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Polyploid species generally occupy harsher habitats (characterized by cold, drought
and/or high altitude) than diploids, but the converse was observed for Chamerion
angustifolium, in which diploid plants generally inhabit higher altitudes than their
polyploid derivatives. Plants at high altitudes may experience cold-induced water stress,
and we therefore examined the physiological responses of diploid and hexaploid
C. angustifolium to water stress to better understand the ecological differentiation
of plants with different ploidy levels. We conducted a common garden experiment
by subjecting seedlings of different ploidy levels to low, moderate, and severe water
stress. Fourteen indicators of physiological fitness were measured, and the anatomical
characteristics of the leaves of each cytotype were determined. Both cytotypes were
influenced by drought, and diploids exhibited higher fitness in terms of constant
root:shoot ratio (R:S ratio) and maximum quantum yield of PS II (Fv/Fm), less reduced
maximal photosynthetic rate (Amax), transpiration rate (E), intercellular CO2 concentration
(Ci) and stomatal conductance (gs), and higher long-term water use efficiency (WUEL)
under severe water stress than did hexaploids. Analysis of leaf anatomy revealed
morphological adjustments for tolerating water deficiency in diploids, in the form of
closely packed mesophyll cells and small conduits in the midvein. Our results indicate
that diploid C. angustifolium is more tolerant of drought than hexaploid plants, ensuring
the successful survival of the diploid at high altitudes. This eco-physiological divergence
may facilitate the species with different cytotypes to colonize new and large geographic
ranges with heterogeneous environmental conditions.

Keywords: C. angustifolium, cytotype distribution, common garden experiment, drought tolerance, physiological
fitness
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INTRODUCTION

Polyploidy, the state of having more than two complete
chromosome sets per nucleus, has played a key role in the
evolution and diversification of the plant kingdom (Leitch and
Bennett, 1997; Soltis et al., 2009). Polyploidization can be
accompanied by considerable cytological, morphological, and
physiological alterations, meaning that ecological requirements
can differ significantly between diploids and their polyploid
derivatives (Ramsey and Schemske, 2002; Soltis et al., 2014). This
may result in different adaptations in the different cytotypes and
consequently in habitat segregation (Levin, 2004; te Beest et al.,
2011), and it has long been hypothesized that polyploids may be
able to occupy harsher environments relative to diploids because
of the advantages of polyploidy (Grant, 1981; Levin, 1983).
Observations supporting this hypothesis suggest that polyploids
are common in alpine regions, arctic areas (Brochmann et al.,
2004) and other ecologically extreme environments (Ramsey,
2011; Manzaneda et al., 2012; Hao et al., 2013; McAllister et al.,
2015). However, many examples suggest that the frequency of
diploids also tends to increase with altitude (Hardy et al., 2000;
Sonnleitner et al., 2010) or latitude (Ricca et al., 2008), indicating
that diploids may be more tolerant of certain stressful conditions
(Buggs and Pannell, 2007; Visser and Molofsky, 2015). These
conflicting results suggest that polyploids may not necessarily
occupy more extreme habitats than their diploid parents, but
rather can be regarded as ‘fill-in’ taxa that occupy habitats which
become available for them.

Knowledge about the geographical distributions of different
cytotypes may offer insights into the mechanisms responsible for
their spatial separation (Duchoslav et al., 2010). In high-altitude
mountains, the growth and reproduction of plants may be
strongly influenced by low temperatures (Angert, 2006) and cold-
induced drought stress (physiological drought; Hammel, 1967;
Pockman and Sperry, 1996; Zhu et al., 2000). As a consequence,
plants growing in high-altitude regions have developed various
mechanisms to enhance their drought tolerance (Ma et al., 2010,
2014; Yang and Miao, 2010). Polyploids usually have larger
xylem conduits than diploids due to chromosome doubling
effects (Graciano-Ribeiro and Nassar, 2012; Hao et al., 2013);
these conduits confer high levels of water transport efficiency
(Maherali et al., 2009) but may be vulnerable to cavitation
under drought stress due to the inverse relationship between
hydraulic conductance and protection against embolism (Piñol
and Sala, 2000; Martínez et al., 2002). On the contrary, narrow
xylem conduits tend to have fewer and smaller pit membrane
pores to reduce the occurrence of air seeding under high xylem
tension (Wheeler et al., 2005), thus they might offer a selective
advantage for diploids at high altitudes by minimizing the risk
cost associated with xylem embolism.

As one of the most important biodiversity hotspots at similar
latitudes in the Northern Hemisphere (Wu and Wu, 1998), the
Himalaya-Hengduan Mountains region (HHMs) contains over
20,000 species of vascular plants, and harbors very rich alpine
flora with a profusion of endemic species (Wu, 1988; Li and Li,
1993). Although it has been proposed that polyploidy has played
only a minor role in plant diversification in this region (Liu,

2004; Nie et al., 2005; Yuan and Yang, 2008), the frequency of
polyploidy is relatively high in some genera occurring there, for
example, Buddleja (Chen G. et al., 2007), Rheum (Liu et al., 2010),
Anaphalis (Meng et al., 2014), Meconopsis (Xie et al., 2014), and
Ephedra (Wu et al., 2016). Recent cytogeographical investigations
have indicated the importance of cytotype distribution patterns
and have revealed altitudinal segregation between different ploidy
levels in the HHMs region (Li et al., 2010; Yu et al., 2010;
Zhai et al., 2011; Liang et al., 2015). However, the mechanisms
underlying cytotype distribution still remain unclear, especially
with respect to the roles played by physiological endurance in
ecological differentiation among different cytotypes.

