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Non-coding small RNAs (sRNAs) in plants have important roles in regulating biological

processes, including development, reproduction, and stress responses. Recent research

indicates significant roles for sRNA-mediated gene silencing during plant-hemipteran

interactions that involve all three of these biological processes. Plant responses to

hemipteran feeding are determined by changes in the host transcriptome that appear

to be fine-tuned by sRNAs. The role of sRNA in plant defense responses is complex.

Different forms of sRNAs, with specific modes of action, regulate changes in the host

transcriptome primarily through post-transcriptional gene silencing and occasionally

through translational repression. Plant genetic resistance against hemipterans provides

a model to explore the regulatory roles of sRNAs in plant defense. Aphid-induced

sRNA expression in resistance genotypes delivers a new paradigm in understanding the

regulation of R gene-mediated resistance in host plants. Unique sRNA profiles, including

changes in sRNA biogenesis and expression can also provide insights into susceptibility

to insect herbivores. Activation of phytohormone-mediated defense responses against

insect herbivory is another hallmark of this interaction, and recent studies have shown that

regulation of phytohormone signaling is under the control of sRNAs. Hemipterans feeding

on resistant plants also show changes in insect sRNA profiles, possibly influencing insect

development and reproduction. Changes in insect traits such as fecundity, host range,

and resistance to insecticides are impacted by sRNAs and can directly contribute to the

success of certain insect biotypes. In addition to causing direct damage to the host plant,

hemipteran insects are often vectors of viral pathogens. Insect anti-viral RNAi machinery

is activated to limit virus accumulation, suggesting a role in insect immunity. Virus-derived

long sRNAs strongly resemble insect piRNAs, leading to the speculation that the piRNA

pathway is induced in response to viral infection. Evidence for robust insect RNAi

machinery in several hemipteran species is of immense interest and is being actively

pursued as a possible tool for insect control. RNAi-induced gene silencing following

uptake of exogenous dsRNA was successfully demonstrated in several hemipterans

and the presence of sid-1 like genes support the concept of a systemic response in

some species.
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INTRODUCTION

Small RNAs (sRNAs) are essential regulators of eukaryotic gene
expression and function. These 20–30 nucleotide (nt) regulatory
elements (Aravin et al., 2003), common to both plants and
animals, control endogenous gene expression in response to
external stimuli and protect the host from invasive viruses. Plants
respond to changing environmental conditions by altering their
transcriptome, which is actively modulated by sRNAs. Altered
expression of sRNA and their gene targets, in response to abiotic
and biotic stress have firmly established the importance of these
regulatory elements. During biotic stress, plants identify the
pathogen associated molecular patterns (PAMPs), which initiates
a downstream signaling cascade leading to PAMP-triggered
immunity (PTI). Pests and pathogens have simultaneously
evolved effector proteins to halt PTI and launch effector-
triggered susceptibility (ETS). Plants have co-evolved to acquire
resistance (R) proteins that recognize these effectors, resulting in
a secondary immune response called effector-triggered immunity
(ETI) (Pieterse et al., 2009). Global sRNA profiling for specific
pest or pathogen interactions have provided useful information
regarding the sRNAs involved in immunity and the altered
expression of genes, and sRNAs have become the molecular
signatures of specific PTI or ETI events. Such molecular markers
have been reported for several pathogens, including markers for
bacterial, fungal, and viral infections in different plant species
(Navarro et al., 2006; Jagadeeswaran et al., 2009; Li et al.,
2010; Campo et al., 2013; Feng et al., 2013; Pablo Peláez and
Sanchez, 2013). Similar events have been reported during insect
herbivory, where several sRNA-regulated defense responses have
been identified during herbivory by nematodes and chewing
insects (Pandey et al., 2008; Li et al., 2012). Plants infested by
phloem-feeding insects belonging to the order hemiptera appear
to elicit significantly different responses than chewing insects
and might be more closely aligned with responses to biotrophic
pathogens. Unlike the chewing pests, sucking insects do not
cause massive mechanical wounding to the plant tissue during
herbivory. The specialized mouthparts of hemipterans, called
stylets, penetrate the cortical tissues to reach the vascular tissues,
causing minimal mechanical damage, and evading many of the
specialized host defense responses to wounding. However, plants
respond to phloem-feeding insects by activating a suite of specific
defense responses that are also regulated by sRNAs. This review
will primarily focus on the sRNAs involved in plant-hemipteran
interactions and will emphasize the role of both plant and insect
derived sRNAs in susceptible and resistant host interactions to
inform strategies using sRNAs as tools for pest management in
agriculture.

sRNAs in Plants
Plants have two major classes of small endogenous RNAs,
microRNA (miRNA) and small interfering RNA (siRNA) that
are distinguished by their structure and biogenesis. MicroRNAs
are derived from single-stranded long primary transcripts (pri-
miRNA) that are primarily processed by Dicer-like-1 (DCL1) to
a double-stranded hairpin structure called pre-miRNA (Jones-
Rhoades et al., 2006; Voinnet, 2009). The pre-miRNA is further

processed into the miRNA/miRNA∗ duplex, which is then
methylated by Hua Enhancer 1(HEN1) and loaded into the
Argonaute-1 (AGO1)-containing RNA induced silencing effector
complex (RISC) (Zhu, 2008; Chen, 2009). Mature miRNA
guides RISC to the target mRNA resulting in cleavage and
post-transcriptional regulation of the target gene (Mallory and
Vaucheret, 2010). In Arabidopsis, miRNAs have also been shown
to inhibit the translation of target mRNAs (Li S. et al., 2013).
In contrast, siRNAs are derived from double-stranded RNA
(dsRNA) precursors that are processed by DCL3 or DCL4 and
then loaded in AGO1, AGO7, AGO4, and other AGO complexes
(Jones-Rhoades et al., 2006). Other notable characteristics
differentiate these two classes of sRNAs. MicroRNAs typically
originate from intergenic regions and target unrelated gene loci.
In contrast, siRNAs target either the gene from which they are
derived or closely related genes. Furthermore, miRNAs are often
conserved across closely related species, whereas endogenous
siRNAs are highly divergent (Jones-Rhoades et al., 2006).

