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Flavonoids are secondary metabolites that are extensively distributed in the plant

kingdom and contribute to seed coat color formation in rapeseed. To decipher the genetic

networks underlying flavonoid biosynthesis in rapeseed, we constructed a high-density

genetic linkage map with 1089 polymorphic loci (including 464 SSR loci, 97 RAPD

loci, 451 SRAP loci, and 75 IBP loci) using recombinant inbred lines (RILs). The map

consists of 19 linkage groups and covers 2775 cM of the B. napus genome with an

average distance of 2.54 cM between adjacent markers. We then performed expression

quantitative trait locus (eQTL) analysis to detect transcript-level variation of 18 flavonoid

biosynthesis pathway genes in the seeds of the 94 RILs. In total, 72 eQTLs were detected

and found to be distributed among 15 different linkage groups that account for 4.11% to

52.70% of the phenotypic variance atrributed to each eQTL. Using a genetical genomics

approach, four eQTL hotspots together harboring 28 eQTLs associated with 18 genes

were found on chromosomes A03, A09, and C08 and had high levels of synteny with

genome sequences of A. thaliana and Brassica species. Associated with the trans-eQTL

hotspots on chromosomes A03, A09, and C08 were 5, 17, and 1 genes encoding

transcription factors, suggesting that these genes have essential roles in the flavonoid

biosynthesis pathway. Importantly, bZIP25, which is expressed specifically in seeds,

MYC1, which controls flavonoid biosynthesis, and the R2R3-type gene MYB51, which

is involved in the synthesis of secondary metabolites, were associated with the eQTL

hotspots, and these genes might thus be involved in different flavonoid biosynthesis

pathways in rapeseed. Hence, further studies of the functions of these genes will provide

insight into the regulatory mechanism underlying flavonoid biosynthesis, and lay the

foundation for elaborating the molecular mechanism of seed coat color formation in

B. napus.
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INTRODUCTION

Brassica napus L. (2n= 38, AACC) is an economically important
oilseed crop that is widely cultivated as a source of vegetable oil,
biodiesel, and protein-rich meal for animal feed (Kimber and
Mcgregor, 1995). Yellow B. napus seeds are the most desirable,
as they have thinner seed coats and higher seed oil and protein
contents than do the dark-seeded varieties with a similar genetic
background (Olsson, 1960; Tang et al., 1997; Meng et al., 1998).
Several studies have shown that seed coat color is determined by
the content of the phenolic compounds cyanidin and procyanidin
in B. napus (Marles and Gruber, 2004; Lepiniec et al., 2006;
Qu et al., 2013). These pigments are mainly composed of
polymers of proanthocyanidin (PA), which is synthesized via the
flavonoid-anthocyanin-proanthocyanidin pathway (simplified as
flavonoid pathway here), a core branch of the phenylpropanoid
pathway (Bharti and Khurana, 2003; Gachon et al., 2005).
In A. thaliana, most of the structural and regulatory loci of
the core flavonoid biosynthesis pathway have been cloned and
functionally characterized, and over 22 Arabidopsis mutants
(tt1–tt19, ttg1, ttg2, and aha10) with altered patterns of seed
coat color have been identified. Loss-of-function mutations [tt
(transparent testa) or tt-like] in any one of these single-copy loci
change the seed coat color from dark brown to yellow (Wan
et al., 2002; Winkel-Shirley, 2002; Baudry et al., 2004; Lepiniec
et al., 2006). In addition, members of the MYB and R/B-like
basic helix-loop-helix (bHLH) families were demonstrated to be
involved in the flavonoid biosynthesis pathway; for example, a
transcriptional activation MYB-bHLH-WD40 complex (MBW)
consisting of R2R3 MYB, bHLH, and WD40 proteins was
found to be directly involved in the regulation of anthocyanin
biosynthetic genes and the bHLH proteins were found to
play essential roles in the synergistic regulation of flavonid
accumulation (Baudry et al., 2006; Dubos et al., 2008; Kitamura
et al., 2010; Stracke et al., 2010). Furthermore, TT2 (R2R3-
MYB), TT8 (bHLH), and TTG1 (WDR) affect the production
of PA, which is a substrate of the flavonoid pathway (Baudry
et al., 2004, 2006; Lepiniec et al., 2006), and AtMYB4, bHLHIN1,
and AtICX1 regulate various flavonoid biosynthesis pathways
(Burr et al., 1996; Jin et al., 2000; Wade et al., 2003). Moreover,
some homologs of genes involved in flavonoid biosynthesis have
been cloned and characterized in B. napus (Wei et al., 2007;
Xu et al., 2007; Ni et al., 2008; Akhov et al., 2009; Auger
et al., 2009; Chai et al., 2009; Lu et al., 2009; Chen et al.,
2013). These results provide a foundation for further studies
of the molecular and regulatory mechanisms underlying seed
coat color formation in B. napus. Based on linkage mapping
with DH, RIL, and F2 B. napus populations, a major QTL
was identified on Chr. A09 that accounted for 40–60% of the
phenotypic variance of seed coat color (Somers et al., 2001;
Liu et al., 2005; Badani et al., 2006; Fu et al., 2007; Xiao
et al., 2007; Rahman et al., 2010; Zhang et al., 2011). Candidate
genes involved in seed coat color determination, such as TT10
and AHA10, have still not successfully been used in rapeseed
breeding programs aimed at producing seeds with a particular
coat color (Fu et al., 2007; Stein et al., 2013; Zhang et al.,
2013). Efforts to breed yellow-seeded B. napus have been largely

unsuccessful, since seed coat color is a typical quantitative trait
under polygenic control (Rahman, 2001; Liu et al., 2005; Badani
et al., 2006) that is influenced by factors such as maternal effects
and the environment (Deynze et al., 1993). Hence, the molecular
mechanism underlying yellow seed coat formation in Brassica is
poorly understood.

