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Type II pyridoxal phosphate-dependent decarboxylase (PLP_deC) enzymes play
important metabolic roles during nitrogen metabolism. Recent evolutionary profiling
of these genes revealed a sharp expansion of histidine decarboxylase genes in the
members of Solanaceae family. In spite of the high sequence homology shared by
PLP_deC orthologs, these enzymes display remarkable differences in their substrate
specificities. Currently, limited information is available on the gene repertoires and
substrate specificities of PLP_deCs which renders their precise annotation challenging
and offers technical challenges in the immediate identification and biochemical
characterization of their full gene complements in plants. Herein, we explored their
evolutionary trails in a comprehensive manner by taking advantage of high-throughput
data accessibility and computational approaches. We discussed the premise that
has enabled an improved reconstruction of their evolutionary lineage and evaluated
the factors offering constraints in their rapid functional characterization, till date. We
envisage that the synthesized information herein would act as a catalyst for the rapid
exploration of their biochemical specificity and physiological roles in more plant species.
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INTRODUCTION

Pyridoxal 5′-phosphate (PLP), one of the active prosthetic group of vitamin B6; is a coenzyme
with unequaled catalytic versatility. This is involved in a plethora of biochemical reactions like
transamination (transfer of amino groups), decarboxylation (removal of a carboxyl group at
the β- or γ-carbon), deamination (removal of an amine group), interconversion of L and D-
amino acids, and racemization. PLP-dependent enzymes are mainly involved in the regulation
of biosynthesis of amino acids, amino acid-derived metabolites, amino sugars and other amine-
containing compounds (Facchini et al., 2000; Eliot and Kirsch, 2004). It has been found that the
enzymatic versatility of these enzymes is achieved by the covalent binding of PLP group to an amino
group of an active lysine in their substrates (John, 1995). Depending on their protein structures,
all PLP-dependent enzymes have been classified in at least five structural groups (Percudani and
Peracchi, 2003; Milano et al., 2013). Among those, Type I group, the most common structure, is
present in aminotransferases, decarboxylases, and enzymes that catalyze α-, β- or γ-eliminations.
Type II encode the enzymes involved in β-elimination reactions. Type III is mainly alanine
racemase-specific whereas type IV enzymes generally include D-alanine aminotransferase. Type V
fold represents the most distinct group among five types and includes mostly glycogen and starch
phosphorylases (Percudani and Peracchi, 2003).
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Among the PLP-dependent enzymes, type II PLP
decarboxylases (henceforth mentioned as ‘PLP_deC’) form
an important group of ‘Carboxy-Lyases.’ This group is
comprised of L-glutamate decarboxylase (GAD), aromatic
L-amino acid decarboxylases (commonly mentioned as
AADs/AAADs/AADCs in the published literature), and
serine decarboxylase (SDC; group II), prokaryotic forms of
ornithine, lysine and arginine decarboxylases (group III), and the
eukaryotic forms of ornithine and lysine decarboxylases (group
IV; Sandmeier et al., 1994). In this mini-review, we first briefly
summarized the available information on their functional roles
in plants. Then we highlighted the long prevailed challenges
associated with the annotation of PLP_deCs. Unavailability of
high quality and comprehensive sequence datasets remained
one of the main reasons for their incorrect annotation in the
past, therefore we explored their full complement in 52 plant
species and analyzed their evolutionary lineage. Taken together,
the summary presented here would help us in improving their
annotation in large number of plant species; an important factor
which has long impeded their rapid functional and biochemical
characterization in plants.