Small interfering RNAs can be further classified into
heterochromatic siRNAs, secondary siRNAs, and NAT-siRNAs
(Vaucheret, 2006; Axtell, 2013). Heterochromatic siRNAs are
usually 23–24 nt in length and originate from the repetitive
and intergenic regions in the chromosome. They are processed
by DCL3 and recruit AGO4 as part of the RNAi-induced
transcriptional silencing complex and take part in silencing
chromatin (Jones-Rhoades et al., 2006; Axtell, 2013). Secondary
siRNAs are generated as a “secondary effect” of miRNA-mediated
target cleavage. Sometimes the miRNA-mediated cleaved target
is used by RNA-dependent RNA polymerase (RDR) to produce
secondary siRNAs (Allen et al., 2005; Manavella et al., 2012). This
can either give rise to a phased set of siRNAs or trans-acting
siRNAs (tasiRNAs) that have the ability to target genes that are
different from their loci of origin. Natural-antisense transcript
siRNAs (NAT-siRNAs) are generated from dsRNA precursors
as a result of hybridization of independently transcribed
complementary RNA strands (Borsani et al., 2005; Vaucheret,
2006; Axtell, 2013). These can be further distinguished as cis-
NAT-siRNA generated from precursors that are transcribed from
overlapping regions of the same gene but in opposite polarity,
and trans-NAT-siRNA whose dsRNA precursors are transcribed
from non-overlapping regions, but are complementarity to each
other (Borsani et al., 2005; Vaucheret, 2006). There are other
classes of siRNAs such as repeat-associated siRNAs (rasiRNA)
that have been studied in detail in the maize genome (Barber
et al., 2012) and are essential for transcriptional gene silencing
and maintaining DNA methylation (Chan et al., 2004; Onodera
et al., 2005; Chellappan et al., 2010). The two most recent
additions to the repertoire of plant sRNAs are the 21-nt
epigenetically activated small interfering RNAs (easiRNA) and
siRNAs independent of DCLs (sidRNAs) (Creasey et al., 2014; Ye
et al., 2016).

Of all the sRNAs, the miRNAs are the best characterized
with well-defined roles in plant development, metabolism,
reproduction, defense, and stress biology (Katiyar-Agarwal and
Jin, 2010; Sunkar, 2010; Khraiwesh et al., 2012). MicroRNAs can
also be classified into two categories: the lineage specific miRNAs
found in a single species or across closely related species and the
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long miRNAs of 23–24 nt in length that are functionally similar
to heterochromatic siRNAs (Axtell, 2013).

sRNAs in Insects
Insect sRNAs can be classified into three classes: miRNAs,
endogenous-siRNAs (endo-siRNAs), and piwi-interacting RNAs
(piRNAs) (Golden et al., 2008). The classification is based on
their distinct characteristics, biogenesis, and association with
AGO proteins (Kim et al., 2009). Like their plant counterparts,
insect miRNAs are well characterized; however, the biogenesis of
insect miRNA involves the enzymatic action of two RNase III
proteins, Drosha and Dicer. The pri-miRNA hairpin-structure
originates from the intergenic region by the polymerase activity
of RNA polII and is processed within the nucleus into ∼70-nt
pre-miRNA by Drosha. The pre-miRNA hairpin lacking perfect
complementarity is exported in to the cytoplasm by Exportin-5
where it is processed by Dicer-1 into themiRNA/miRNA∗ duplex
(Lucas and Raikhel, 2013). The 21-nt endo-siRNAs in insects and
mammals are produced in an RNA-dependent RNA polymerase
(RdRP) independent manner, requiring a Dicer-2-dependent
process (Kim et al., 2009). Endo-siRNAs primarily originate
from perfect or near complementary regions of transposon
transcripts, intergenic repetitive elements, or endo-siRNA cluster
loci (Tomari and Zamore, 2005). Piwi-interacting RNAs also
originate from intergenic repetitive elements, including retro-
transposons, but do not require Dicer for processing. Piwi-
interacting RNAs were originally reported from Drosophila
germ cells (Lin and Spradling, 1997). Other than their distinct
biogenesis, these three classes of sRNA can be distinguished by
their size; miRNAs are typically 22 nt, endo-siRNAs are 21 nt,
and piRNAs are 24–30 nt (Golden et al., 2008).

Another important characteristic distinguishing the three
species of insect sRNAs is their association with distinct members
of the Argonaute family. In Drosophila, endo-siRNAs typically
use the effector protein Ago-2, an association that is considered
to be a distinguishing feature for this class of sRNAs (Golden
et al., 2008). Ago-1 acts as the effector protein for miRNAs
and in association with GW182 protein, forms the miRISC
complex in Drosophila (Tomari et al., 2007; Carthew and
Sontheimer, 2009). As their name indicates, piRNAs interact
with Piwi proteins. Piwi-interacting RNAs are primarily involved
in silencing selfish genetic elements and contribute to germ
line stability (Aravin et al., 2007; Hartig et al., 2007). The final
distinguishingmark between these three classes is the presence or
absence of a 2′-o-methyl modification at the 3′end; siRNAs and
piRNAs are modified, whereas miRNAs lack this modification
and are therefore susceptible to perioxidate oxidation and beta-
elimination (Golden et al., 2008).

sRNAs in Regulating Plant Interactions
with Insect Pests and Pathogens
Plants have developed various defensive strategies to disarm
attacks by different insect pests and pathogens. In the last decade,
an active role for sRNAs during these plant biotic interactions has
been increasingly recognized. Plant-derived sRNAs participate in
PTI as well as ETI as defense mechanisms against insect pests
and pathogens. However, virulence and host immunity can be

affected by pathogen-derived sRNAs that function as effector
molecules to overcome the plant immune response (Weiberg
et al., 2014). Evidence for the role of miRNAs in PTI was
provided by Navarro et al. (2006) when they demonstrated
that overexpressing miR393 in Arabidopsis provided enhanced
resistance to the bacterial pathogen Psuedomonas syringae.
Arabidopsis miR393 decreased the steady-state levels of mRNAs
encoding auxin receptors transport inhibitor response 1 (TIR1)
and auxin signaling F-box 2 and 3 (AFB2, and AFB3), disrupting
auxin signaling. As a consequence, auxin-mediated suppression
of salicylic acid (SA) is inhibited, impacting plant defense
through accumulation of SA and activation of SA signaling.
Additionally, in miR393 overexpressing plants, the secondary
metabolic pathway is re-directed away from camelaxin toward
glucosinolates. The combined effects of enhanced SA signaling
and increased levels of glucosinolates contributed to P. syringae
resistance (Robert-Seilaniantz et al., 2011). Other miRNAs
that impact auxin signaling also have been implicated in
regulating bacterial pathogenesis. Altered expression of miR160
and miR167 during bacterial infection was linked to differential
regulation of the auxin signaling pathway by targeting members
of the auxin-response factor (ARF) family of transcription
factors (Fahlgren et al., 2007). Plant-derived miRNAs have been
implicated in other biotic interactions involving fungi (Lu et al.,
2007) and viruses (He et al., 2008). A diverse set of miRNAs
was reported to be affected by powdery mildew infection in
wheat (Xin et al., 2010). Similarly, Gonzalez-Ibeas et al. (2011)
identified a large number of conserved miRNA families in the
melon sRNA transcriptome analyzed from watermelon mosaic
virus (WMV) and melon necrotic spot virus (MNSV) susceptible
(Tendril) and resistant (T-111, and TGR-1551) cultivars. Wheat
miR408 negatively regulates plantacyanin TaCLP1, which is
responsible for enhanced susceptibility to wheat stripe rust
fungus (Feng et al., 2013). Evidence for miRNA-mediated PTI
in basal defense against rice blast fungus, has been reported
for rice miR169a, miR172a, and miR398b (Li Y. et al., 2014).
An exhaustive list of the miRNA families that are involved
in bacterial and fungal pathogenesis in several plant species is
documented in recent reviews by Weiberg et al. (2014) and
Huang et al. (2016).