Chamerion angustifolium L. Holub (Onagraceae) is
widespread throughout the northern hemisphere. This species
is an autopolyploid perennial, with diploid (2n = 36), tetraploid
(2n = 72), and hexaploid (2n = 108) cytotypes (Mosquin, 1967;
Chen J.R. et al., 2007). In the HHMs, the species generally
occupies open and disturbed habitats, and it has been observed
that diploid plants inhabit higher altitudes than polyploid plants,
which is consistent with the patterns of distribution in north
America (Mosquin, 1967; Husband and Schemske, 1998; Chen
J.R. et al., 2007). Recent studies have suggested that the current
distribution of diploid and tetraploid C. angustifolium across
elevations may be the result of differences in physiological
tolerances to drought or cold (Thompson et al., 2014) and the
adaptation to native elevation of each cytotype (Martin and
Husband, 2013). In the present study, we therefore aimed to
quantitatively examine the responses of different cytotypes of
C. angustifolium to drought stress, with an emphasis on testing
the hypothesis that conduits might be narrower in diploid than in
polyploid plants, a factor which could explain to a certain extent
the vicarious distribution of this plant species along altitudinal
gradients.

MATERIALS AND METHODS

Collections of Material
In 2013, we obtained all seeds used in the present study from two
open-pollinated populations on Baima Snow Mountain, Yunnan
province. The pure diploid population was located on a site at a
higher altitude (28◦23’38" N, 98◦59’32" E, 4160 m) than the pure
hexaploid population (28◦25’38" N, 98◦58’15" E, 3560 m). In each
population, mature fruits and a small amount of leaf tissue were
collected from multiple maternal plants. All seeds and leaf tissues
were brought to the laboratory at Kunming Institute of Botany
within 36 h and kept at 4◦C.

Ploidy Determination
We used flow cytometry and root-tip squashes to examine the
ploidy of maternal plants. Approximately 1 cm2 fresh leaf tissue
was chopped in 1.5 ml of pre-chilled WPB buffer (0.2 mol/L
Tris·HCl, 4 mmol/L MgCl2·6H2O, 2 mmol/L EDTA Na2·2H2O,
86 mmol/L NaCl, 10 mmol/L sodium metabisulfite, 1% PVP-
10, 1% (v/v) Triton X-100, pH 7.5). Fresh leaves from an
Oryza sativa L. inbred line were chopped for use as an external
standard (C-value = 0.86 pg/2C). After filtration, centrifugation,
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re-suspension and storage in the dark at 4◦C for 10 min staining
with 150 µl propidium iodide, the resulting cell suspensions were
analyzed using a FACS-Vantage flow cytometer following the
manufacturer’s recommendations (Partec, Germany; Tian et al.,
2011). The histograms were analyzed with the FlowMax software
package (Version 2.8.2, Partec GmbH, Germany). The FL2-area
parameter (integrated fluorescence) was used to quantify DNA
content. To examine the relationship between DNA content and
ploidy, we carried out chromosome counts on root tips from
seeds germinated in a Petri dish containing moist filter paper (Liu
et al., 2006).

After identifying the ploidy of each maternal plant, seeds were
germinated in plug trays filled with homogeneous humus soil,
and placed in a canopied and naturally lit glasshouse at Yunnan
Normal University. For each ploidy level, 180 robust seedlings
of similar size were transplanted into pots (two seedlings per
pot) 1 month later. All pots contained the same weight of a
uniform mixture comprising equal volumes of peat and perlite.
Soil surfaces were covered with a small quantity (c. 40 g) of perlite
to minimize evaporation. Pots were randomly positioned on a
single glasshouse bench and watered every other day to maintain
saturation for 2 months. At the rosette stage, leaf tissue was
sampled from each plant and re-screened using flow cytometry
to exclude any seedlings of other ploidy levels.

Glasshouse Drought Experiments
After 2 months of growth, we began drought stress treatments.
Mortality following transplantation reduced the sample sizes for
diploids and hexaploids to 78 and 80 pots, respectively. Fifteen
‘empty’ pots were filled with the same amount of the same
soil mixture to measure soil evaporation rates. The remaining
pots of seedlings and the ‘empty’ pots were divided into low,
moderate, and severe water stress treatments. Water stress was
applied by watering to 80, 50, and 20% of maximum field
capacity (FC). Soil water content was maintained at these levels
by weighing the pots every 2 days, recording the amount of water
loss and rewatering to the required water levels immediately.
The experimental period commenced on July 9, 2014 (day
t1), and continued until August 10, 2014 (day t2). During
this period, no fertilizer was added to any pot. The sides of
the glasshouse were always open for aeration throughout the
experiment, so that the temperature inside the glasshouse was
closely linked to the ambient outside temperature (Yang et al.,
2014).