Previous research suggested that one to four genes determine
seed coat color in B. napus (Somers et al., 2001; Xiao et al.,
2007; Zhang et al., 2011). Further, traditional studies for
mapping quantitative trait loci (QTLs) had focused on identifying
the major QTLs associated with seed coat color in different
populations (Liu et al., 2005, 2006; Badani et al., 2006; Fu et al.,
2007; Xiao et al., 2007; Yan et al., 2009; Zhang et al., 2011).
However, these genes remain to be cloned and functionally
characterized. Recently, the genome of the allopolyploid B. napus
was released, and a total of 1097 and 1132 genes were annotated
on the An and Cn subgenomes, respectively (Chalhoub et al.,
2014). Moreover, genome-wide gene expression profiling has
been extensively used to generate biological hypotheses based on
differential expression. mRNAs that are differentially expressed
among individuals can be considered as quantitative traits and
their variation can be used to map expression quantitative trait
loci (eQTLs) (Jansen and Nap, 2001). Based on the location
of the eQTL relative to the location of the affected gene(s),
each locus can be classified as cis acting (i.e., eQTL located
near the affected gene) or trans acting (i.e., eQTL does not
coincide with the affected gene) (Deutsch et al., 2005; Doss
et al., 2005; Hubner et al., 2006). Therefore, this approach
not only detects the expression of a specific gene and the
genotype at that gene’s locus, but it also reveals clustered trans-
eQTLs that are simultaneously regulated by a large fraction
of the transcriptome (Brem et al., 2002; Schadt et al., 2003;
Morley et al., 2004). This approach has been successfully
used in crop plants to detect transcript-level variation and
downstream phenotypic trait variation (Jordan et al., 2007; Shi
et al., 2007; West et al., 2007; Potokina et al., 2008; Xiao
et al., 2013, 2014; Del Carpio et al., 2014; Basnet et al., 2015,
2016). Although eQTLs have successfully been cloned in plants
(Werner et al., 2005; Zhang et al., 2006), global eQTL analysis
in a large mapping population of plants has not hitherto been
performed.

Here, we greatly increased the marker density of a RIL
genetic map in rapeseed, from 420 loci with a total length of
1744 cM (Fu et al., 2007) to 1089 loci with a total length of 2775
cM. To decipher the upstream regulatory network underlying
flavonoid biosynthesis, we used a sample of 94 recombinant
inbred lines (RILs) from a population derived from a cross
between the female parent GH06 and themale parent ZY821. The
transcript levels of 18 flavonoid biosynthesis pathway genes were
evaluated using RNA extracted from seeds of the RIL population
at 30 days after flowering (DAF). Regarding the expressed
transcript level of each gene in the RILs as a quantitative trait,
we then performed eQTL analysis to detect eQTLs. Using this
method, we were able to construct the regulatory pathway that
contributes to the complex trait of seed coat color. We thus
demonstrate that eQTL mapping can be successfully applied to
B. napus.
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MATERIALS AND METHODS

Plant Materials and Total RNA Extraction
The recombinant inbred line (RIL) population was derived from
a cross between the male parent Zhongyou 821 and the female
parent GH06 followed by 10 successive generations of selfing
by single seed propagation. Parental lines and RILs were sown
in field trials at the plant breeding station at the Chongqing
Rapeseed Technology Research Center (CRTRC) in 2012, as
previously described (Fu et al., 2007). The seeds of 94 F2:10
RILs were harvested at 30 days after flowering (DAF) and used
for total RNA isolation. Total RNA was extracted using the
Plant RNA Mini Kit (Watson Biotechnologies, Inc., China). To
remove contaminating genomic DNA, the total RNA was treated
with RNase-free DNase I (TaKaRa, China). The quality and
concentration of total RNA samples were assessed by agarose gel
electrophoresis and spectrophotometry.

SSR Marker Assays
A total of 1850 SSR markers were developed to increase the
density of the genetic map, including 1014 new developmental
SSR markers (Supplementary Table S6), according to the B. rapa
and B. oleracea genome (prefixed by “SWUA” and “SWUC,”
respectively), 259 published SSR markers (Landry et al., 1991;
Ferreira et al., 1994; Foisset et al., 1995; Uzunova et al., 1995;
Lombard and Delourme, 2001; Xu et al., 2001; Zhao and Meng,
2003; Liu et al., 2005; Piquemal et al., 2005; Qiu et al., 2006; Fu
et al., 2007; Radoev et al., 2008; Cheng et al., 2009; Kim et al.,
2009), 447 SSR markers, and 130 intron-based polymorphism
(IBP) markers provided by Dr. Beom-Seok Park and Dr. Soo-
Jin Kwon of the National Academy of Agricultural Science
(South Korea) (prefixed by “KC-,” “KR-,” “KA-,” “KS-,” “H-,” “B-,”
and “S-”) and by Dr. Jingling Meng (Huazhong Agricultural
University). Genomic DNA was extracted from the young leaves
of five pooled plants per genotype using a standard CTAB
extraction protocol.

PCR reactions were performed in 96-well plates in a volume
of 10 µL. The composition of the mixture was as follows: 20
ng/µl of DNA template, 0.5 pmol of each primer, 0.2 mM
dNTP mix, 1 mM MgCl2, 10 × PCR reaction buffer (with 15
mM MgCl2, TransGen Biotech), and 0.5 units of Taq DNA
polymerase (TransGen Biotech). PCRwas carried out in PTC-100
and PTC-200 thermocyclers with the following program (slightly
modified from that of Piquemal et al., 2005): 94◦C for 4 min;
35 cycles consisting of denaturation at 94◦C for 45 s, annealing
at 55◦C for 45 s, and elongation at 72◦C for 1 min; then a final
elongation at 72◦C 10 min. All PCR products were detected
using non-denaturing polyacrylamide gel electrophoresis (10%
polyacrylamide) on a DYCZ-30 electrophoresis gel with silver
staining (Zhang et al., 2002).

Mapping and Alignments
All markers were tested for Mendelian segregation ratios using
the Chi-square (χ2) test for goodness of fit with the expected
1:1 (a ≥ 0.05) ratio of individual markers in a RIL population.
JoinMap 4.0 was used to build a high-density genetic linkage
map with a minimum logarithm of odds score of 3.0. Genetic

distances were calculated according to the Kosambi formula
(Kosambi, 1944). To reconcile the linkage maps with Brassica
and A. thaliana chromosomes, the genetic map was aligned with
their pseudo-chromosomes using the base-sequences of each
primer (Supplementary Table S3). Intron-based polymorphism
(IBP) markers were developed directly from scaffold sequences,
and the SSRs were considered anchored if the sequence of both
primers matched the genome sequences (85% overlap and 98%
identity). Similarly, the unigene sequences containing SSRs were
aligned with A. thaliana genomic sequences using BLASTN.
Sequences were regarded as homologs of loci in the A. thaliana
genome if they had an e-value threshold of ≤ 1e−10. Regions
that had conserved collinearity with A. thaliana were regarded as
homologous syntenic regions.