Specific, and perhaps unique, roles for plant sRNAs have
been identified during nematode infection and insect herbivory.
Altering global sRNA biogenesis in dcl and rdr mutants
of Arabidopsis showed reduced susceptibility to nematodes
(Hewezi et al., 2008), whereas silencing rdr1 in Nicotiana
attenuata increased the susceptibility of the plant to herbivory
by chewing pests (Pandey et al., 2008). The rdr1-silenced
Nicotiana plants had attenuated expression of jasmonic acid
(JA) and ethylene (ET) biosynthetic genes as well as reduced
accumulation of JA indicate that sRNAs negatively impact
host-defense signaling in response to Manduca sexta feeding
(Pandey et al., 2008). Additionally, Rasmann et al. (2012) have
shown that Arabidopsis mutants deficient in sRNA biogenesis
do not inherit the trans-generational priming of jasmonic acid
(JA)-dependent defense response against chewing herbivores.
Chewing insect herbivory results in significant wound damage
to the plant tissues, and several conserved and novel miRNA
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families a large number of loci generating phased siRNA and
tasi-RNA were identified in tobacco in response to herbivory
(Tang et al., 2012).

Biotic stress induced by insect pests and pathogens can
trigger R gene mediated defense responses in plants. Evidence
for sRNA regulation of R genes in several plant species has
increased our understanding of the molecular switch that
controls R gene mediated responses in plants. During normal
plant growth, R-gene expression could trigger autoimmunity
redirecting the plant metabolism from growth to defense. In
the Solanaceae, miRNAs and secondary siRNA have conserved
roles in regulating NBS-LRR receptors and innate immunity
(Li et al., 2012). For example, NBS-LRR resistance gene
mRNAs are specifically targeted by miR482/2118 in tomato
and other members of the Solanaceae (Shivaprasad et al.,
2012). Similar results were observed in Medicago and soybean
where three 22 nt miRNAs (miR1507, miR2118, and miR21090)
generated phased-siRNAs that regulate NBS-LRR genes
(Zhai et al., 2011).

HOST sRNA PATHWAY COMPONENTS
AND INDUCED RESPONSES AGAINST
HEMIPTERAN HERBIVORY

Phloem-feeding insects belonging to the order hemiptera have
adopted a unique feeding niche that exploits the sugar-rich plant
phloem sap as a primary food source. Phloem sap is under high
turgor pressure that is maintained by low osmotic potentials
within transport phloem sieve elements (Taiz and Zeiger, 2010).
This sugar-rich environment also contains proteins, peptides,
and a high ratio of non-essential: essential amino acids. Phloem-
feeding hemipterans have co-evolved to exploit this challenging
diet by acquiring several unique adaptions. Phloem feeders
have specialized mouth parts, called stylets, which mechanically
and enzymatically penetrate cortical cell layers to tap into the
sieve element. The high turgor pressure in the punctured sieve
element allows sustained passive feeding from the phloem.
The osmotic challenges presented by the ingested phloem sap
are managed by gut sucrose-transglucosidases that transform
excess sugar into long-chain oligosaccharides that is expelled as
honeydew (Douglas, 2006). Another unique adaptation is the
vertical transfer of symbiotic microorganisms within the gut
tissues, providing the insects with essential amino acids that are
nutritionally unavailable from the phloem sap diet (Baumann
et al., 1997; Douglas, 2006).

Plants are well equipped to protect themselves from phloem
feeders. The phloem sap not only provides food, but also has
the ability to provide defense against these hemipteran pests
(Hagel et al., 2011). The phloem tissue contains secondary
metabolites and other defensive compounds that can deter
phloem feeders and microbial pathogens. Glucosinolates are
sulfur-rich compounds confined in the vacuole of specialized
S-cells located in the periphery of phloem tissue of brassicas.
During tissue damage, myrosinases, and thioglucosidases present
in the M-cells of the phloem parenchyma mix with these
glucosinolates to produce toxic isothiocyanates, nitriles, or

thiocyanates (Hagel et al., 2011). However, phloem feeders most
often evade these defenses by careful stylet insertion during
feeding (Tjallingii and Hogen Esch, 1993). Structural phloem
proteins also contribute to defense through physical interactions
within sieve elements that possibly impact hemipteran feeding.
This phenomenon has been best characterized in members
of Fabaceae, where spindle-shaped forisomes regulate sieve
element occlusion by expanding to spherical structures at sieve
plates that occlude the sieve element (Knoblauch et al., 2001;
Knoblauch and Peters, 2004; Tuteja et al., 2010). The reversible
crystalline to amorphous structural change is determined by
calcium flux within sieve elements. Perception of a stress
signal activates calcium influx into the phloem sap, resulting
in sieve element occlusion. Interestingly, it appears that aphids
have salivary calcium chelators that could prevent forisome
structural transitions by scavenging calcium within the phloem
sap (Will et al., 2007). Emerging evidence suggests that proteases
in aphid saliva degrade the very abundant phloem protein 1
(PP1), suppressing a putative phloem defense and providing an
additional nitrogen source for the aphids (Furch et al., 2015).