Growth and Water Use
For growth and water use measurements, each pot was treated
as a replicate, with its two seedlings being measured together.
To estimate biomass increment during the experiment, 5 pots of
each cytotype at the beginning of the experiment (t1) and 15 pots
(five pots per treatment) at the end of the experiment (t2) were
harvested. From each pot, the two seedlings were bulked together,
and then divided into two parts: roots, and all aboveground parts
including stems, leaves, and flowers. The total weight of each part
was then determined after drying in an oven at 80◦C for 48 h.
The dry mass (dm) accumulated during the experimental period
in the root [root dry mass (RDM)] and the aboveground parts

dry mass (ADM) was calculated by subtracting dm per pot at day
t1 from that at day t2, for each cytotype and treatment type, and
dividing by two to convert from per pot to per plant. Total dry
mass (TDM) was the sum of RDM and ADM, and the ratio of root
to shoot (R:S ratio) was calculated by dividing RDM by ADM.

From both empty pots and those containing seedlings, water
loss was measured as the difference between the weight of each
pot just after watering and that just before the next watering
event, 48 h later. These measurements were taken throughout
the experimental period. Within each watering treatment, the
amount of water transpired per pot per day for each cytotype
was determined by deducting mean daily water loss per empty
pot (evaporation) from mean daily water loss per pot with plants
(evaporation plus transpiration). From this, total transpired
water use (TWU) per plant was calculated as the total water
transpired per pot between day t1 and day t2 divided by two.

Long-term water use efficiency (WUEL) per plant, defined as
the ratio between biomass production and water consumption for
transpiration, was calculated, for each cytotype and treatment, as
TDM/TWU (Ma et al., 2010).

Gas Exchange, Transpiration, and
Chlorophyll Fluorescence
Five to six pots for each treatment per ploidy level were randomly
selected to measure gas exchange characteristics. For each pot, the
fifth leaf down from the top, which was fully opened and matured,
was selected on one plant, and the maximum photosynthetic
rate (Amax), stomatal conductance (gs), intercellular CO2
concentration (Ci) and transpiration rate (E) were measured
simultaneously using a LI-6400 XT infrared gas-analyser (LI-
Cor Inc., Lincoln, NE, USA) for that plant. Measurements were
taken between 9:30 and 12:00 h during sunny weather. Light
levels were maintained at 1600 µmol m−2 s−1 (light-saturation
points were derived from light response curves determined before
the experiment) using artificial light provided by an LI-6400-
02B LED light source (LI-COR Biosciences). The external CO2
concentration was maintained at 400 µmol mol−1 using portable
CO2/air mixture tanks whose output was controlled by a LI-6400-
01 CO2 injector (LI-COR Biosciences). Temperature and relative
humidity were maintained at 24–26◦C and 23–29%, respectively.
Due to the lanceolate leaves of C. angustifolium usually couldn’t
cover the leaf chamber (6 cm2), leaves were cut and scanned
using a Canon Scan Lide 110 after the measurements had been
taken. Then the leaf areas were analyzed by Scion Image (Version
4.0.3, National Institutes of Health, USA) so that leaf gas exchange
parameters could be calculated on a per area basis. Instantaneous
water use efficiency (WUEi) was defined and calculated as Amax/E
(Sapeta et al., 2013).

Chlorophyll fluorescence parameters were measured between
6:00 and 7:00 h on leaves that had been dark adapted for
10 h. These measurements were taken on the same day as
the leaf gas exchange measurements. The maximum quantum
yield of photosystem II [PSII; Fv/Fm = (Fm−Fo)/Fm] was
measured using a LI-6400-40 leaf chamber fluorometer (LI-COR
Biosciences). Five plants in each treatment per cytotype were
analyzed (Mena-Petite et al., 2000).
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Leaf Water Status
To determine leaf water status, leaves were collected from other
five different plants in one treatment. One fully mature leaf
of each selected plant was stored in plastic bag on wet tissues
until required for measurement of leaf area. The method used
for analyzing leaf area was as described in the gas exchange
section. The fresh mass (fm) of the measured leaves was then
determined. Before measuring the saturated mass (sm) of the
leaves, we allowed them to become turgid by resting them in
water for 1 h. Leaves were oven-dried at 80◦C for 48 hours before
dm was determined. Relative water content (RWC) was expressed
as 100% [(fm−dm)/(sm−dm)] (Yamasaki and Dillenburg, 1999).
Leaf dry mass per unit area (LMA) was also calculated.

Leaf Anatomy
Leaves harvested from each of five different plants in one
treatment were preserved in malondialdehyde (MDA). The
5 mm × 5 mm fragments from the adaxial side of the leaf and
the midrib were used for embedding. The sample was incubated
successively in the following solutions: 0.1 M PBS for 10 min
(three times), 30% ethanol for 1 h, 50% ethanol for 1 h, 70%
ethanol for 1 h, 80% ethanol for 1 h, 90% ethanol for 1 h, 95%
ethanol for 1 h, 100% ethanol for 1 h, 100% ethanol:histoclear
(1:1) for 4 h, histoclear for 1 h (two times), histoclear:paraffin
(1:1) for 12 h (40◦C), histoclear:paraffin (1:1) for 4 h (60◦C),
paraffin for 4 h (60◦C), and paraffin for 12 h (60◦C), and leaf
tissues were then embedded in paraffin. Transverse cross-sections
of the embedded samples were obtained with a microtome (Leica
RM 2015) equipped with a freshly produced glass knife (Leica
819). The sections were then placed on glass slides.