Quantitative Real-Time Polymerase Chain
Reaction Analysis
One microgram of each RNA sample was used to make first-
strand cDNA in a 20 µl reaction with Oligo dT-Adaptor Primer
using the RNA PCR Kit (AMV) Ver. 3.0 (TaKaRa, China).
Primers for amplifying partial sequences of genes involved
in the flavonoid biosynthesis pathway were designed from
conserved nucleotide regions identified by multiple alignments
of sequences from A. thaliana (http://www.arabidopsis.org/) and
B. napus (Chalhoub et al., 2014; http://www.genoscope.cns.fr/
brassicanapus/). Primers of genes for real-time PCR are listed
in Supplementary Table S1. Real-time PCR was conducted using
SYBR R© Premix Ex TaqTM II (Perfect Real Time) (TaKaRa, China)
in a PCR mixture consisting of 10 µl SYBR R© Premix Ex TaqTM

II, 1 to 5 µl of template cDNA, 0.8 µM of each PCR primer,
and ddH2O to a final volume of 20 µl. Cycling conditions were
95◦C for 2 min, followed by 40 cycles at 95◦C for 10 s and 60◦C
for 20 s, and a dissociation curve consisting of a 10-s incubation
at 95◦C, 5-s incubation at 65◦C, and a ramp up to 95◦C, and
amplifications were run on the Bio-Rad CFX96 Real Time System
(USA). Melting curves were used to validate product specificity.
The relative expression of the target genes was analyzed with
the 2−11Ct method (Supplementary Table S7) using BnACTIN7
(EV116054) and BnUBC21 (EV086936) as the internal controls
(Wu et al., 2010). All samples were amplified in triplicate and
used for the total RNA preparation. All qRT-PCR assays were
repeated three times, and the mean value was used for further
analysis. The Pearson correlation coefficient (r) and probability
value (p) were used to display correlations and the significance
of differences in expression between any two genes using SPSS
13.0. A probability value of p < 0.05 was considered to indicate
statistical significance.

Expression Profiles of QTLs for Genes
Associated With the Flavonoid
Biosynthesis Pathway
The eQTLs for each gene were estimated by the composite
interval method (CIM) with WinQTL Cartographer 2.5 software
(Lander and Botstein, 1989; Wang et al., 2006). CIM was
used to scan the genetic map and estimate the likelihood of a
QTL and its corresponding effect at every 1 cM. A LOD (Log
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FIGURE 1 | The frequency distribution of relative expression levels of flavonoid biosynthesis genes in B. napus. Abscissa: Relative expression level of each

gene, Ordinate: The number of lines.

likelihood) of≥2.5 indicated that the highest LOD score position
in the interval was a QTL for a trait. The relative contribution
of a genetic component was calculated as the proportion of
the additive effect and phenotypic variance explained by that
component. The linkage group order and QTLs in the map
were processed using Mapchart 2.1 (Voorrips, 2002). QTL
nomenclature, following a previously described system (Mccouch
et al., 1997), started with “q” and was followed by an abbreviation
of the trait name, the name of the linkage group, and the
number of eQTLs in the linkage group that affect the trait. For
instance, “qBAN-4-1” denotes the first eQTL associated with BAN
expression and is detected and located on the fourth linkage
group.

Analysis of Sequences Flanking
trans-eQTLs
To determine the location of flavonoid biosynthesis pathway
genes on B. napus chromosomes and to establish the type of
eQTL, the cDNA sequences of orthologous genes in Arabidopsis
and sequences of eQTL markers were used as query for a
BLASTN search against the B. napus “Darmor-Bzh” reference

genome (Cheng et al., 2014). The 200-kb sequences flanking each
marker in B. napus were extracted from the reference genome.
Genes in these flanking sequences were identified and annotated.
cis-eQTLs coincide with the location of the underlying gene,
whereas trans-eQTLs do not, implying that the observed eQTL
represents the position of a locus that controls the expression
variation of the target gene.

RESULTS

Analysis of Expression Levels of 18 Genes
Involved in Flavonoid Biosynthesis
We assayed the expression levels of 18 flavonoid biosynthesis
genes (Supplementary Figure S3), including 12 structural genes
(i.e., BnTT3, BnTT4, BnTT5, BnTT6, BnTT7, BnTT10, BnTT12,
BnTT15, BnTT18, BnTT19, BnAHA10, and BnBAN) and six
regulatory genes (BnTT1, BnTT2, BnTT8, BnTT16, BnTTG1,
and BnTTG2) (Qu et al., 2013) in B. napus RILs derived from
a cross between the male parent Zhongyou 821 and female
parent GH06 by qRT-PCR, and normalized the gene expression
levels according to the expression values of the male parent
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FIGURE 2 | Linkage map of B. napus and eQTL detection for flavonoid

biosynthesis genes in B. napus. The QTLs and markers were drawn using

MapChart Version 2.0 software (Voorrips, 2002). The distances (in

centiMorgan, cM) to the left of each linkage group were calculated using the

Kosambi function.
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ZY821. We observed significant differences in the expression
levels of these 18 genes between the parental lines and RILs
(p < 0.01 or p < 0.05, Supplementary Table S2). Both skewness
and kurtosis in absolute values implied that the expression
levels of these genes had a normal distribution in the RILs,
and that the expression levels were distributed continuously,
as expected for a quantitative trait (Figure 1). In addition,
the expression levels of all pairwise combinations of these 18
genes were subjected to correlation analysis, and significant
positive and negative correlations were detected between the
expression levels of gene pairs (Table 1), in accordance with
their common function in the flavonoid biosynthesis pathway.
For example, BnTT4 and BnTT5 catalyze the production
of the precursor of all flavonoids and BnTT6 and BnTT3
convert naringenin into leucocyanidin and leucopelargonidin,
respectively (Pelletier and Shirley, 1996; Burbulis and Winkel-
Shirley, 1999; Abrahams et al., 2003; Kasai et al., 2007). Therefore,
significant positive correlations were found among these genes
(Table 1), but they exhibited a significant negative correlation
with BnTT7 (Table 1), which encodes an enzyme that converts
dihydrokaempferol into dihydroquercetin in the flavonoid
biosynthesis pathway (Schoenbohm et al., 2000), suggesting that
there is competition for catalyzing the same precursors of the
flavonoid biosynthesis pathway. Furthermore, the expression
of these genes was significantly positively correlated with
that of structural (BnTT12, BnTT18, and BnAHA10) and
regulatory (BnTT1, BnTT8, and BnTTG1) genes associated with
flavonoid biosynthesis (Table 1), indicating that these genes are
determined by a common upstream gene or activated by the
same biosynthetic precursors of flavonoid in the biosynthesis
pathway.