Defense responses against phloem feeders are almost certainly
not limited to vascular tissues. While stylet probing is primarily
intercellular through the middle lamella of cortical cell walls,
intracellular stylet penetration of cells of the cortical tissues
is common. This is clearly illustrated by the large number
of hemipteran-transmitted viruses that are not phloem-limited
and unequivocally confirmed by countless EPG analyses.
One weakness in understanding defenses against phloem-
feeding insects at the molecular level has been an overall
lack of high resolution localization data. Many studies have
shown that hemipteran herbivory induces global transcriptional
reprogramming in plant tissues that shifts primary metabolism
to secondary metabolism and defense (Giordanengo et al.,
2010). Defense pathways and related phytohormone-mediated
responses are strongly induced in response to hemipteran feeding
(Moran and Thompson, 2001; Smith and Boyko, 2007;Morkunas
et al., 2011). During the last decade, studies have revealed that
sRNAs serve as important modulators of plant stress responses
in response to phloem-feeding insects (Greyling, 2012; Sattar
et al., 2012b; Barah et al., 2013; Kettles et al., 2013; Xia et al.,
2015) (Table 1). Important milestones in our understanding
of sRNA function in basal immunity against hemipteran
insects have been made in Arabidopsis; however, parallel
investigations in non-model systems are revealing the role of
sRNAs in host plant resistance. Both approaches are contributing
to the future development of integrated pest management
strategies.

Identifying sRNA Co-expression Networks
and Biogenesis Pathway Components
during Arabidopsis-Hemipteran
Interactions
Comparative analyses of the transcriptional changes in
Arabidopsis in response to the microbial pathogen P.
syringae or cabbage aphid (Brevicoryne brassicae) revealed
commonalities between the two biotic stress signals, as well
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TABLE 1 | sRNA profiling studies in host plants in response to aphid infestations.

Host Planta Insectb Interaction Duration Analysis sRNAs Identified References

Arabidopsis Cabbage aphid Susceptible 72 h miRNA:mRNA co-expression

network analysis

Not applicable Barah et al., 2013

Arabidopsis Green peach aphid Susceptible 14 days sRNA pathway mutant analysis Not applicable Kettles et al., 2013

Melon Cotton-melon aphid Resistant and

susceptible

2–12 h sRNA sequencing, qRT-PCR 23 conserved miRNA

families, 5 novel miRNAs

Sattar et al., 2012a

Chrysanthemum Chrysanthemum aphid Resistant 0–48 h sRNA sequencing 303 conserved miRNAs,

234 novel miRNAs

Xia et al., 2015

Wheat Russian wheat aphid Resistant 12–24 h Subtractive sRNA cloning,

qRT-PCR

86 putative miRNAs Greyling, 2012

aMelon (Cucumis melo); Chysanthemum (Chysanthemum morifolium); Wheat (Triticum aestivum).
bCabbage aphid (Brevicoryne brassicae); Green peach aphid (Myzus persicae); Cotton-melon aphid (Aphis gossypii); Chysanthemum aphid (Macrosiphoniella

sanbourni); Russian wheat aphid (Duiraphis noxia).

as aphid-specific responses (Barah et al., 2013). Pathways
regulating defense responses, signaling, and metabolic processes
were common to both P. syringae and the cabbage aphid.
Integration of the two data sets by in silico analysis of
data generated through microarray studies with publicly
available gene expression and miRNA datasets for Arabidopsis
described a theoretical co-expression network of mRNAs
and their cognate miRNAs. The aphid-response network
consisted of 82 transcripts, including mRNAs encoding 42
transcription factors and 21 conserved targets for Arabidopsis
miRNAs. Further analysis identified 17 miRNA families as
regulators of differentially expressed transcripts in response
to aphid infestations. Some of these miRNA target transcripts
belonged to WRKY and bZIP transcription factor families that
have well established functions in biotic stress, reflecting
some level of conservation among the different stress
responses. The co-expression network also revealed that
aphid-specific transcripts were connected to more than
one miRNA node, indicating that transcripts are under
the regulation of more than one member of a miRNA
family or multiple miRNAs belonging to different miRNA
families. Additional network complexity was displayed
when a single member of a miRNA family was shown to
target two different transcripts. While informative, this
in silico mRNA:miRNA network analysis lacked supporting
experimental evidence for miRNA regulation during aphid
infestation.

The availability of Arabidopsis mutants for sRNA and defense
related pathways provided tools to assess the effects of sRNAs
on green peach aphid (Myzus persicae) fecundity (Kettles et al.,
2013). The reproduction of aphids feeding on RDR mutants
(rdr1, rdr2, rdr6) did not show any differences between these and
Col-0 control plants, indicating that interruption of the siRNA
pathway had minimal effect on green peach aphid performance
in Arabidopsis. Interestingly, DCL mutants had differential
responses: dcl1mutants showed greater resistance toward aphids,
but dcl2, dcl3, and dcl4 had no effect on aphid fecundity. Double
mutants for dcl2/3 and dcl2/4 and triple mutant dcl2/3/4 also
showed no significant change in aphid fecundity. AGO mutant
ago1-25 showed significantly reduced aphid fecundity; however,
ago2, ago4, or ago7 mutants did not impact aphid performance.

Taken together, these data indicate that impaired miRNA
processing by specific members of DCL and AGO multigene
families negatively affects reproduction of green peach aphid.
This was further confirmed by reduced aphid performance on
hen1, hst (hasty), and se (serrate)mutants that also were defective
in miRNA processing. Since all the miRNA-processing pathway
mutants had a dwarf phenotype, an Arabidopsis line exhibiting a
similar phenotype (PDLP1a:GFP overexpression line) was used
as a control. It was confirmed that the reduced fecundity was
not a result of dwarfism but due to the compromised miRNA
processing.

Further analysis of the miRNA-processing mutants revealed
that PAD3 (a marker for camalexin biosynthesis) and CYP81F2
(member of indolic glucosinolate pathway) (Pfalz et al., 2009)
were highly induced at 12 h post aphid infestation in the
dcl1 mutants. HPLC and mass spectrometry analysis confirmed
enhanced camalexin content in dcl1 plants in response to aphid
herbivory and it was shown that aphids raised on these mutants
ingested camalexin during phloem feeding. Artificial diet assays
supplemented with camalexin substantiated the negative impact
of this metabolite on aphid fecundity; however, no toxicity
was reported for adult aphids. Aphid fecundity assays on pad3
and cyp81f mutants validated the role of camalexin in aphid
performance. The impaired miRNA processing pathway also
affected phytohormone-mediated defense signaling (Kettles et al.,
2013). LOX2 expression in dcl1 mutants in response to aphid
herbivory was enhanced, whereas, aphid fecundity on coi1,
jar1, and 35S:LOX2 mutants, defective in JA signaling did
not significantly differ from control plants. ET-responsive HEL
transcript was also induced in response to aphid feeding in
dcl1 plants. Fecundity assays on ET-insensitive etr-1 or ein2-5
mutants revealed that aphid reproduction was greater on ein2
mutant plants, whereas, aphid reproduction on etr1 mutant
plants was not significantly different from control plants. In
contrast, previous studies have shown that aphid saliva-induced
plant defenses in Arabidopsis did not involve EIN2 and ET
signaling (De Vos and Jander, 2009). Thus, EIN2 appears
to have some role in green peach aphid resistance that can
be seen in either dcl1 mutants or in the presence of the
bacterial effector harpin protein (Liu et al., 2011; Kettles et al.,
2013).
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sRNA-Mediated Resistance Against
Hemipteran Insect Pests in Non-model
Host Plants
Changes in the miRNA profile in response to aphid herbivory
have been reported in the ornamental species Chysanthemum
morifolium showing resistance to chrysanthemum aphid
(Macrosiphoniella sanbourni) infestations (Xia et al., 2015).
Three sRNA libraries were generated from no treatment control
plants, plants receiving mock punctures, and aphid-infested
plants, respectively. Eighty miRNAs were differentially regulated