AN OVERVIEW OF THE ROLES OF
PLP_deCs IN PLANT DEVELOPMENT

Available expression data indicate that PLP_deCs exhibit
developmental, tissue-specific, and inducible transcripts
accumulation during plant development (De Luca et al., 1988;
Aerts et al., 1992; Pasquali et al., 1992; Facchini et al., 1996;
Maldonado-Mendoza et al., 1996; Lopez-Meyer and Nessler,
1997; Liu et al., 2012). In addition, several PLP_deCs have
been characterized for their roles in plant development (De
Luca et al., 1988; Facchini and De Luca, 1995; Facchini et al.,
2000; Torrens-Spence et al., 2014a). For example, GADs, which
catalyze the conversion of L-glutamate to γ-aminobutyric acid
(GABA); a non-protein amino acid, are involved in a range
of cellular processes, including pollen-tube development in
Arabidopsis and Picea wilsonii (Palanivelu et al., 2003; Ling et al.,
2013), vascular development in pine (Molina-Rueda et al., 2015),
stem elongation (Baum et al., 1996), cytosolic pH regulation,
balancing the carbon/nitrogen, defense and protection against
biotic and abiotic stresses (Bouche et al., 2004). The main
mechanism that contributes to GABA production involves
decarboxylation of glutamate via GADs in plants (Akihiro et al.,
2008; Takayama and Ezura, 2015). Of these GADs, two GADs,
including SlGAD2 and SlGAD3 have been identified as the major
contributors of GABA conversion in tomato fruits. It has been
established that differential activities of these enzymes during
fruit development is the main reason of the higher glutamate
content in the ripened tomato fruits and their peculiar ‘umami’
taste (Rolin et al., 2000; Carrari and Fernie, 2006; Akihiro et al.,
2008; Saito et al., 2008; Osorio et al., 2011). The role of these
GADs in determining fruit quality through GABA production
may be conserved as increased GAD expression has also been
reported during ripening in other fruits such as Chinese berry
(Myrica rubra; Feng et al., 2012). Further, Ca2+/calmodulin

(CaM) has been identified as one of the main signaling mediators
which are responsible for the conversion of glutamate into
GABA. A C-terminal calmodulin-binding domain (CaMBD) in
GADs of the majority of plants has been suggested to be both
required and responsible for Ca2+/CaM-dependent activation
of the oligomerized GAD complexes in plants (Zik et al., 2006;
Akama and Takaiwa, 2007). However, evidence also suggests that
its presence is not universally essential for such activity as several
GADs, lacking a typical CaMBD, have been found to function
independent of Ca2+/CaM in rice and apple (Akama et al., 2001;
Fait et al., 2008; Trobacher et al., 2013).

AADs represent the second important category of PLP_deC
enzymes which catalyze the decarboxylation of aromatic L-
amino acids. These enzymes are mainly involved in the
biosynthesis of secondary metabolites in plants (De Luca et al.,
1988; Tieman et al., 2006; Lehmann and Pollmann, 2009).
The best investigated enzymes in this category are Dopa
decarboxylase (DDC), L-tryptophan decarboxylase (TDC), L-
tyrosine decarboxylase (TYDC), and histidine decarboxylase
(HDC) (Facchini et al., 2000; Torrens-Spence et al., 2014a).
Whereas TDC catalyzes decarboxylation of tryptophan to
tryptamine and other mono-terpenoid indole alkaloids such as
serotonin (5-hydroxytryptamine), TYDC mediates conversion of
L-tyrosine to tyramine (Lopez-Meyer and Nessler, 1997; Facchini
et al., 2000; Asano et al., 2012). Due to their significance in the
production of secondary metabolites, these genes have also been
used in the genetic manipulation studies aiming at improving
the contents of pharmaceutically important bio-molecules in
transgenic plants and/or cell lines, which is summarized in
Table 1. Similarly, HDC, which catalyzes the conversion of
histidine to histamine, has been found to participate in synthesis
of the flavor volatiles 2-phenylethanol and 2-phenylacetaldehyde
in tomatoes (Picton et al., 1993; Tieman et al., 2006). Their recent
characterization in tomato and pepper further identified four
HDC ripening-preferential homologs, including HDC9, HDC10,
HDC11, and HDC12; which may be involved in the similar
biochemical conversions to regulate the overall fruit quality
(Kumar et al., 2015).

PLP_deC members of the third group encode SDC. These
enzymes catalyze the conversion of serine to ethanolamine (EA)
in plants. EA may act as a precursor of phosphatidylethanolamine
(PE) and phosphatidylcholine (PC); the major phospholipids in
eukaryotic membranes (Gibellini and Smith, 2010). Similar to
the other PLP_deCs, these enzymes also determine the levels
of secondary metabolites such as choline in plants (Mudd and
Datko, 1989; Rontein et al., 2001).

ROLE OF PLP_deCs IN STRESSES

Growing evidences suggest that transcript levels of PLP_deC
genes are also influenced by both abiotic (Menke et al., 1999;
Lee et al., 2010; Akcay et al., 2012; Liu et al., 2012; Al-Quraan
et al., 2013; Hyun et al., 2014; Hu et al., 2015; Kumar et al.,
2015) and biotic stresses (Kawalleck et al., 1993; Facchini et al.,
1996; Lopez-Meyer and Nessler, 1997; Li et al., 2013; Yogendra
et al., 2014). Further, plant hormones such as IAA (Aerts et al.,
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TABLE 1 | List of the selected examples where PLP_deCs were undertaken in the genetic manipulation studies.