Linkage Map Construction and Alignments
A total of 1087 molecular markers, including 464 SSRs, 97
RAPDs, 451 SRAPs, and 75 IBP, were mapped on 19 linkage
groups, covering 2, 775 cM of the B. napus genome, according
to the Kosambi function previously published (Fu et al., 2007)
(Figure 2). The average distance between two adjacent markers
was 2.55 cM. The number of markers per linkage group varied
from 6 to 184, and the length of each linkage group varied
from 47.22 to 243.46 cM, with an average genetic distance of
0.83 cM on chromosome A09 and 7.87 cM on chromosome
C02 (Table 2, Figure 2). Nineteen linkage groups were assigned
to the public linkage maps based on anchored SSR markers.
The results showed that the order of markers was relatively
consistent with those in published maps (Piquemal et al., 2005;
Radoev et al., 2008; Cheng et al., 2009; Kim et al., 2009; Xu
et al., 2010). The number of anchored markers per chromosome
ranged from 0 (C06) to 84 (A09), with an average of 12.47 for
the 237 public markers evaluated, and from 2 (A04, A06) to
21 (A02), with an average of 10.32 for the 196 specific markers
newly developed from the B. rapa and B. oleracea genomes.
However, 13 interval gaps in which adjacent markers were
separated by >15 cM were distributed on chromosomes A02,
A03, A04, A06, A10, C01, C02, C04, C05, and C08, respectively
(Table 2, Figure 2). These results show that the 19 linkage groups
included in our linkage map have strong homology within

particular linkage groups, and could be universally used in B.
napus research.

We identified 531 pairs of sequence-informative markers and
mapped these markers to 19 linkage groups (Figure 2). Of these,
370 were anchored to the A and C sub-genomes of B. rapa
and B. oleracea, which have high levels of nucleotide sequence
similarity (E-value ≤ 1e-10), and 21 were mapped to two or
three loci (Supplementary Table S3) that had high levels of
sequence similarity with sequences in B. rapa (Supplementary
Figure S1) and A. thaliana (Supplementary Figure S2). However,
the relative position of some markers was inconsistent between
the linkage map of B. napus and the physical map of B.
rapa (Supplementary Figure S1), possibly due to genomic
rearrangement events such as inversions and intra-chromosomal
translocations and discrepancies related to different population
sizes being used for mapping in the two species (Jiang
et al., 2011). These results can be used to identify candidate
genes involved in the flavonoid biosynthesis pathway based
on the B. napus “Darmor-Bzh” reference genome (Chalhoub
et al., 2014; http://www.genoscope.cns.fr/brassicanapus/) and
The Arabidopsis Information Resource (TAIR, http://www.
arabidopsis.org/index.jsp).

eQTL Analysis of 18 Genes Involved in
Flavonoid Biosynthesis
In an analysis of orthologous regions of eQTLs, we identified
243 copies of 18 genes involved in flavonoid biosynthesis from
A. thaliana (37), B. rapa (55), B. oleracea (52), and B. napus
(99) (Supplementary Table S4; Figure 3) (Krzywinski et al., 2009),
respectively. Seventy-two eQTLs for 18 flavonoid biosynthesis
pathway genes were detected and found to be distributed among
15 different linkage groups, with 3 to 5 eQTLs per gene. Each
eQTL could explain 4.11–52.70% of the phenotypic variance
(Table 3, Figure 2). The results are consistent with sequences
present as a single copy in the A. thaliana genome being present
as 2–8 copies in B. napus (Cavell et al., 1998). Moreover, four
eQTL hotspots were identified on chromosomes A03, A09, and
C08, including 28 eQTLs for 12 genes. According to the value
of additive effects, the positive alleles of 23 eQTLs for seven
genes were derived from the male parent ZY821, whereas the
remaining five eQTLs (i.e., qBnTT5-18-4, qBnTT7-3-3, qBnTT7-
9-4, qBnTT18-18-5, and qBnTT19-18-5) were derived from
the female parent GH06 (Table 3). Furthermore, two eQTL
hotspots were located up- and down-stream of the major QTL
region (32–36 cM of chromosome A09) for seed coat color,
between regions 18–22 cM and 72–76 cM of chromosome A09,
respectively. In addition, 22 major eQTLs explaining over 20%
of the total phenotypic variation were found to be located on
chromosomes A01, A03, A06, A09, C03, and C08 (Figure 2).
Their positive alleles were derived from both of the parents.

Analysis of Flanking Sequences of
trans-eQTLs
To determine whether the eQTLs were cis or trans, the
chromosomal distribution of all characterized tt genes on
B. napus, B. rapa, and B. oleracea were obtained based on
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TABLE 2 | Distribution of molecular markers on different linkage groups.

Linkage group No. of loci No of intervalsa No. of gapsb Average interval (cM) Length (cM) No. of anchored

markers

No. of specific primers from

B. rapa and B. oleracea

A01 87 49 0 2.03 176.56 8 6

A02 41 30 1 2.95 120.91 20 21

A03 62 44 1 3.23 200.32 30 14

A04 23 13 2 4.63 106.49 9 2

A05 84 27 0 1.36 114.45 16 4

A06 44 37 1 3.09 136.13 13 2

A07 82 65 0 2.97 243.47 15 6

A08 38 30 0 2.31 87.71 12 3

A09 184 47 0 0.83 152.74 84 47

A10 35 29 1 4.63 161.88 3 6

C01 61 32 1 2.31 140.68 9 18

C02 6 3 1 7.87 47.22 3 3

C03 53 38 0 3.45 182.65 5 9

C04 60 39 1 2.94 176.18 1 4

C05 45 33 1 4.19 188.61 1 10

C06 61 42 0 2.15 131.32 0 6

C07 49 35 0 2.97 145.43 2 11

C08 14 3 3 6.29 88.02 2 6

C09 58 40 0 3.01 174.51 4 18

Total 1087 636 13 2.55 2775 237 196

adistance between adjacent markers > 1 cM; bdistance between adjacent markers > 15 cM.