For histochemical analyses, 12-µm-thick sections were stained
with 1% Safranin for 12 h and 1% Fast Green for 10 s. In order to
examine the lignified cell walls in midribs, 50-µm-thick sections
were stained for 5 min with 1% phloroglucinol in 6 N HCl
(Zhou et al., 2009). Stained cross sections were scanned using a
brightfield microscopy (Leica DM 1000; Sun et al., 2013).

Leaf blade thickness, palisade parenchyma thickness, lacunar
parenchyma thickness, leaf central vein diameter, xylem conduit
diameter, leaf central vein total area, and xylem cell area were then
measured from digital photographs with the Image J software
(Version 1.45, National Institutes of Health, USA).

Statistical Analyses
Data for all measured variables were analyzed using the general
linear model (PROC GLM) to test the effects of cytotype,
treatments, and their interactions. Significant differences among
treatments for each cytotype were compared using one-way
analysis of variance (ANOVA), and an independent-samples t
test was used to compare the differences among cytotypes for
each treatment. The homogeneity of variances was tested before
analysis. Separate one-way ANOVAs were performed which
assume independence between dependent variables and multiple
traits measured for individual plants, but due to insufficient
statistical power, correction of family-wise error rates for trait
functional groups or individuals could not be performed. All

statistical analyses were carried out using the SPSS statistical
software package (Version 19.0, IBM, USA).

RESULTS

Cytotype Composition
Flow cytometry analyses revealed two DNA ploidy levels in
our samples: DNA-diploid (1.081 ± 0.009 pg/2C) and DNA-
hexaploid (3.008 ± 0.084 pg/2C). The hexaploids thus had triple
the DNA content of the diploids, a finding which was confirmed
by chromosome counts.

Plant Growth and Water Use Traits
Diploids and hexaploids of C. angustifolium exhibited different
biomass allocation strategies in response to drought stress,
and diploids generally accumulated more biomass during
the experiment across all water gradients than hexaploids.
The differences between cytotypes were significant for TDM
accumulation and ADM accumulation under high water stress,
and for RDM accumulation under low water stress (Table 1).
Although TDM apparently declined in both cytotypes as the
available soil water decreased, both ADM and RDM decreased in
diploids, whereas hexaploids only showed a reduction in ADM.
Due to the difference in dry weight allocation, water stress did
not result in a significant difference for the R:S ratio in diploids,
but it caused a significant increase in hexaploids (Figure 1).

Total TWU decreased significantly with decreasing soil water
content in both cytotypes (Table 1). From low to severe water
stress, diploids experienced a significant increase in WUEL but
hexaploids did not. Furthermore, diploids had higher WUEL than
hexaploids under severe water stress (Table 1). Transpiration
rate (E) and WUEi differed significantly among the three soil
water contents (Tables 1 and 2). E decreased significantly with
increasing water stress in both cytotypes, leading to a significant
increase in WUEi (Figure 2). Of the two ploidy levels, diploids
had significantly lower E and higher WUEi than hexaploids under
low water stress.

Leaf Photosynthesis and Chlorophyll
Fluorescence
Maximal photosynthetic rate (Amax), intercellular CO2
concentration (Ci) and stomatal conductance (gs) decreased
significantly as water stress increased (Table 1), and there were
significant differences between cytotypes in these three variables
under specific drought stress treatments (Tables 1 and 2).
Diploids had a higher value of Amax than hexaploids in all
drought stress treatments and the difference was significant
under 20% maximum FC (Table 1). The values of Ci and gs were
significantly higher in hexaploids than in diploids under low
stress, whereas these differences were reduced and no significant
difference could be detected under medium or high water stress
(Table 1).

Maximum quantum yield of PS II (Fv/Fm) was similar between
cytotypes for 80% FC and 50% FC, but it was significantly lower in
hexaploids than in diploids under severe drought stress treatment
(Table 1).
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TABLE 1 | Comparison of 11 measured indicators between Chamerion angustifolium diploids and hexaploids, across three different soil water
treatments (80% of maximal field capacity (FC), 50% FC, and 20% FC).

Water treatment (% of maximum FC)

Low stress Medium stress High stress

Variable and cytotype 80% FC 50% FC 20% FC

Total dry mass (TDM) (g)

Diploid 2.016 ± 0.452 A,X 0.956 ± 0.082 B,X 0.558 ± 0.087 B,X

Hexaploid 1.086 ± 0.152 A,Y 0.784 ± 0.128 A,X 0.233 ± 0.061 B,Y

Aboveground parts dry mass (ADM) (g)

Diploid 1.877 ± 0.428 A,X 0.866 ± 0.079 B,X 0.503 ± 0.076 B,X

Hexaploid 1.041 ± 0.150 A,Y 0.739 ± 0.118 A,X 0.170 ± 0.071 B,Y

Root dry mass (RDM) (g)

Diploid 0.139 ± 0.025 A,X 0.091 ± 0.016 A,B,X 0.055 ± 0.012 B,X

Hexaploid 0.045 ± 0.006 A,Y 0.046 ± 0.016 A,Y 0.051 ± 0.013 A,X

Maximal photosynthetic rate (Amax) (µmol CO2 m−2 s−1)

Diploid 12.879 ± 0.528 A,X 10.407 ± 0.429 B,X 7.818 ± 0.752 C,X

Hexaploid 11.958 ± 0.495 A,X 9.828 ± 0.641 B,X 5.508 ± 0.318 C,Y

Transpiration rate (E) (mmol H2O m−2 s−1)