when comparing the control and aphid-infested libraries; among
these 39 miRNAs showed increased expression and 41 miRNAs
were down-regulated during aphid herbivory. Comparisons
between mock punctures (wounding) and aphid infestation
libraries revealed 79 differentially regulated miRNAs, with 39
miRNAs up-regulated and 40 miRNAs down-regulated. Novel
miRNAs were also identified from these libraries. Further
analysis revealed 24 conserved miRNAs and 37 novel miRNAs
were specific to aphid infestations, while of 52 conserved and 9

novel miRNAs were associated with mock puncture (wounding)
treatment. In the absence of chrysanthemum genome, the
transcriptome was used for in silico miRNA target prediction;
however, several of the in silico-predicted targets could not be

verified by experimental methods due to poor coverage of the
transcriptome. Because of the lack of validated miRNA targets
for chrysanthemum, specific roles for miRNAs in aphid-induced

plant defense signaling in the resistant cultivar could not be
further explored.

Resistance toward Russian wheat aphid (RWA, Diuraphis
noxia) is due to the presence of Dn genes. Eleven Dn
genes have been reported from cereals, including Dn1-9, Dnx,

and Dny (Botha et al., 2005). The wheat cultivar TugelaDN
contains the Dn1 R-gene that confers resistance against RWA
biotype 1 (Jankielsohn, 2011). Matsioloko and Botha (2003)
observed significant transcriptional changes in response to RWA
infestation in the resistant TugelaDN wheat. Genes related to
the defense response including receptor and signaling pathway
were reported to be differentially regulated within 1–2 h of
RWA feeding (Gill et al., 2004; Botha et al., 2005). Subtractive
sRNA libraries were constructed from RWA-infested susceptible
(Tugela) and resistant (TugelaDN) wheat leaf tissues collected

at 12, 18, and 24 h post feeding. The Dn-resistance specific
sRNAs included 86 putative miRNAs with targets predicted
by in silico methods (Greyling, 2012). Q-PCR analysis for
three selected miRNAs (TaDn-miR65, TaDn-miR15, and TaDn-
miR104) showed enhanced expression of these miRNAs in the
resistant cultivar in response to aphid feeding in time-course
study. Putative targets were predicted for these miRNAs: β-1,

3 glucanase, and cytochrome-P450 targeted by TaDn-miR15 and
WRKY13 andMYB targeted by TaDn-65. This demonstrated the

potential role for TaDn-miRNAs in aphid resistance.
R gene-mediated resistance conferred by the Vat (virus

aphid transmission) gene against cotton-melon aphids (Aphis
gossypii) and cotton-melon aphid-transmitted viruses is well

documented in melon (Cucumis melo) (Kennedy et al., 1978;
Dogimont et al., 2014). Resistance to cotton-melon aphids is

exhibited as antixenosis (non-preference), antibiosis (delayed
growth and development and reduced reproduction), and
host plant tolerance (Bohn et al., 1972). The melon miRNA
expression profile was determined using sRNAseq combined
with comparative analysis of miRNA expression patterns in
response to aphid herbivory during resistant and susceptible
interactions (Sattar et al., 2012b). Libraries generated from leaf
tissues of Vat+ aphid-resistant melon plants with and without
aphids compared the sRNA expression at initial stages of the
interaction to distinguish between the molecular cues that are
associated with early (2, 4, and 6 h) and late (8, 10, and
12 h) stages that corresponded with pre- and post-sustained
phloem ingestion, respectively (Klingler et al., 2001). In total,
23 families of conserved plant miRNAs were identified from
the three libraries. Next generation sequence profiling, qPCR,
and sRNA blot data revealed that members of 18 conserved
miRNA families preferentially accumulated during the early
stages of aphid herbivory in the resistant interaction. Twenty-
two conserved miRNAs were down-regulated, whereas only one
was up-regulated in the early response to aphid infestations.
Eight miRNAs were up-regulated during the late stages of aphid
herbivory in the Vat− susceptible melon. Five miRNA families
showed statistically significant down-regulation during early
stages and two during the late stages of aphid infestation in the
susceptible interaction. Overall, the resistant interaction showed
enhancedmiRNA expression, whereas the susceptible interaction
showed down-regulation of miRNAs. The opposing trends in
these nearly-isogenic lines could be due to differences in miRNA
transcription or biogenesis. Eighteen cucurbit-specific miRNAs
were also identified, five of which were melon-specific, while the
remaining 13 sequences were identified from both melon and
pumpkin. The expression profiles of all five novel melon-specific
miRNAs inVat+ resistant melon line did not change significantly
during early and late stages of aphid herbivory, but in the Vat−

susceptible line three were significantly down-regulated during
early stages of aphid infestation.

Melon miRNA targets were empirically identified by
degradome sequencing and further verified by 5′RNA ligase-
mediated rapid amplification of cDNA ends (RLM-RACE)
(Sattar et al., 2012b, 2016). Degradome sequencing identified
70 miRNA: mRNA target pairs for the 23 conserved miRNA
families that included 28 novel target pairs not found in
other plant species. Interestingly, 11 miRNA target gene
transcripts encode proteins with established roles in regulating
phytohormone (auxin, JA, ET, ABA, and GA) biosynthesis and
signaling pathways. A detailed analysis of the miRNA:mRNA
interactome revealed six miRNA:mRNA target pairs that impact
auxin perception and signal transduction. The auxin-miRNA
interactome provided evidence for a series of redundant
mechanisms resulting in auxin insensitivity that appears to be
a component of Vat-mediated resistance (Sattar et al., 2016).
Aphid feeding onVat+ resistant melon tissues results in miR393-
mediated loss of TIR-1 and AFB2 auxin receptors. Loss of
auxin receptors prevents the formation of SCFreceptor-ubiquitin
ligase complex and degradation of AUX/IAA proteins via the
complex. AUX/IAA proteins negatively regulate auxin signaling
by inactivating a class of ARF that are transcriptional activators
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of auxin-induced genes. Simultaneously, miR167 targets ARF
activators (ARF6 and ARF8) as a redundant mechanism
contributing to auxin insensitivity in the resistant Vat+ tissue
(Sattar et al., 2016). Reduced expression of auxin downstream
signaling genes after 12 h of aphid infestation in resistant plants
provides indirect evidence for the proposed auxin insensitivity
model. Experimental evidence directly linking the inactivation
of the auxin receptor with a reduction in aphid fecundity
was obtained by treating susceptible melon leaf tissues with a
chemical inhibitor (PEO-IAA) of the TIR-1 auxin receptor.