BLASTN analysis. We found that only 5 of 18 genes were
mapped to a similar chromosomal location as their eQTLs,
implying that five eQTLs (i.e., qBnTT1-16-4, qBnTT3-9-2,
qBnTT4-13-3, qBnTT5-9-2, and qBnTT18-11-4) were cis-eQTLs,
whereas the remaining eQTLs were trans-eQTLs that controlled
the expression of target genes at distant locations.

Twenty-eight eQTLs for 12 genes were identified in four
eQTL hotspots that almost were trans-eQTLs. We thus assumed
that four eQTL hotspots might include important regulators of
flavonoid biosynthesis in B. napus. Hence, the 200-kb flanking
sequences of core markers of each trans-eQTL in B. napus were
extracted and annotated based on the B. napus “Darmor-Bzh”
reference genome (http://www.genoscope.cns.fr/brassicanapus/)
(Supplementary Table S5). The collinearity of these trans-eQTL
flanking sequences among Brassica species was also determined
from Brassica Synteny Blocks in the BRAD database (http://
brassicadb.org/brad/viewsyntenic.php) (Figure 4). The flanking
sequence of the eQTL hotspot on chromosome A03 of B. rapa
displayed collinearity with chromosome 4 of A. thaliana and
chromosome C06 of A. lyrata (Figure 4A), while the two
hotspots on chromosome A09 of B. rapa shared synteny
with chromosome C05 of A. lyrata and chromosome 1 of
A. thaliana, respectively (Figures 4B,C). In addition, the flanking
sequence of the hotspot on chromosome C08 of B. oleracea
also showed synteny with chromosome 1 of A. thaliana
(Figure 4D). Hence, we can identify the potential candidate genes
related to in the trans-eQTL regions by analyzing the syntenic
relationships among them and conducting a comparative
genomics analysis.

The candidate genes in the 200-kb of nucleotide sequence
flanking the four trans-eQTL hotspots were annotated by
BLASTN analysis. Because each hotspot contained 6 to 8
trans-eQTLs (Figure 2), we inferred that the major candidate
gene responsible for downstream expression variation was
an upstream regulatory gene that encodes a transcription
factor. The most interesting hotspot in our study was the lower
hotspot on chromosome A09. A total of seven transcription
factors were identified in this region (Supplementary Table
S5), two of which belong to the flavonoid biosynthesis-
related MYB transcription factor family, including MYB51
(BnaA09g44500D, positive regulator of indolic glucosinolate
production) and MYB52 (BnaA09g44780D, positive regulator
of cell wall thickening). Associated with the trans-eQTL
hotspots on chromosomes A03 and C08, and the upper trans-
eQTL hotspot on chromosome A09, we identified 5, 1, and
10 transcription factor genes, respectively (Supplementary
Table S5). Among these genes, those encoding bZIP25
(BnaA03g18190D, positive regulator of seed maturation),
MYC1 (BnaA09g51900D, positive regulator of epidermal cell
differentiation), and transcription factors of unknown function
could be regarded as candidate genes involved in flavonol
biosynthesis.

DISCUSSION

Genetic Map Construction and Alignment
Genetic maps offer a powerful approach for analyzing the
structural and functional evolution of crop plants and for
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FIGURE 3 | Syntenic relationship of flavonoid biosynthesis genes between A. thaliana and Brassica genomes. Black frame with different colors represents

chromosomes of four species. Ar01 ∼ Ar10 represent pseudo-chromosomes of the B. rapa genome, Co01 ∼ Co09 represent pseudo-chromosomes of the

B. oleracea genome, An01 ∼ An10 and Cn01 ∼ Cn09 represent pseudo-chromosomes of the B. napus genome, and At1 ∼ At5 represent chromosomes of the

A. thaliana genome. Blue lines represent the relationship between orthologous gene pairs from different species.

detecting QTLs that can be used for marker-assisted breeding
programs. Using different populations, many genetic linkage
maps have been constructed in B. napus based on different
markers (Landry et al., 1991; Ferreira et al., 1994; Foisset et al.,
1995; Uzunova et al., 1995; Lombard and Delourme, 2001; Xu
et al., 2001; Zhao andMeng, 2003; Liu et al., 2005; Piquemal et al.,
2005; Qiu et al., 2006; Fu et al., 2007; Radoev et al., 2008; Cheng
et al., 2009; Kim et al., 2009). Moreover, many traits of agronomic
importance in B. napus, such as seed coat color, oil content,
and seed yield, are quantitative with complex genetic bases.
Recently, a high-density linkage map was constructed using
the Brassica 60K Infinium BeadChip Array (Zou et al., 2012;

Delourme et al., 2013; Liu et al., 2013; Zhang et al., 2014; Wang
et al., 2015). Genome-specific SSR markers have been widely
used for genetic mapping, association mapping, comparative
mapping, QTL analysis, and marker-assisted selection (Li et al.,
2011). Therefore, we constructed a high-density genetic linkage
map using four different kinds of markers, and a total 1087
polymorphic loci (464 for SSR, 97 for RAPD, 451 for SRAP,
and 75 for IBP) were mapped to 19 linkage groups, covering
2775 cM of the B. napus genome with an average distance
between two adjacent markers of 2.55 cM. Furthermore, 184
loci were mapped to chromosome A09 with an average distance
between adjacent markers of 0.83 cM, indicating that this
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TABLE 3 | eQTLs for flavonoid biosynthetic pathway genes detected from the B. napus RIL population.