Diploid 6.261 ± 0.314 A,X 7.043 ± 0.455 A,X 2.751 ± 0.192 B,X

Hexaploid 9.488 ± 0.189 A,Y 8.174 ± 0.460 B,X 2.385 ± 0.378 C,X

Intercellular CO2 concentration (Ci) (µmol CO2 mol−1)

Diploid 270.532 ± 7.727 A,X 294.814 ± 6.146 B,X 227.562 ± 6.860 C,X

Hexaploid 312.072 ± 2.703 A,Y 309.799 ± 4.578 A,X 233.299 ± 8.754 B,X

Stomatal conductance (gs) (mmol H2O m−2 s−1)

Diploid 0.231 ± 0.016 A,X 0.223 ± 0.020 A,X 0.078 ± 0.005 B,X

Hexaploid 0.392 ± 0.010 A,Y 0.286 ± 0.026 B,X 0.058 ± 0.010 C,X

Maximum quantum yield of PS II (Fv/Fm)

Diploid 0.816 ± 0.003 A,X 0.808 ± 0.005 A,X 0.808 ± 0.005 A,X

Hexaploid 0.812 ± 0.002 A,X 0.806 ± 0.004 A,X 0.770 ± 0.006 B,Y

Total transpired water use (TWU) (kg)

Diploid 0.689 ± 0.169 A,X 0.358 ± 0.039 B,X 0.136 ± 0.021 B,X

Hexaploid 0.456 ± 0.049 A,X 0.309 ± 0.029 A,X 0.074 ± 0.007 B,Y

Long-term water use efficiency (WUEL)

Diploid 2.887 ± 0.357 A,B,X 2.658 ± 0.090 A,X 4.193 ± 0.325 B,X

Hexaploid 2.316 ± 0.114 A,X 2.354 ± 0.229 A,X 3.149 ± 0.248 A,Y

Leaf relative water content (RWC)

Diploid 0.898 ± 0.014 A,X 0.869 ± 0.005 A,X 0.790 ± 0.010 B,X

Hexaploid 0.873 ± 0.013 A,X 0.861 ± 0.009 A,X 0.843 ± 0.018 A,Y

Each value represents mean ± SE. Letters after SE values distinguish between statistically separable (P < 0.05) values for different water treatments (A, B, C) and for
different cytotypes (X, Y).

Leaf Water Status and Histology
A significant decrease in leaf RWC was observed with increasing
water stress for diploids, but there was no significant difference
for hexaploids (Table 1). The value of RWC was significantly
lower in diploids than in hexaploids under 20% FC. Leaf
mass per unit area (LMA) varied significantly among water
stress treatments and between ploidy levels. Drought stress
gave rise to the increase in LMA from 50% FC to 20%
FC for both cytotypes, but diploids showed significantly
higher LMA than hexaploids under 80% FC and 20% FC
(Figure 3).

Cross sections of leaves indicated that the leaf blade
was significantly thicker in diploid than in hexaploid plants

because of the thicker palisade parenchyma under extreme
water stress (Table 3; Figure 4). It is also worth noting
that diploids always had a higher percentage of palisade
parenchyma than hexaploids (Table 3; Figure 4). Consistent
with the higher LMA observed for diploids under all soil
water conditions and the compact cell packaging expected in
leaves with higher LMA values, the palisade parenchyma cells
in diploids were closely arranged, but those in hexaploids
were more sparse (Figure 4). Hexaploids had significantly
wider xylem conduits for low and medium stress and the
xylem cell area in the leaf central vein was larger for diploids
than that for hexaploids under severe water stress (Table 3;
Figure 5).
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FIGURE 1 | Root:Shoot ratio (R:S ratio) of diploids (black bars) and
hexaploids (gray bars) under different soil water conditions (80% of
maximal field capacity (FC), 50% FC, 20% FC). Each value is presented
as mean ± SE. Letters distinguish between statistically separable (p < 0.05)
values for different water treatments (A, B, C) and for different cytotypes (X, Y).

DISCUSSION

In the Himalaya–Hengduan Mountains region, limited
biogeographic studies manifested that diploid and derivative
polyploids colonizing different distribution areas (Liang et al.,
2015; Wu et al., 2016), with some polyploids tending to occur at
high altitudes, such as Aconitum (Yuan and Yang, 2006), Allium
przewalskianum (Cui et al., 2008), and Anaphalis nepalensis
(Meng et al., 2014). Although geographical segregation of
cytotypes has long been recognized, the underlying mechanisms
creating these patterns remain poorly understood (McIntyre,
2012). Ecological sorting along environmental gradients and
adaptive differences among ploidy levels may trigger habitat
divergence (Duchoslav et al., 2010), a possibility which can be
examined quantitatively by means of common garden and/or
transplant experiments (McIntyre, 2012; Godsoe et al., 2013;
Theodoridis et al., 2013; Glennon et al., 2014; McAllister
et al., 2015). In our field investigations, we found that diploids
occupied habitats at higher altitudes than hexaploids, supporting
the previously reported pattern of distribution of different
C. angustifolium cytotypes (Husband and Schemske, 1998). By
performing a common garden experiment with different water
stresses, we evaluated variations in drought tolerance traits in
diploid and polyploid plants, and our results suggested that
divergence in drought tolerance between polyploids and their
diploid ancestors may have promoted habitat differentiation and
the spatial separation of cytotypes.