Additional components of the auxin-miRNA interactome
in Vat-mediated resistance have conserved roles in auxin
homeostasis. MicroRNA miR160 targets transcriptional
repressor ARF17 that in turn regulates the expression of the
gene encoding the GH3 auxin-conjugating enzyme. MicroRNAs
miR164 and miR319 are involved in auxin feedback loops
through NAC and TCP transcription factor genes, respectively,
and miR390 mediates miRNA cleavage that generate secondary
tasiRNA that target ARF2 and ARF3.

INSECT-DERIVED SRNAS AND THEIR
ROLE IN HERBIVORY

The advent of new sequencing technologies has made it
possible for sRNA profiling in hemipteran insect species
that have either extensive or limited genomic information.
Experimental and in silico sRNA profiling studies have
been reported for the following phloem feeding insects: pea
aphid (Acyrthosiphon pisum), cotton-melon aphid (A. gossypii),
whitefly (Bemisia tabaci), brown planthopper (Nilaparvata
lugens), small brown planthopper (Laodelphax striatellus), and
white-backed planthopper (Sogatella furcifera) (Table 2). Small
RNA profiling was reported from the xylem sap feeder glassy-
winged sharpshooter (Homalodisca vitripennis) and both xylem
and phloem feeders Asian citrus psyllid (Diaphorina citri) and
large milkweed bug (Oncopeltus fasciatus) (Table 2). To date,
sRNA studies in hemipteran species have primarily focused on
identifying sRNA sequences and categorizing those sequences
as miRNA, piRNAs, or virus-derived siRNAs (viRNAs). Other
studies have identified sRNA biogenesis pathways and sRNAs
that are specific to developmental stages, growth, reproduction,
or insect immunity. These reports are beginning to provide
evidence for sRNA regulation of important biological processes
in hemipteran insects and an understanding of insect-host plant
and vector-pathogen relationships.

Identification of sRNA Pathways in
Hemipteran Insects
The pea aphid has become the model hemipteran species
due to an international collaborative effort to obtain the fully
sequenced and annotated genome, which has opened avenues for
fundamental studies to be conducted in this species. MicroRNA
sequences as well as genes involved in siRNA and miRNA
biogenesis from pea aphid were initially predicted by in silico
probing of the genome sequence (Jaubert-Possamai et al.,
2010; Legeai et al., 2010; Kozomara and Griffiths-Jones, 2011).

Phylogenetic analysis revealed duplicated miRNA biogenesis
genes in the pea aphid (two Ago-1, two Dcr-1, and four Pasha
gene copies) that retain their functionality (Jaubert-Possamai
et al., 2010). These duplication events occurred at different time
periods with the Dcr-1 duplication being a recent event, while
Ago-1 occurred as an ancestral event in the subfamily Aphidinae.
The Ago-1 and Dcr-1 duplicated genes were differentially
expressed in four different reproductive morphs of the pea aphid
(Ortiz-Rivas et al., 2012). Duplication events were also reported
for genes from the pea aphid piRNA pathway (Lu et al., 2011).

Aphids have unusually high phenotypic plasticity and can
switch from sexual to asexual reproduction (Miura et al.,
2003), which presents a unique system to investigate the
role of duplication events in the piRNA biogenesis pathway
during asexual and sexual reproduction. Expression of the
duplicated Piwi and Ago genes was tissue specific in certain
reproductive morphs (Lu et al., 2011). During embryogenesis,
Api-Piwi2, Api-Piwi6, and Api-Ago-3a were expressed in germ
cells, whereas duplicated copies Api-Piwi5, Api-Piwi3, and Api-
Ago3b were localized in somatic cells. Semi-qPCR detected
differential expression for Api-Piwi and Api-Ago3 genes in the
different reproductive morphs. Ago-3b was most abundant in
the sexuparae female morph, whereas Ago-3a was abundantly
expressed in all of the female morphs. Both the Ago-3 duplicates
were expressed at very low levels in the sexual males, indicating
Ago-3 was not involved in male sexual reproduction. Expression
studies of Api-Piwi genes in the different reproductive morphs
revealed germ line-specific Api-Piwi2 and somatic cell-specific
Api-Piwi3 were abundant in all the female reproductive morphs.
Interestingly another somatic cell-specificApi-Piwi5was strongly
expressed in the sexual males. Api-Piwi6 was strongly expressed
in the germline cells of the female oviparae. These data indicate
additional functions for Piwi genes during both sexual and
asexual phases of aphid reproduction.

Several genes belonging to the different sRNA pathways were
identified from the soybean aphid (Aphis glycines) (Bansal and
Michel, 2013). Single copies of Dcr2, R2d2, Ago2, and Sid-1 were
identified in soybean aphid. Expression analysis of the sRNA
pathways genes at different developmental stages showed Dcr2,
R2d2, and Ago2 were highest during the first and second instar
stage. However, Sid-1was uniformly expressed throughout all the
developmental stages in the soybean aphid. Tissue-specific qPCR
analysis detected the presence of Dcr2, R2d2, Ago2, and Sid-1 in
the epidermis, gut, and fat body of the insect. Because Sid-1 is
essential for systemic response of RNAi in both Apis mellifera
and Caenorhabditis elegans (Winston et al., 2002; Aronstein et al.,
2006), its presence throughout all the developmental stages opens
up the possibility of designing effective RNAi-mediated control of
the soybean aphid.

Small RNA pathways also have been evaluated and
characterized in brown planthoppers (Zha et al., 2011; Xu
et al., 2013). Brown planthopper Sid-1 and Aub genes encoding
proteins involved in the RNAi pathway were identified, as were
members of the Ago and Dcr families (Zha et al., 2011). Genome
and transcriptome sequence analyses revealed one Drosha,
three Dcr genes, and one ortholog each of the RNA-binding
protein R2D2, Loquacious (Loqs), and Pasha (Xu et al., 2013).
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TABLE 2 | Hemipteran sRNAs identified.