QTL name Chr. Marker-Intervala Position LOD Add.b R2c

qBnTT3-3-1 A03 EM01ME01/b80bp–EM46ME43/419bp 58.15 2.59 −0.46 5.22

qBnTT3-9-2 A09 SWUA09-55-15–SWUA09-2 21.54 13.69 −1.21 42.83

qBnTT3-9-3 A09 KS50470(R09)/350–KS30880(A09)/300 75.24 9.42 −1.08 36.61

qBnTT3-11-4 C01 SWUC099a(C01)–SWUC01_1527 33.29 3.18 0.48 12.03

qBnTT4-5-1 A05 EM36ME06/400bp–cnu_ssr293/200 28.97 3.55 0.38 6.24

qBnTT4-9-2 A09 B010D15-4(A09)/940–SWUA09-50 74.04 3.44 −0.88 14.09

qBnTT4-13-3 C03 SWUC03_567–EM11ME62/130bp 17.87 2.82 −0.38 5.81

qBnTT4-18-4 C08 SWUC421(C03/C08)–EM21ME40/700bp 18.37 4.61 −0.91 25.55

qBnTT5-2-1 A02 SWUC338(C04/C09)–FITO-133/280 63.34 4.55 −0.30 11.53

qBnTT5-9-2 A09 KS10591(R09)350–KS50521a(R09)/350 99.69 2.88 −0.23 7.20

qBnTT5-14-3 C04 EM60ME42/620bp–EM42ME37/100bp 95.85 4.30 −0.33 14.93

qBnTT5-18-4 C08 SWUC421(C03/C08)–EM21ME40/700bp 18.37 7.10 0.54 38.98

qBnTT6-3-1 A03 EM01ME01/b80bp–EM46ME43/419bp 58.15 2.56 −0.54 4.11

qBnTT6-9-2 A09 SWUA09-55-15–SWUA09-2 21.54 13.64 −1.53 30.00

qBnTT6-9-3 A09 B010D15-4(A09)/940–KS30880(A09)/300 73.94 6.24 −0.65 13.64

qBnTT6-14-4 C04 EM12ME19/180bp–EM45ME40/390bp 1.01 2.59 −0.29 5.97

qBnTT6-18-5 C08 SWUC527(C08)–SWUC421(C03/C08) 10.01 4.30 −0.57 16.28

qBnTT7-1-1 A01 EM58ME32/400bp–EM38ME61/160bp 62.09 2.91 −0.30 7.60

qBnTT7-2-2 A02 SWUC328(C03/C09)–EM48ME17/190bp 70.99 6.74 −0.62 18.87

qBnTT7-3-3 A03 SWUA03-564-208–SWUA03-1021-268 50.96 8.04 0.65 21.87

qBnTT7-9-4 A09 SWUA09-55-15–SWUA09-2 21.54 14.30 1.43 42.64

qBnTT7-15-5 C05 SWUC072(C05) –SWUC05_364 69.03 4.97 0.50 12.42

qBnTT10-1-1 A01 SWUA01-234-231c–EM47ME53/290bp 8.30 2.75 −0.55 17.25

qBnTT10-1-2 A01 SWUA01-286-256–EM38ME61/400bp 64.68 4.01 −0.35 11.59

qBnTT10-3-3 A03 EM46ME43/419bp–SWUA03-1858-238 63.55 3.30 −0.33 9.98

qBnTT10-16-4 C06 EM04ME22/450bp–EM18ME41/330bp 93.30 4.57 −0.48 14.62

qBnTT12-3-1 A03 BnGMS417(A03)/190–H061P05-3(A03)/1200 163.15 3.62 −0.24 6.41

qBnTT12-9-2 A09 B010D15-4(A09)/940–H112B21-1(A09)/990 74.04 5.55 −0.84 28.01

qBnTT12-16-3 C06 SWUC363(C06)–BRMS-195/250bp 61.08 3.65 −0.24 6.47

qBnTT12-18-4 C08 SWUC527(C08)–SWUC421(C03/C08) 10.01 8.15 −0.50 28.28

qBnTT15-1-1 A01 BRMS-317/400(r1)–BRMS-056/400(r1) 97.64 2.76 0.10 8.86

qBnTT15-7-2 A07 EM32ME52/120bp–EM22ME55/190bp 53.50 3.45 0.12 12.95

qBnTT15-17-3 C07 SWUC001(C07)–SWUC07_1799 37.35 2.60 −0.12 11.40

qBnTT18-5-1 A05 EM29ME03/190bp–BnGMS91a(A05) 79.25 3.50 0.29 8.66

qBnTT18-9-2 A09 SWUA09-55-15–SWUA09-2 21.54 6.92 −0.77 28.21

qBnTT18-9-3 A09 KS50470(R09)/350–KS30880(A09)/300 73.94 16.84 −1.33 44.48

qBnTT18-11-4 C01 SWUC01_1239–SWUC099b(C01) 33.29 2.57 0.26 6.21

qBnTT18-18-5 C08 SWUC527(C08)–SWUC421(C03/C08) 10.01 13.24 0.65 40.54

qBnTT19-6-1 A06 EM43ME12/200bp–EM58ME09/320bp 58.15 3.36 −0.39 8.49

qBnTT19-8-2 A08 EM28ME21/570bp–EM63ME07/1200bp 73.40 2.77 −0.34 6.05

qBnTT19-9-3 A09 SWUA09-55-15–SWUA09-2 21.54 17.59 −1.75 53.11

qBnTT19-14-4 C04 EM42ME14/140bp–EM04ME14/90bp 131.20 3.74 −0.48 12.36

qBnTT19-18-5 C08 SWUC421(C03/C08)–EM21ME40/700bp 21.37 2.86 0.70 23.54

qBnBAN-3-1 A03 SWUA03-1871-276–SWUA03-1847-278 68.45 5.72 −0.68 15.54

qBnBAN-9-2 A09 SWUA09-63-26–B082F21-2(R09)/300 34.17 17.86 −2.56 52.70

qBnBAN-9-3 A09 B055B21-5(A09)/1000–KS30880(A09)/300 74.04 11.94 −1.35 29.64

qBnBAN-14-4 C04 EM12ME19/180bp–EM45ME40/390bp 4.50 3.91 −0.50 12.64

qBnAHA10-1-1 A01 BRMS-098/180(r1)–EM33ME24/80bp 112.33 3.34 −0.18 8.21

qBnAHA10-7-2 A07 Ra2-A01(7)–EM45ME09/300bp 108.56 6.57 −0.26 17.25

qBnAHA10-15-3 C05 SWUC090(C05)–SWUC088a(C05) 95.34 2.51 −0.15 6.03

(Continued)
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TABLE 3 | Continued