EcoPhysiological Differentiation between
Ploidy Levels
Water availability as a growth limiting factor was demonstrated
in the present study, since it caused significant reductions in
TDM, RDM, and ADM, but the decreases in TDM and ADM

in hexaploids were larger than those in diploids (Table 1). In
addition, drought effects were more pronounced for above- than
below-ground biomass in hexaploids, leading to an increase
in R:S ratio, as would be generally expected (Fernandez and
Reynolds, 2000; Otieno et al., 2005). Curiously, there was no
detectable change in R:S ratio for diploid cytotype (Figure 1),
indicating the existence of an intrinsic trait for coping with
drought stress in diploid C. angustifolium (Ma et al., 2010; Ma
et al., 2014). Plant growth is generally inhibited by water deficit
before photosynthesis and maintenance of respiration, leading to
the increase of non-structural carbon concentrations in tissues
(Muller et al., 2011), which is commonly interpreted as osmotic
adjustment (Hasibeder et al., 2015). During desiccation, parallel
degree of osmotic adjustments-related assimilates allocation in
roots and leaves may lead to the stable R:S ratio for perennial
grasses to maintain water balance between organs, such as
Helianthus annuus (Sobrado and Turner, 1986). This could
explain the constant R:S ratio of diploids C. angustifolium across
different gradients of water stress.

Drought can affect plant growth by influencing leaf gas
exchange rates (Sapeta et al., 2013). Early responses to water
deficit involve stomatal closure and a subsequent reduction
in stomatal conductance (Chaves et al., 2002). The resulting
reduction in leaf diffusive capacity then causes a simultaneous
decline in CO2 uptake and transpiration during desiccation
(Cornic and Massacci, 1996; Tezara et al., 1999). The magnitudes
by which gs was reduced (85.20% vs. 66.23%), Ci (25.24% vs.
15.88%), and E (74.86% vs. 56.06%) were greater in the hexaploids
than in the diploids (Table 1). Lower Ci mediated by a reduction
in leaf conductance may thus be inhibiting carbon metabolism
in the face of drought stress (Downton et al., 1988; Maroco
et al., 2002; Flexas et al., 2004) in both cytotypes (Table 1).
Comparatively, diploids had a significantly higher Amax than
hexaploids under severe water stress, and the reduction in Amax
caused by drought in diploids (39.30%) was lower than that in
hexaploids (53.94%; Table 1). Similarly, a higher photosynthetic
rate during desiccation was found in diploids of Mercurialis
annua (Buggs and Pannell, 2007) due to the case that polyploidy
cytotype had lower transpiration rates and CO2 exchange rates
under drought stress. Taking these results together, the fact that
gas exchange was less depressed in diploids than in hexaploids
would suggest that the former is better able to resist drought.
Another reliable diagnostic indicator of plant photosynthetic
activity is Fv/Fm and its value often experiences a reduction under
environmental stress (Maxwell and Johnson, 2000). Our results
revealed that Fv/Fm was significantly decreased by drought stress
in hexaploids, to below the optimal value of 0.8 (Table 1) (Mena-
Petite et al., 2000), indicating the sensitivity of hexaploids to
drought stress.

WUEi and WUEL were enhanced from 50% FC to 80% FC by
increasing drought stress for both cytotypes (Table 1; Figure 2);
similar results have been reported in other species (Zhang and
Marshall, 1994). Plants with high water use efficiency should
have greater abilities to survive drought stress than those with
lower water use efficiency (Lauteri et al., 1997). Our results
indicated that WUE in diploids increased relative to that in
hexaploids under severe water stress, reflecting a water use
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TABLE 2 | Comparisons of all variables measured in this experiment for diploid and hexaploid C. angustifolium seedlings.

Variable Abb. df Watering
treatment

df Cytotypes df Treatment ∗

cytotypes
interaction

Total dry mass TDM 2 13.753∗∗∗ 1 7.014∗ 2 1.731

Aboveground parts dry mass ADM 2 14.367∗∗∗ 1 6.414∗ 2 1.602

Root dry mass RDM 2 3.143 1 13.702∗∗ 2 4.143∗

Root:Shoot ratio R:S ratio 2 6.713∗ 1 0.358 2 3.752∗

Maximal photosynthetic rate Amax 2 56.42∗∗∗ 1 8.134∗∗ 2 1.413

Transpiration rate E 2 146.417∗∗∗ 1 21.749∗∗∗ 2 13.339∗∗∗

Intercellular CO2 concentration Ci 2 72.102∗∗∗ 1 15.541∗∗ 2 4.154∗

Stomatal conductance gs 2 124.880∗∗∗ 1 26.736∗∗∗ 2 15.760∗∗∗

Maximum quantum yield of PS II Fv/Fm 2 20.554∗∗∗ 1 20.126∗∗∗ 2 12.763∗∗∗

Instantaneous water use efficiency WUEi 2 51.247∗∗∗ 1 25.894∗∗∗ 2 2.535

Total transpired water use TWU 2 4.064∗ 1 2.762 2 0.344

Long-term water use efficiency WUEL 2 16.818∗∗∗ 1 5.877∗ 2 1.538

Leaf relative water content RWC 2 6.186∗∗ 1 0.594 2 2.792

Leaf mass per unit area LMA 2 6.690∗∗ 1 12.862∗∗ 2 0.269

P-values are presented for watering treatment, cytotype, and their interaction.
∗P < 0.05; ∗∗P < 0.01; ∗∗∗P < 0.001.

