreceptors. Instead, the gene MOTHER OF FT
AND TFL1 (AtMFT), a homolog of the flowering inducer AtFT
and the inflorescence architecture gene AtTFL1, was identified as
the underlying candidate gene.

Several reports on the impact of elevated CO2 on plant
phenology often provide ambiguous results or are even
contradicting - elevated CO2 leads to early flowering in some
species, delays flowering in others, or shows no effect. Clearly,
more work is needed to elucidate the mechanisms and causes of
rising CO2 levels on flowering time and quality traits of plants
including crops.

Impact of Increased Temperature on
Plant Phenology
Temperature affects plant development rates in many plant
species as well as vernalization in winter crops. Plants require
a certain number of degrees accumulated per day above a
defined temperature threshold called thermal time, also known
as growing degree days (GDD) or units (GDU), to reach the next
developmental stage (Bonhomme, 2000). Warmer temperatures
often increase the rate of development (Craufurd and Wheeler,
2009). It is forecast that rising CO2 levels will also invariably drive
temperatures higher, and their combined effects were shown to be
more severely affecting flowering time than the individual effects
(Hovenden et al., 2008; Johnston and Reekie, 2008). In wheat,
elevated CO2 had a positive effect on root and shoot biomass,
which was alleviated when plants were additionally exposed to
high temperatures (Benlloch-Gonzalez et al., 2014). Field-based
experiments using elevated CO2 combined with supplementary
heating (temperature FACE, T-FACE) and different sowing date
treatments exposed wheat plants to temperatures ranging from
below 0◦C to above 40◦C (White et al., 2011). This resulted
in significantly early heading date as a response to increasing
temperature.

Current knowledge on molecular pathways and mechanisms
impacted by temperature-mediated changes of flowering time
is poor. Recent studies suggest a role of MADS-box genes in
response to high temperatures in Arabidopsis: AtFLC, the best
studied temperature-responsive MADS-box gene, was shown to
prolong the circadian period at higher temperatures as a means
to compensate the circadian clock (Edwards et al., 2006).

THE POTENTIAL FOR CROP
IMPROVEMENT USING
PHENOLOGY-DEPENDENT TRAITS

Flowering time genes and regulators often have pleiotropic
effects on multiple agronomically important traits, including the
number and size of seeds, spikelet fertility, growth vigor, and
stress tolerance (Xue et al., 2008; Ni et al., 2009; Andres and
Coupland, 2012; Kwon et al., 2015). A major driver of crop
evolution and adaptation, flowering time genes are key selection
factors for crop breeding.

Crop Growth Simulation Models to
Predict Crop Development: Phenology
and Plasticity under Climate Change
The optimization of flowering time of cereal crops to target
environments under different environmental conditions is key
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to adapting future crops to changing environments for increased
crop productivity, and to meet the goal to increase world food
supply by 70% by 2015 (Anonymous, 2009). When extreme
weather events coincide with sensitive growth stages in crops,
it can have devastating effects on plant development and yield.
Crop models have been developed with the goal to simulate
interactions between genotype × environment × cropping
system to predict and optimize phenology, crop yields, and
other agronomic parameters in response to climate variations
and to support ideotype plant breeding (Rötter et al., 2015).
Phenological stages of crop plant are simulated in response to
photoperiod and temperature, which impacts the development
rate and vernalization requirement, as well as their interaction
(Keating et al., 2003).

Model-based predictions of these interactions can be used for

(i) ideotyping: identifying breeding targets that define crop
growth and development in a given environment,

(ii) agronomic diagnosis: characterizing the growth
environment, and

(iii) cultivar choice: facilitating cultivar selection for a given
environment and cropping system (Jeuffroy et al.,
2014).

The most frequently used genotypic characteristics in crop
models relate to phenology traits. For example, in a study
representing wheat growing regions in Europe with the aim to
optimize wheat yields for future climate scenarios, Semenov et al.
(2014) listed nine cultivar parameters, with three of them directly
related to plant phenology (phyllochron, day length response, and
duration of grain filling). Stresses at booting were also found to
impact yield more severely than at anthesis.

In environments characterized by a scarcity of water during
growth periods, crop phenology can be the main factor that limits
yield potential and can explain much of the yield variability.
For example, in Australia, which is characterized by warm
winters, hot and dry spring-summers, low-fertility soils and
highly variable rainfall, increasingly earlier maturity in the
original wheat cultivars introduced from Europe have been
a key adaptation to increase yields in these predominantly
dry rainfed growing environments (Richards et al., 2014).
This allowed crops to flower and fill grain sufficiently early
to escape terminal drought stress and high temperatures

that were favorable for the spread of diseases. By contrast,
in temperate and more humid environments as found for
example in Western Europe, biotic stresses including crop
diseases are the main contributors of yield limitation and
are rarely addressed by model simulations (Jeuffroy et al.,
2014).

The model performance of individual models was shown
to have limited capability to estimate yield across different
experiments consistently (Li T. et al., 2015). To improve
the quality of the modeling of climate change impacts on
agriculture, long-term empirical data sets of high quality for
model calibrations and testing need to be made available.
The Agricultural Model Intercomparison and Improvement
Project (AgMIP) is composed of international teams and
linkages of climate, crop, and economic modeling research
that work together to improve crop simulation models1.
The Knowledge Hub FACCE MACSUR is based in Europe
and brings together 18 participating European institutions to
facilitate the modeling of climate change impacts on European
agriculture2.