QTL name Chr. Marker-Intervala Position LOD Add.b R2c

qBnTT1-7-1 A07 CB10439(7/11)–SWUC142(C08/C09) 107.79 3.70 0.30 11.35

qBnTT1-9-2 A09 SWUA09-17–SWUA09-63-9 36.77 5.21 −0.43 18.40

qBnTT1-13-3 C03 SWUC307(C03)–SWUC111(C03) 159.05 6.02 0.95 16.26

qBnTT1-16-4 C06 SWUC025(C06)–FITO-095/290 56.74 2.23 0.27 9.26

qBnTT1-18-5 C08 SWUC527(C08)–SWUC421(C03/C08) 10.01 6.30 −0.46 26.76

qBnTT2-1-1 A01 SWUA01-1064-278a–FITO-101/280 95.24 17.54 −4.74 49.63

qBnTT2-7-2 A07 S350/600bp–EM11ME20/190bp 130.60 3.02 −0.44 8.67

qBnTT2-13-3 C03 SWUC402(C03)–SWUC558(C03) 157.68 11.48 −1.93 27.04

qBnTT8-5-1 A05 CN53/400–EM47ME53/160bp 39.27 4.68 −0.21 11.26

qBnTT8-9-2 A09 B010D15-4(A09)/940–H112B21-1(A09)/990 74.04 2.58 −0.16 6.04

qBnTT8-11-3 C01 SWUC01_1527–Ol10-A11(11) 38.04 6.21 −0.25 15.65

qBnTT8-18-4 C08 SWUC527(C08)–SWUC421(C03/C08) 10.01 7.57 −0.32 24.57

qBnTT16-6-1 A06 EM28ME21/450bp–S362/650bp 71.26 3.18 0.19 9.55

qBnTT16-9-2 A09 SWUA09-55-5–SWUA09-53 50.06 3.52 −0.19 10.85

qBnTT16-11-3 C01 EM03ME17/300bp–CB10536b(1/11) 81.90 5.09 −0.66 17.03

qBnTTG1-5-1 A05 SWUA05-520-179–BRMS-057/110(r5) 58.61 3.49 −0.13 8.83

qBnTTG1-9-2 A09 KBrB019I24.2/450–KBrB019I24.4/450 46.75 15.64 −0.54 49.20

qBnTTG1-11-3 C01 FITO-016/250–EM29ME10/190bp 69.92 4.43 0.24 12.25

qBnTTG2-6-1 A06 niab_ssr037(A06)/350–SWUA06-687-153 80.87 6.55 −0.21 22.59

qBnTTG2-9-2 A09 SWUA09-63-23A–SWUA09-2 25.12 2.01 −0.19 5.25

qBnTTG2-11-3 C01 CB10258(1/11)–SWUC01_100 101.59 2.94 −0.42 17.06

qBnTTG2-13-4 C03 EM54ME29/150bp–EM34ME42/400bp 90.29 3.45 0.27 10.37

aMarkers in an eQTL region that flank the peak of the LOD scan.
bAdditive effects: a positive value (+) indicates that the allele was derived from the GH06 parent, while a negative value (−) indicates that the allele came from the ZY821 parent.
cPhenotypic variation explained by eQTL (percentage).

approach could be used to identify candidate genes for seed
coat color, oil content, and other important agronomic traits
on chromosome A09 in B. napus. Although 13 interval gaps
(adjacent markers > 15 cM) were present on 10 different linkage
groups (Table 3, Figure 2), the high-density genetic linkage map
constructed in this research could be helpful for fine-mapping
and marker-assisted selection (MAS) of many important traits of
oilseed rape.

Additionally, Brassica is an ideal genus for studying genome
evolution and diversification, because it includes both diploid
(B. rapa, A = 10; B. nigra, B = 8 and B. oleracea, C = 9)
and allotetraploid (B. juncea, AB = 18; B. napus, AC = 19
and B. carinata, BC = 17) species. Moreover, Brassica and
Arabidopsis diverged from a common ancestor approximately
14–20 million years ago (Yang et al., 1999), and the genome
of Brassica species underwent polyploidization, accompanied
by gene deletion and rearrangements (Cavell et al., 1998;
Lagercrantz, 1998; Ryder et al., 2001; Babula et al., 2003; Lukens
et al., 2003). Therefore, many comparative mapping studies have
unraveled the extensive genome homology and microsynteny
between the A, B, and C genomes of Brassica species and between
Brassica species and A. thaliana (Parkin et al., 2005; Jiang et al.,
2011; Wang et al., 2011; Yang et al., 2016). Here, we identified
a total of 531 pairs of sequence-informative markers and found
that these markers mapped on all 19 linkage groups (Figure 2).
Moreover, 237/259 published markers were detected and their

positions in the linkage map were found to be in good agreement
with the aforementioned genetic maps. The linkagemap included
196 specific markers that were newly developed from the
B. rapa and B. oleracea genome (Supplementary Table S3,
Figure 2). In addition, 370 of 531 markers were exactly anchored
to the corresponding genomes of Brassica and Arabidopsis
through BLASTN analysis, 349 of which were mapped to one
locus, 20 to two loci, and 1 to three loci (Supplementary
Table S3). Moreover, there was strong collinearity among
B. napus, B. rapa, and Arabidopsis, but the markers were
sometimes assigned to different genome linkage groups and
the relative physical position of markers was inconsistent
(Supplementary Table S3, Supplementary Figures S1, S2).
There are two possible explanations for these observations.
Firstly, the differences of markers may be inaccuracies in
allocations of the RIL population, which could disturb the
Mendelian segregation and chromosome abnormalities during
map construction. Secondly, extensive segmental duplication
and rearrangements are known to have occurred during the
polyploidization process of Brassica (Teutonico and Osborn,
1994; Parkin et al., 2005; Panjabi et al., 2008; Yang et al., 2016).
Therefore, our results provide insight into the differences in
genome structure and gene evolution among Brassica species and
A. thaliana, and can be used to generate an effectiveMAS strategy
that can be used to develop lines with improved agronomic
traits.
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FIGURE 4 | Comparison of collinearity of trans-eQTL flanking sequences between two Brassica species and their relatives. (A) eQTL hotspot on

chromosome A03 of B. napus; (B) lower eQTL hotspot on chromosome A09 of B. napus; (C) upper eQTL hotspot on chromosome A09 of B. napus; and (D) eQTL

hotspot on chromosome C08 of B. napus. Collinearity was analyzed and visualized using the Brassica Synteny Blocks tool in the BRAD database (http://brassicadb.

org/cgi-bin/gbrowse_syn/brassica/).
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FIGURE 5 | Proposed model for the flavonoid biosynthesis pathway

underlying seed coat color in B. napus. BnPAL, l-phenylalanine

ammonialyase; BnC4H, cinnamate 4-hydroxylase; Bn4CL, 4-coumarate:CoA

ligase; BnCHS, chalcone synthase; BnCHI, chalcone isomerase; BnF3H,

flavanone-hydroxylase; BnDFR, dihydroflavonol reductase; BnANS,

anthocyanidin synthase; BnANR, anthocyanidin reductase (Qu et al., 2013).