Target gene Engineering approach Phenotype Plant used Reference

Glutamate decarboxylase (GAD)

GAD Overexpression Higher GABA levels, improved resistance against
the root-knot nematode

Tobacco McLean et al., 2003

GAD Overexpression Higher GABA, resistance to tobacco budworm
larvae

Tobacco MacGregor et al., 2003

GAD2 Overexpression Higher GABA Rice Akama and Takaiwa, 2007

Human GAD65 Overexpression Higher GAD65 content Tobacco Avesani et al., 2014

GAD from Petunia Overexpression Higher GABA in seeds Arabidopsis Fait et al., 2011

GAD2 Overexpression Higher GABA Rice Shimajiri et al., 2013

GAD Suppression Impede regeneration of transformed explants Tomato Chew and Seymour, 2013

GADs Overexpression, suppression Altered GABA levels Tomato Takayama and Ezura, 2015

Aromatic L-amino acid decarboxylase (AAD/AADC)

TDC from periwinkle Overexpression High tryptamine Tobacco Poulsen et al., 1994

TDC Overexpression Low indole glucosinolates Canola Chavadej et al., 1994

TDC from periwinkle Overexpression Less tryptamine Petunia Thomas et al., 1998

TDC and TyDC Overexpression Higher tryptamine and hydroxycinnamic acid
amides of tyramine

Tobacco Guillet et al., 2000; Guillet
and De Luca, 2005

TyDC from parsley Overexpression Enhanced tyrosol glucaside Potato Landtag et al., 2002

TDC1 Overexpression Higher tryptamine, improved resistance against
forest tent caterpillar and tobacco hornworm

Poplar and tobacco Gill et al., 2003

TyDC2 from poppy Overexpression Increase wound-induced tyramine-derived
hydroxycinnamic acid amide

Tobacco Hagel and Facchini, 2005

AADCs Overexpression Secondary metabolites Tomato Tieman et al., 2006

TDC from C. acuminata Overexpression Resistance against Malacosoma disstria Poplar Gill and Ellis, 2006

TDC and TyDC Overexpression Altered serotonin and tyramine levels Rice Kang et al., 2007; Kang
et al., 2009

TyDC Overexpression Octoparnine synthesis Rice Lee et al., 2010

AtAAS RNAi Reduced phenyl acetaldehyde Arabidopsis Gutensohn et al., 2011

RyAAAT3 RNAi Lower 2-phenylethanol (PE) content Rose Hirata et al., 2012

TyDC Overexpression Tyramine overproduction Rice Park et al., 2012

TDC Overexpression Enhanced serotonin Rice Kanjanaphachoat et al.,
2012

RcTyDC Overexpression Higher tyramine and salidroside content Rhodiola crenulata Lan et al., 2013

TDC Overexpression Enhanced metabolites in cell cultures Rauwolfia serpentina Mehrotra et al., 2013

TDC Overexpression Higher melatonin Rice Byeon et al., 2014

1992; Goddijn et al., 1992), ABA, salicylic acid, and ethylene
(Turano and Fang, 1998; Wang et al., 2000; Kumar et al.,
2015) and metal ions Ni2+, Mn2+, Cu2+, Fe3+, and Mg2+

also modulate their expression (Fujimori and Ohta, 2003; Yang
et al., 2013). The elevated GABA levels have been implicated in
improving plant survival under abiotic stresses such as salinity
and hypoxic conditions in tomato (Yin et al., 2010; Mae et al.,
2012). It also improves plant resistance to the northern root-
knot nematode in tobacco (McLean et al., 2003), and to fungal
pathogens in rice (Forlani et al., 2014). Similarly, TDC mediated
enhanced alkaloids production is known to confer resistance
in transgenic poplar and tobacco plants against their specific
herbivores (Gill et al., 2003). Enhanced amino acid metabolism
through transcriptional activation has been proposed to be the
underlying molecular mechanisms for such improved tolerance.
In this context, transcription factor OsMYB55 has been found
to impart its function by regulating OsGAD3 activity via directly
binding to its promoter and activating GABA production under
hyperthermia in OsMYB55-overexpression transgenic plants

(El-Kereamy et al., 2012). Altogether, one of the main roles
of PLP_deC enzymes appears to be in stress alleviation via
controlling the production of secondary metabolites in plants.