TABLE 3 | Anatomical characteristics of leaf blade and leaf central vein from diploid and hexaploid C. angustifolium under three different soil water
treatments (80% of maximal FC, 50% FC, and 20% FC).

Water treatment (% of maximum FC)

Low stress Medium stress High stress

Variable and cytotype 80% FC 50% FC 20% FC

Leaf blade thickness (µm)

Diploid 78.972 ± 3.238A, X 79.007 ± 4.074A, X 83.120 ± 4.678A, X

Hexaploid 78.688 ± 2.155A, B, X 85.502 ± 4.325A, X 70.637 ± 2.850B, Y

Palisade parenchyma thickness (µm)

Diploid 36.430 ± 1.822A, X 35.942 ± 2.323A, X 41.073 ± 2.710A, X

Hexaploid 32.051 ± 0.619A, Y 33.833 ± 1.737A, X 30.591 ± 1.659A, Y

Lacunar parenchyma thickness (µm)

Diploid 36.218 ± 1.522A, X 35.133 ± 1.804A, X 33.131 ± 1.569A, X

Hexaploid 39.511 ± 1.448A, X 43.345 ± 2.550A, Y 30.908 ± 1.738B, X

% of palisade thickness

Diploid 46.036 ± 0.914A, X 45.218 ± 0.891A, X 49.239 ± 1.085B, X

Hexaploid 40.899 ± 0.967A, B, Y 39.630 ± 0.803A, Y 43.109 ± 0.842B, Y

Leaf central vein diameter (µm)

Diploid 387.829 ± 26.280A, X 516.094 ± 20.449B, X 625.681 ± 22.113C, X

Hexaploid 533.085 ± 19.863A, Y 684.340 ± 5.579B, Y 385.444 ± 8.179C, Y

Xylem conduit diameter (µm)

Diploid 6.317 ± 0.176A, X 8.070 ± 0.141B, X 7.150 ± 0.201C, X

Hexaploid 9.747 ± 0.327A, Y 11.739 ± 0.306B, Y 6.721 ± 0.229C, X

Leaf central vein total area (mm2)

Diploid 0.090 ± 0.012A, X 0.208 ± 0.012B, X 0.288 ± 0.028C, X

Hexaploid 0.169 ± 0.016A, Y 0.288 ± 0.016B, Y 0.101 ± 0.009C, Y

Xylem cell area (mm2)

Diploid 0.011 ± 0.001A, X 0.023 ± 0.002B, X 0.025 ± 0.002B, X

Hexaploid 0.012 ± 0.001A, X 0.025 ± 0.001B, X 0.008 ± 0.001C, Y

Each value represents mean ± SE. Letters after SE values distinguish between statistically separable (P < 0.05) values for different water treatments (A, B, C) and for
different cytotypes (X, Y).
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FIGURE 2 | Instantaneous water use efficiency (WUEi) of diploids
(black bars) and hexaploids (gray bars) under different soil water
conditions (80% of maximal FC, 50% FC, 20% FC). Each value is
presented as mean ± SE. Letters distinguish between statistically separable
(p < 0.05) values for different water treatments (A, B, C) and for different
cytotypes (X, Y).

FIGURE 3 | Leaf mass per unit area (LMA) of diploids (black bars) and
hexaploids (gray bars) under different soil water conditions (80% of
maximal FC, 50% FC, 20% FC). Each value is presented as mean ± SE.
Letters distinguish between statistically separable (p < 0.05) values for
different water treatments (A, B, C) and for different cytotypes (X, Y).

strategy adapted to growing in environments where drought
stress was frequent.

The leaf is a major bottle-neck in the whole plant hydraulic
conductivity system (Sack et al., 2003). Anatomical analysis
revealed that diploid C. angustifolium possessed thicker leaves
and palisade tissue (Table 3; Figure 4), and such morphological
adjustments may enable the diploid to be more drought resistant
than hexaploid (Li et al., 2009). Species that occur in dry areas are
able to maintain living tissue at low RWC (Baltzer et al., 2008)
and usually have thicker leaves (Rhizopoulou and Psaras, 2003).

Accordingly, LMA tends to increase with leaf density and a high
LMA is generally being considered as an adaptation to drought
(Niinemets, 2001). Comparisons of LMA and RWC between
ploidy levels showed that diploids had significantly higher LMA
and lower RWC than hexaploids under extreme drought stress
(Table 1; Figure 3), implying that the dense leaf tissues of diploids
can withstand a low water content and thus slow water loss
from the whole plant (Cunningham et al., 1999; Bucci et al.,
2004).