Hemipteran pesta Experimental design Analysis sRNAs identified References

Whitefly Comparative analysis of sRNA profile

Q and B biotype raised on

susceptible host cotton

sRNA sequencing 170 conserved miRNAs and 15

novel candidates

Guo et al., 2014

miRNA profiles for viruliferous and

nonviruliferous whiteflies on tomato

sRNA sequencing, qPCR 112 and 136 conserved miRNAs

from nonviruliferous and

viruliferous whiteflies

Wang et al., 2016

Glassy- winged

sharpshooter

miRNA profiling of insects raised on

basil, cotton and cowpea

sRNA sequencing 345 conserved and 14 novel

miRNAs

Nandety et al., 2015

Pea aphid In silico prediction of miRNAs from

genome sequence

Solexa sequencing 149 miRNAs including 55

conserved and 94 new miRNAs

Legeai et al., 2010

miRNA and siRNA pathway

identification

Annotation of the miRNA and siRNA

pathway genes and expression profiling of

these genes

Not applicable Jaubert-Possamai

et al., 2010

Evolutionary analysis of the miRNA

machinery

Phylogenetic analysis of ago-1 and dcl-1 Not applicable Ortiz-Rivas et al., 2012

Cotton- melon aphid Comparative analysis of insects

feeding on susceptible and resistant

melons

sRNA sequencing 81 conserved miRNAs, 12

aphid-specific miRNAs, 9 novel

miRNA candidates

Sattar et al., 2012a

Analysis of ESTs In silico 16 potential miRNAs Rebijith et al., 2014

Brown planthopper Prediction of novel miRNA In silico 9 novel miRNAs Asokan et al., 2013

Comparative analysis of sRNA from

the insect developmental stages

sRNA sequencing 452, 430, and 381 conserved

miRNAs from adult male, adult

female and female nymph

libraries

Chen et al., 2012

Genome-wide screening for siRNA,

miRNA pathway

Not applicable Xu et al., 2013

Analysis of fecundity-related miRNAs Dual-luciferase assay, miRNA injection 38 potential miRNAs regulating 9

fecundity-related genes

Fu et al., 2015

Identification of miRNAs regulating

molting

sRNA sequencing, miRNA injections,

qRT-PCR

miR-8-5p and miR-2a-3p

regulate chitin synthesis

Chen et al., 2013

Analysis of sRNA biogenesis gene

dcl-1

Cloning and sequencing of dcl1, qRT-PCR

of dcl in different tissues

Not applicable Zhang et al., 2013

Small brown

planthopper

RBSDV infection sRNA seq 59 conserved miRNA, 20 novel

miRNAs

Li et al., 2015

HiPV-derived sRNAs sRNAseq Virus derived RNAs are 21–22 nt Li J. et al., 2014

Asian citrus psyllid Prediction of virulence-regulatory

miRNAs and phylogenetic analysis of

miRNA clades

In silico 10 major clades Khalfallah et al., 2015

Large milk-weed bug Prediction of miRNAs In silico 96 candidate mature miRNAs Ellango et al., 2016

White-backed plant

hopper

Small RNA libraries from viruliferous

and non-viruliferous insects

sRNA sequencing 106 conserved miRNAs, 276

novel miRNAs

Chang et al., 2016

aWhitefly (Bemicia tabaci); Glassy-winged sharpshooter (Homalodisca vitripennis); Pea aphid (Acyrthosiphon pisum); Cotton-melon aphid (Aphis gossypii); Brown planthopper

(Nilaparvata lugens); Small brown planthopper (Laodelphax striatellus); Asian citrus psyllid (Diaphorina citri); Large milkweed bug (Oncopeltus fasciatus); White-backed planthopper

(Sogatella furcifera).

Three members of the Ago family (Ago-1, Ago-2, and Ago-3),
were also identified, indicating the presence of siRNA, miRNA,
and piRNA pathways in the brown planthopper (Xu et al.,
2013). The brown planthopper sRNA pathway genes were
cloned, sequenced, and their functionality confirmed by gene
knockdown assays using dsRNA microinjections. The brown

planthopper nymphs with Sid-1 knockdown lost systemic RNAi
for other targets, confirming the conserved role for Sid-1 in this
insect. Third-instar brown planthopper nymphs with silenced
Dcr-1 and Ago-1 showed lethal defects, and the few that survived
could not complete metamorphosis nor were able to stretch
their wings (Xu et al., 2013). These experiments suggest that
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miRNA pathways impact insect development and ecdysis. Zhang
et al. (2013) observed a similar effect for Dcr-1 down-regulation
in brown planthopper adult females. Microinjection of Dcr1
into adult females caused significant loss of Dcr-1 transcripts
in both whole body and ovaries. Furthermore, the oocytes of
the adults with Dcr-1 knockdown were poorly developed with
abnormal follicular development. As a result the number of
eggs produced by Dcr-1-silenced brown planthopper females
where significantly less than those in the control group. Also,
the expression of several ubiquitously found conserved miRNAs
(bantam, miR-7, miR-8, and miR-9) decreased significantly
in dsDcr1-treated brown planthopper adult females 3 days
following microinjection.

Zhou et al. (2016) demonstrated the differential expression of
Ago-1 and Ago-2 in small brown planthoppers under different
stress conditions. Although both Ago genes are expressed during
all developmental stages of the insect, reduced expression of
both Ago-1 and Ago-2 was reported in second-instar small
brown planthopper nymphs in response to rice black-streaked
dwarf virus. Both high and low temperature extremes negatively
affected Ago-1 expression; however, Ago-2 expression was
markedly reduced only in response to low temperature stress.
Changing host plants initially caused reduced expression of both
the Ago genes, but the expression of Ago genes recovered to their
normal state after a 7-day period on the new host, indicating
that Ago genes have important roles host specificity as well as
stress responses. Other important genes from the RNAi pathway
such as Eri-1 and Sid-1 were also identified from the small brown
planthoppers.

sRNAs Regulating Insect Development,
Growth, and Reproduction
Hemipterans are paurometabolous insects with three life stages
(egg, nymph, and adult) that undergo gradual metamorphosis
(Bybee et al., 2015). For example, aphid nymphs molt 6–8
times and then metamorphose into an adult. Reproduction
in hemipterans can be sexual or asexual. Some hemipterans,
such as aphids, are economically important agricultural pests
with prolific reproductive ability. When favorable conditions
exist, aphids reproduce asexually, giving birth to live females
rather than laying eggs. As days shorten and become cooler,
aphids produce winged males and females that can mate and
reproduce sexually to overwinter as eggs on perennial host plants
(Ogawa and Miura, 2014). Female aphids begin reproducing
parthenogenetically 7–10 days after birth. The reduced pre-
reproductive period is possible because of “telescoping of
generations” where aphids complete much of their development,
including their reproductive system before they are born (Dixon,
1998). Aphid growth and development are reliable indicators of
insect performance on host plants because they correlate with
fecundity and are directly impacted by environmental factors
(Awmack and Leather, 2007).