Genetic Sequence-Based Selection and
Targeted Manipulation of Phenology
Genes to Predict Phenology
The potential for crop improvement using phenology-related
traits has become a major research focus in recent years (Turner
et al., 2005; Cockram et al., 2007; Greenup et al., 2009; Bendix
et al., 2015; Müller et al., 2016). A clear understanding of
the natural variation at the loci and underlying genes is a
key prerequisite to enable the development of varieties adapted
to future climates. Phenology gene and allelic information
have demonstrated value for breeding improved cereal crops
and were used to fine-tune adaptation to different geographic
regions and climatic conditions (Porker et al., 2015). This
has allowed growers and breeders in the past to produce
elite varieties with optimal flowering time for various target
environments that achieved high yields at least for current
climates (Table 5). For example, polymorphisms in vernalization
requirement (VRN) genes, photoperiod sensitivity (PPD) genes,

1http://www.agmip.org
2http://www.macsur.eu

TABLE 5 | Targets for QTL or genetic sequence-based selection.

Prediction based on genes
or QTL

Target trait Crop Reference

QTL Heading date Wheat Bogard et al., 2014

TaVRN1, TaVRN2, TaVRN3,
TaVRN4

Flowering Wheat Brown et al., 2013; Zhang
et al., 2015

TaPPD-D1, TaVRN1 Flowering Wheat White et al., 2008

QTL Flowering Barley Yin et al., 2005

QTL Flowering Rice Nakagawa et al., 2005

HD1, EHD1 Flowering Rice Wei et al., 2016

QTL Leaf elongation rate Maize Reymond et al., 2003

Gene name abbreviations are explained in Supplementary Table 1.
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EAM loci, as well as EPS loci were selected in wheat
and barley which together account for much of the genetic
variation in flowering time in these crops (Zakhrabekova et al.,
2012).

Although considerable progress regarding model
improvement has been made, difficulties remain that are
often linked to high genotype × environment interactions.
Gene-based models are a new concept as part of the future
direction of crop modeling that utilizes a large amount of
genetic data generated by molecular genetics techniques in
the laboratory. They have the potential to allow in silico
identification of the best allelic combination for a given set
of environments. For example, Zheng et al. (2013) recently
presented a gene-based model to predict wheat heading time
across different environments along the Australian wheat belt.
The effects of TaPPD-D1 genes were combined with three
homoeologous TaVRN1 genes (TaVRN1-A1, TaVRN1-B1 and
TaVRN1-D1) to explain variation for heading time. In this
study, the winter allele of TaVRN-A1 had the strongest effect on
delaying heading time compared with the effects of the winter
alleles of TaVRN-B1 and TaVRN-D1. The gene-based model
was built to predict wheat phenology based on the modeling
framework Agricultural Production Systems Simulator (APSIM)
using gene parameters for TaVRN1 and TaPPD-D1, showing
an improved performance over existing gene- and QTL-based
models.

Simulations of crop yield using their allelic values at QTL
as an input in multi-environment crop models are promising
to enable predictions for the beneficial or adverse effect of a
given combination of alleles on plant performance and yield
(Tardieu and Tuberosa, 2010). Bogard et al. (2014) proposed
a QTL-based model to predict heading time in wheat, also
using genotype vernalization requirements and photoperiod
sensitivity as model parameters. The main difference to other
gene-based approaches is that this model did not make a
priori assumptions about which exact genes determine model
parameters. Earlier examples of gene and QTL-based model
prediction of flowering also exist for maize (Reymond et al.,
2003), rice (Nakagawa et al., 2005), and barley (Yin et al.,
2005).

PROSPECTS AND CHALLENGES

The degree of conservation and functional diversification of
phenology genes between Arabidopsis thaliana and cereal crops
has been researched extensively since the release of cereal crops
reference genomes. As a consequence, major discoveries have
been made in recent years for wheat, barley, rice, and maize, but
further developments are needed to translate these findings into
improved yield in the field, particularly in the following areas:

(i) Identification of all genomic regions containing phenology
and related genes for agronomically important cereal
crops: The next phase of model development and
validation is to incorporate genome-wide association
mapping (GWAS) and genotyping-by-sequencing (GBS)

technologies to maximize the rate of trait discovery
and improve phenotypic prediction under diverse
environments.

(ii) More extensive genetic characterization of cereal crop
germplasms to determine allelic diversity of phenology and
related genes and their effects on flowering time.

(iii) Development of diagnostic markers to capture the range
of allelic variation for major phenology genes in cereal
crops: The utilization of existing phenology gene alleles
to combine traditional breeding techniques with modern
biotechnology using marker-assisted selection will further
increase the efficiency of introgression of favorable alleles
into elite crop cultivars.

(iv) Improvements in accurate field phenotyping of phenology-
related and agronomic traits across a range of latitudes:
Crop responses to a combination of elevated CO2 and
high temperature can vary depending on the experimental
setup, and conclusions are often based on experiments
conducted in controlled environment chambers. The
development of field facilities to test several environmental
factors on field crops remains a major challenge, and
comparably little information is currently available on
crops responses to elevated CO2 × high-temperature
interactions under field conditions.

(v) Advancements in simulation methodologies to link gene
sequence information and environmental parameters
with performance in the field: Crop simulation models
have been developed to provide new insights into
how cereal crop varieties may respond under different
climate change scenarios and associated stresses, and to
design model-aided ideotypes tailored to specific cropping
environments. A better understanding of the interactions
between photoperiod and high temperature is required to
predict responses to of future climates. Also, the significant
impact of phenology-related genes on grain yield remains
to be integrated into such models.
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