Tradeoff between Hydraulic Efficiency
and Safety Associated with Genome
Duplication
For hydraulic transport to be efficient, there should be a
compromise between the ability to cope with water stress
and the ability to grow at high rates under more favorable
water conditions (Piñol and Sala, 2000; Martínez et al.,
2002). As an instance, the lower xylem hydraulic conductivity
found in higher ploidy levels of Atriplex canescens may be
a major constraint counteracting the beneficial effects of
their better drought tolerance (Hao et al., 2013). In contrast,
the higher hydraulic conductivity of drought-sensitive diploid
A. canescens may endow it with a higher growth rate (Stutz
and Sanderson, 1983), and thus make it more competitive
in environments with relatively high water availability (Sperry
and Hacke, 2002). In C. angustifolium, higher hydraulic
conductivity was detected in tetraploids than in diploids
(Maherali et al., 2009). According to the above mentioned
compromise rule, tetraploids may be much more drought-
susceptible but competitive compared with diploids. Surprisingly,
vulnerability to water stress induced cavitation was not
found to differ across cytotypes (Maherali et al., 2009).
The biomass of tetraploids was more negatively impacted
by the imposition of water limitation than that of diploids,
and both cytotypes had equal competitive abilities when
water was limited (Thompson et al., 2015). Our experiments
showed that both diploids and hexaploids of C. angustifolium
were apparently affected by water shortage (as indicated by
reductions in biomass accumulation and photosynthetic rate).
Nevertheless, we found partial support for the hypothesis
that diploids might be better able to cope with drought
conditions than the polyploid cytotypes, since they showed
physiological (e.g., gas exchange rate) and morphological (e.g.,
leaf architecture) adjustments appropriate for enduring water
loss.

Both water deficit and freeze–thaw cycles can lead to xylem
cavitation (Pockman and Sperry, 1996), and thus cytotypes with
higher ploidy levels and larger conduits may be more vulnerable
to drought stress due to the positive relationship between xylem
conduit size and the risk of cavitation (Sperry and Sullivan,
1992; Hacke and Sperry, 2001; Martínez and Pockman, 2002).
In C. angustifolium, polyploids generally had wider hydraulic
vessel diameters than diploids (Table 3; Figure 5). Consequently,
diploids, with their smaller xylem conduits, should be better able
to avoid hydraulic disruption formed upon embolism (Pockman
and Sperry, 1996), and a greater susceptibility to freezing-induced
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FIGURE 4 | Safranin-Fast Green staining of leaf blade sections from diploids (A, 80% FC; B, 50% FC; C, 20% FC) and hexaploids (D, 80% FC; E, 50%
FC; F, 20% FC). Scale bars are 50 µm.

FIGURE 5 | Phloroglucinol-HCl staining of leaf midvein sections from diploids (A, 80% FC; B, 50% FC; C, 20% FC) and hexaploids (D, 80% FC; E, 50%
FC; F, 20% FC). Scale bars are 50 µm.

cavitation may exclude polyploids from sites at high altitudes
(Maherali et al., 2009). In addition to the smaller xylem conduits,
the vessel area of the leaf central vein in diploids was larger than
that in hexaploids (Table 3; Figure 5), and the dense vascular
bundle found in diploids was consistent with those observed in a
few other cases (Maherali et al., 2009; Allario et al., 2011). A high
density of major veins such as that found in diploids can provide
a large number of parallel xylem pathways for water transport
per leaf area, contributing to drought tolerance by routing water
around embolized conduits (Scoffoni et al., 2011; Sack et al.,
2012).

Adaptive Significance of Polyploidization
in Shaping Geographic Distribution
Two scenarios have been proposed to explain differences in
patterns of cytotype distribution (Manzaneda et al., 2012). The
adaptive evolutionary scenario suggests that shifts in ploidy
level could result in differential stress tolerances (Levin, 2002;
Baack, 2004; Kubátová et al., 2008; Sonnleitner et al., 2010;
McAllister et al., 2015), which may underlie the ecological
divergence and adaptation of cytotypes to novel environments
(Ramsey, 2011). In contrast, the environmentally independent
explanations (‘non-adaptive scenarios’) posit that exclusion
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of minority cytotypes (Levin, 1975) and historical processes
(Sonnleitner et al., 2010; McAllister et al., 2015) may be the
driving force behind the observed distribution patterns. Diploid
C. angustifolium inhabits higher altitudes than polyploids, and
a similar pattern has also been observed in Senecio carniolicus
(Sonnleitner et al., 2010; Huelber et al., 2015) and Centaurea
jacea (Hardy et al., 2000). The results of our study illustrate
the distinct natures of physiological tolerance in the different
ploidy levels, with diploids being less sensitive to drought stress
than hexaploids. Thus, the occurrence of diploids in more open
habitats at higher altitudes may be the result of adaptation
that provides greater resistance to abiotic stress (Körner, 2003;
Sonnleitner et al., 2010), whereas the predominance of polyploids
in dense and nutrient-rich vegetation at lower altitudes may be
due to greater competitiveness compared with the surrounding
vegetation (Schönswetter et al., 2007; Ståhlberg, 2009). An earlier
study indicated that differences in physiological tolerances in
C. angustifolium probably evolved through natural selection
acting on plant water relations after polyploidization (Maherali
et al., 2009) and thus induced the adaptation of cytotypes to
their native habitats (Martin and Husband, 2013). We therefore
consider eco-physiological differentiation to be an important
adaptive factor underlying the origin of the geographical
separation and divergence in climatic niche (Thompson et al.,
2014), although other, environmentally independent, factors
cannot be excluded.

CONCLUSION

In conclusion, our results suggest that drought endurance may
have an important role in the segregation of C. angustifolium
cytotypes across altitudinal gradients. Furthermore, genome
duplication was suggested to provide the species with an
opportunity to adapt to novel environments and thus to colonize
new habitats (te Beest et al., 2011). We therefore tentatively
suggest that cytotypes inhabiting high altitudes may be more
tolerant to drought than those at low altitudes, independent of
ploidy levels.
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