CHALLENGES ASSOCIATED WITH THE
IDENTIFICATION AND ANNOTATION OF
PLP_deCs IN PLANTS

Plant PLP_deCs share a common evolutionary lineage, however,
significant sequence divergence has resulted in an intricate
evolutionary relationships between the orthologous enzymes and
their functional divergence. Since only a limited number of
PLP_deC enzymes have been characterized, till date, elucidation
of the complete range of their physiological roles in more plant
species remains a monumental task. Their functions have been
predicted on the basis of their sequence homology to the already
characterized closest PLP_deCs, however, this approach is not
always infallible (Thornton et al., 2000). For example, AtSDC was
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initially characterized as a HDC member (Rontein et al., 2003).
A similar survey of the SDC-like protein homologs in GenBank
revealed an incorrect annotation of their several homologs as
HDC-like/AADs (Torrens-Spence et al., 2013). More recently, we
also erroneously annotated tomato AtSDC homolog as SlHDC1
(Kumar et al., 2015). It is noteworthy to mention that upon
phylogenetic analysis, SDC-like members were closely placed
with HDC proteins in the same major clade and the discrepancies
observed in their annotation might have occurred due to the
higher sequence similarity between the members of two classes.

Until recently, both SDC and SDC-like enzymes were
considered to be functionally conserved. However, new
biochemical evidence suggests that these enzymes are
functionally diverged in plants as the two SDC-like enzymes
in chickpea and Medicago truncatula have been found to
have unusual aldehyde synthase activity (Torrens-Spence
et al., 2014b). Despite acting on the aromatic amino acids,
these proteins demonstrated limited homology to the other
characterized plant AADs and their preferred substrates were
discovered to be the bulky hydrophobic amino acids (Facchini
et al., 2000; Lehmann and Pollmann, 2009; Torrens-Spence et al.,
2014b). Similar to SDCs, the sequence and the phylogenetic
ambiguity between TYDC and TDC members especially that
of rice in the previous studies makes annotation of plant AADs
challenging (Kumar et al., 2015). In brief, the major challenges
associated with the annotation of plant PLP_deCs are, first;
presence of multiple gene models predicted in a genome under
the same gene model name; second; lack of a high quality genome
sequence for a few published draft genomes, third; the diverse
substrate preferences of PLP_deC enzymes, fourth; availability
of the limited information on their biochemical activities and
preferred substrates, and fifth; a high sequence similarity between

PLP_deCs especially between HDC and SDC-like proteins and
TDCs and TYDCs.

Similarly, as a consequence of the high sequence similarity
between TDC and TYDC or HDC and SDC members,
elucidation of their preferred substrate specificities is always
difficult. The situation gets more complicated by the fact that
the activities of TYDCs and TDCs can change by changing a
single active site residue; even without altering their substrate
selectivity. Substitution of a tyrosine residue to phenylalanine
in an active site catalytic loop of plant AADs was found to
alter their decarboxylase activity to aldehyde synthase chemistry
(Torrens-Spence et al., 2013). Catalytic promiscuity (the ability
of a single enzyme to catalyze different chemical reactions) or
loose substrate specificity of PLP_deC enzymes augments this
situation further, implying that an organism may have more PLP-
dependent activities than the actual number of genes, encoding
these enzymes. It can also complicate the present scenario
regarding their annotation (Percudani and Peracchi, 2003). One
of the solutions to this problem lies in computation of newer and
better optimized bioinformatics pipelines for the identification
of putative active site residues; especially by training them on
the available information of the already characterized plant
PLP_deCs (De Luca et al., 1988; Facchini and De Luca, 1995;
Facchini et al., 2000; Torrens-Spence et al., 2014a). Notably, a
similar approach has successfully resulted in the identification
of a glycine as the key residue in TDC sequences, whereas a
serine occupied the same position in the same conserved motif in
the TYDC sequences in Papaver somniferum and Catharanthus
roseus (Torrens-Spence et al., 2014a). Besides the identification
of such key residues, four additional residues which did not have
any obvious role in governing their indolic or phenolic substrate
specificity were also identified. This finding implicated that the

FIGURE 1 | Identification of PLP_deC genes in 52 plant species, including members of algae, non-vascular lower plants, gymnosperm, and
angiosperms, representing all the major clades of the species trees of plants, revealed a clear expansion of these genes from algae to land plants
during evolution. HDC, histidine decarboxylase; AAD, aromatic L-amino acid decarboxylase; GAD, glutamate decarboxylase; SDC, serine decarboxylase; GDC,
glycine decarboxylase.
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activity of plant PLP_deCs is governed by a small number of
residues.