Association of Flavonoid Biosynthesis
Pathway Genes in B. napus
Flavonoids are secondary metabolites that are extensively
distributed in the plant kingdom, with essential roles in
protecting plants against UV radiation, drought, and cold
stress, and in color formation in fruits and flowers (Winkel-
Shirley, 2002). InArabidopsis thaliana, the flavonoid biosynthesis
pathway has been characterized mainly using different tt
mutants, which have transparent and colorless testa (seed coats)
(Holton and Cornish, 1995; Devic et al., 1999; Wan et al.,
2002; Xie et al., 2003; Baudry et al., 2006; Lepiniec et al., 2006;
Routaboul et al., 2006; Cheng, 2013; Saito et al., 2013). The
present study showed that TT10 and AHA10 were involved
in seed color formation of rapeseed, but these genes have
yet to be successfully used in rapeseed breeding programs
(Fu et al., 2007; Stein et al., 2013; Zhang et al., 2013). The
flavonoid biosynthesis pathways of Brassica species are much
more complex than those of A. thaliana (Supplementary Figure
S3); in addition to consisting of more synthesis-related genes,
this pathway is also involved in multi-loci interactions, which
have been shown to be involved in the formation of seed
coat color in B. napus (Theander et al., 1977; Marles and
Gruber, 2004; Akhov et al., 2009; Qu et al., 2013), and dozens
of homologous genes in the B. napus flavonoid biosynthesis
pathway have been cloned and characterized (Wei et al., 2007;

Xu et al., 2007; Ni et al., 2008; Akhov et al., 2009; Auger et al.,
2009; Chai et al., 2009; Lu et al., 2009; Chen et al., 2013).
Prior to this study, no comprehensive analysis of the flavonoid
biosynthesis pathway had been conducted in B. napus. Our
previous results showed that the absence of pigment synthesis in
the yellow-seeded line of B. napus involves the down-regulation,
but not complete inactivation, of several key genes in the
flavonoid pathway (Qu et al., 2013). In this study, our correlation
analysis showed that the expression levels of any two structural
genes (BnTT3, BnTT4, BnTT5, BnTT6, BnTT12, BnTT18, and
BnAHA10) and regulatory genes (BnTT1, BnTT8, and BnTTG1)
had a significant positive correlation (R2 < 0.01), but a significant
negative correlation was observed between BnTT7 and BnTT10
or BnBAN and BnTT19, respectively (Table 1), in accordance
with our previous research (Qu et al., 2013). Furthermore,
we performed a genome-wide comparative analysis between A.
thaliana and Brassica species. The orthologous genes identified
in this analysis might be associated with the fact that they
have a common evolutionary ancestor (Figure 3). Therefore,
our results will be helpful for determining the relationship
between and functionalization of these flavonoid biosynthesis
genes, and it is necessary to identify the upstream regulatory
network that modulates the flavonoid biosynthesis pathway in B.
napus.

Studies have shown that eQTLs provide a basis for deciphering
the regulatory networks of genes that modulate pathways in
different plants (Brem et al., 2002; Schadt et al., 2003; Morley
et al., 2004; Civelek and Lusis, 2014). In this study, the expression
profile of each gene in the RILs was used as a quantitative trait,
and the eQTLs of these genes was detected by QTL mapping
using WinQTL Cartographer 2.5 software. In total, 72 eQTLs
were detected and distributed on 15 different linkage groups,
with 3 to 5 eQTLs per gene (Table 2, Figure 2). Importantly,
28 eQTLs associated with 12 genes in 4 eQTL hotspots were
identified and distributed on chromosomes A03, A09, and C08,
respectively. Moreover, the positive alleles of 23 eQTLs associated
with seven genes were derived from the male parent ZY821
(Table 3), explaining 4.11–52.70% of the phenotypic variance.
These results showed that the eQTLs are distributed in clusters on
chromosomes, and help to identify the common regulator gene
in major eQTL regions. Based on BLASTN analysis, however,
most of the eQTLs were found to be trans-eQTLs, controlling the
expression of distant target genes. Moreover, 6–8 trans-eQTLs
were detected on the four hotspots (Table 3, Figure 2), suggesting
that these trans-eQTLs had essential roles in the flavonoid
biosynthesis pathway. Based on the B. napus reference genome,
some transcription factors related to flavonoid biosynthesis were
identified in the eQTL hotspot regions (Supplementary Table S5)
associated with members of the R2R3-type MYB gene family
(e.g., MYB51 and MYB52), which act as regulators of different
pathways (Chen et al., 2006). In addition, one basic leucine zipper
(bZIP) transcription factor (bZIP25) that interacted with bZIP10
and ABI3 to regulate their seed-specific expression during seed
maturation (Lara et al., 2003), and one basic Helix-Loop-Helix
(bHLH) transcription factor, MYC1, that controlled flavonoid
biosynthesis and epidermal cell fate (Hichri et al., 2010; Pesch
et al., 2013), were also identified. Findings in A. thaliana have
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confirmed that the MYB and bHLH proteins were involved in
regulating the flavonoid biosynthesis pathways (Baudry et al.,
2006; Dubos et al., 2008; Kitamura et al., 2010; Stracke et al.,
2010). Moreover, MYB transcription factors interact with bHLH
proteins to regulate flavonoid biosynthesis in plant species (Koes
et al., 2005; Quattrocchio et al., 2006). In addition, TT2 (R2R3-
MYB), TT8 (bHLH), and TTG1 (WDR) modulate proteins,
including DFR, LDOX, BAN, and TT12, thereby affecting PA
production, and form a complex called MBW (MYB-bHLH-
WD40) in the flavonoid pathway (Baudry et al., 2004, 2006;
Lepiniec et al., 2006). Previous studies have proposed TTG1, TT8,
TT10, TT12, andAHA10 as candidate genes involved in seed coat
color formation in Brassica species (Xie et al., 2003; Fu et al.,
2007; Chai et al., 2009; Li et al., 2012; Stein et al., 2013; Zhang
et al., 2013; Padmaja et al., 2014). Therefore, we predict that
the candidate genes bZIP25, MYC1, and MYB51 are involved in
the flavonoid biosynthesis pathway through different regulator
networks in rapeseed (Figure 5). These results provide useful
information for deciphering the upstream regulatory network of
the flavonoid gene families and for characterizing transcription
factors of unknown function. The genes identified in our
study as being involved in flavonol biosynthesis provide insight
into the molecular and biochemical mechanism underlying
seed coat development in Brassicaceae, and might ultimately
elucidate the regulatory network underlying seed coat color
formation.
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