EVOLUTION OF PLP_deCs IN PLANTS

The evolutionary profiling of PLP_deCs using the available
sequencing data of plant genomes can further help in the correct
identification and functional elucidation of more orthologs
in additional plant species. It has been proposed that the
number of PLP_deC genes in an organism depends on its
adaptation to the specific nutrient sources. With their roles
in diverse aspects of plant development and in both abiotic
and biotic stress responses, identification of more such genes
in additional species and exploration of the coding sequences,
especially corresponding to the key residues determining the
specific activities of the encoded enzymes or the C-terminal
domains such as CaMBD in GADs, among PLP_deC orthologs
would help bridge the crucial knowledge gaps existing in
current understanding of their precise functions and underlying
molecular mechanisms in plants. An investigation of their
full complement in 52 plant species, representing the major
clades of the species tree of plants, revealed a clear expansion
of these genes in land plants over their aquatic ancestors
(Figure 1). It is conceivable that the sharp expansion in the
PLP_deC complements in early land plants was necessitated
by the requirement of additional nutrient sources for their
successful acclimatization in the new environment. It was
observed that green algae such as Chlamydomonas reinhardtii
and Volvox carteri had only three PLP_deCs, without any HDC
member. These genes underwent a slight expansion in microalga
Coccomyxa subellipsoideaC169 which resulted in the origin of
HDC gene in this member of chlorophyta. Identification of
more PLP_deCs in the non-vascular plant such as Physcomitrella
patens (15) and their further expansion in the earliest vascular
plants, such as Selaginella moellendorffii (21), suggested that
these genes might have contributed to fulfill the additional
N requirement. The PLP_deC complement remained similar
in gymnosperms (Picea abies) and the most basal angiosperm
(Amorella trichopoda). However, it again showed a noticeable
expansion in monocots as 89 such genes were identified in
wheat. It is believable that such high number of these genes
in wheat may be due to the presence of three genomes in
the hexaploid wheat. Besides wheat, a significant expansion of
PLP_deC genes also occurred in its tetraploid relative switchgrass
(Panicum virgatum). However, lack of such expansion in the
other tetraploid Setaria complicated the evolutionary trends
associated with these genes in monocots. Furthermore, over 60%
of the total PLP_deCs in wheat and Setaria fell in AAD category,
suggesting that this class was preferentially retained in this species
during evolution.

Altogether, an expansion in the PLP_deC complements
evidently favored the evolution of land plants. Generally, GAD
and AAD over HDC and SDC members seem to have been
preferred for such expansion, except in a few species with more
HDC gene copies such as tomato and potato during evolution
in plants. Comparatively, more AADs and GADs were identified

in monocots than dicots, however, a few dicot species such
as Eucalyptis grandis in asterids clade and Ricinus communis,
Manihot esculenta, and Glycine max in rosids clade also had
more GAD members. Closer examination of the C-terminal
of the identified GAD proteins revealed that majority of them
contained the CaMBD domain. For example, all tomato GADs
possessed this domain suggesting that the oligomerized GAD
complexes in tomato might be activated only in Ca2+/CaM-
dependent manner (Zik et al., 2006; Akama and Takaiwa, 2007).
However, lack of a typical CaMBD in a few GAD members
in both monocots and dicots further suggested that such GAD
enzymes might have evolved to function normally even in the
absence of a conserved CaMBD domain. Finally, the evolution
of HDC genes in land plants is intriguing as this class was found
to be the most diverse in term of the strength of their members,
which varied from none (in many plant species) to 19 in tomato.
Although each class was found to be expanded at least in few
monocot and/or dicot species, it remains unclear how these genes
would have benefitted these plants and thus warrant further
studies.

CONCLUSION AND FUTURE
PROSPECTS

We discussed the evolutionary trends associated with PLP_deC
genes in plants. A clear expansion of the members of
the different PLP_deC subclasses was found to accompany
the evolution of land plants from their aquatic ancesters.
Expansion of a certain subclass of PLP_deC genes such as
HDC in tomato or other AADs in wheat raised important
questions on their relevance and unknown functions in
these species. The analysis of their evolutionary profiles
presented herein would help to annotate PLP_deC orthologs
in more plant species. A combined approach, including the
biochemical characterization method, improved computational
tools, especially trained on the already characterized PLP_deCs,
and information of the 3-D structures of the representatives of
each subclass is required to elucidate their precise functions in
plants.
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