Insect growth, development, reproductive potential, and
interactions with plant hosts can be influenced by sRNAs
(Asgari, 2013; Lucas and Raikhel, 2013). In Drosophila, miRNAs
have been identified as regulators of reproductive biology,

including differentiation and maintenance of germlines within
the ovaries (Park et al., 2007). Genome-wide association
studies have identified several Drosophila miRNAs as well as
epigenetic modifications associated with sexual reproduction
and ageing (Zhou G. et al., 2014; Zhou S. et al., 2014). The
potential role sRNAs on pea aphid reproduction and life cycle
was first suggested by Ortiz-Rivas et al. (2012) when they
reported differential expression of Ago-1 and Dcr-1 genes in
the asexual and sexual reproductive morphs. As the aphid
lifecycle transitions from asexual to sexual reproduction, the
sexupara females parthenogenetically produce sexual morphs
and the females carrying eggs mate with the male. PCR-based
expression assays confirmed Ago-1a and Dcr-1b overexpression
in sexupara females. The Ago-1a was down-regulated in sexual
female morphs, whereas Ago-1b was down-regulated in asexual
females reproducing parthenogenetically, and Dcr-1b was not
expressed in the sexual males. These observations indicate
specific functions for the duplicated gene copies of Ago-1 and
Dcr-1 during the reproductive transition in pea aphid (Ortiz-
Rivas et al., 2012).

Differential expression of sRNAs across different reproductive
morphs was also observed in other hemipteran insects.
Comparative analyses of the sRNA libraries from different
developmental stages of the brown planthopper were conducted
to identify sRNAs associated with insect growth and development
(Chen et al., 2012). A bimodal distribution pattern of sRNAs
were observed for the three libraries: 21–22 nt sRNAs were
predominant in adult males; 26–27 nt sRNAs were abundant
in adult females; and an almost equal distribution of 22-nt and
28-nt sRNAs in the last instar of female nymphs. Analysis of
a subset of the conserved miRNAs revealed that miR30d was
specific to female adults and nymphs, whereas miR-144∗ and
miR-20d were exclusively expressed in female nymphs. Certain
miRNAs (miR-1, miR-184, miR-278, and miR-34) were highly
expressed in adult males. The conserved miRNAs bantam and
miR-10 were ubiquitously present in all three reproductive
morphs. Novel miRNAs identified from brown planthoppers
also showed differential expression within the reproduction
morphs. MicroRNA bph-m0032 was exclusively expressed in
female adults, whereas bph-m0045 was only found in female
nymphs, and two novel miRNAs bph-m0057 and bph-m0041
were found in both male and female adults.

Additional studies of sRNAs in the brown planthopper
identified two conserved miRNAs miR-8-5p and miR-2a-3p
that modulate the chitin biosynthetic pathway membrane-
bound trehalase (Tre-2) and phosphoacetylglucosamine mutase
(PAGM), respectively (Chen et al., 2013). Both miR-8-5p and
miR-2a-3p were highly expressed in nymphs and both female
and male adults. During molting, miR-8-5p and miR-2a-3p and
their respective target genes Tre-2 and PAGM showed anti-
correlated expression patterns with the enhanced expression of
both miRNAs and down-regulation of the respective targets on
the last day of 3rd, 4th, and 5th instars. The differential expression
of miR-8-5p and miR-2a-3p and their respective targets between
the first day of a new instar and last day of previous instar
suggests a strong correlation to changes induced by the steroid
hormone 20-hydroxyecdysone (20E) during the molting process.
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Co-transfection of miR-8-5p and miR-2a-3p along with the
respective targets fused to a luciferase reporter gene in the human
embryonic kidney cell line HEK293T and Drosophila derived
S2 cell lines showed decreased expression in dual luciferase
assays. Microinjection experiments with synthetic dsRNA copies
of endogenous miRNAs (miRNA mimic) in the 5th instar
confirmed the dual luciferase assay results and showed reduced
expression of the target proteins. Nymphs feeding on an artificial
diet containing the miR-8-5p mimic experienced starvation-
related mortality, while those fed a diet containing the miR-2a-3p
mimic showed severe molting defects. Diet assays with miRNA
inhibitors had no adverse effect on brown planthopper nymphs.
Chitin content in these nymphs was significantly reduced in
those fed with miRNA mimics, whereas the nymphs from the
inhibitor assay had enhanced chitin content as compared to
the control group. Furthermore, experimental evidence showed
that both miR-8-5p and miR-2a-3p were negatively regulated by
ecdysone-inducible gene BR-C by 20E signaling during brown
planthopper molting. This study directly links miRNAs to chitin
biosynthesis during insect development that is regulated by the
steroid hormone 20E.

Insect fecundity is an important trait to predict population
growth rates on host plants and forecast their performance under
field conditions (Awmack and Leather, 2007). Fecundity also
serves as a reliable measure of the plant host-insect interaction
and is especially valuable when screening plant genotypes for
resistance. Reduced fecundity is a hallmark of Vat-mediated
resistance in melon to the cotton-melon aphid (Klingler et al.,
1998). In addition to reduced fecundity, aphids on resistant
plants have an extended pre-reproductive period and shortened
reproductive and post-reproductive periods resulting in fewer
progeny. The overall life span of an individual aphid is reduced
and after the final molt, aphids feeding on resistant plants are
smaller in size than those feeding on the susceptible melon
plants (Kennedy and Kishaba, 1977; Klingler et al., 1998).
Comparative analysis of sRNA libraries from aphids feeding
on Vat+ and Vat− plants for 48 h showed a differential
bimodal size distribution pattern for sRNAs in the two libraries
with the Vat+ library over-represented by longer 26–27 nt
sequences (Sattar et al., 2012a). Approximately half of these
longer sRNA sequences mapped to transposable elements. In
insects, a vast majority of the sRNA sequences that arise from
the transposable elements are endogenous piRNAs involved in
maintaining genome integrity (Biryukova and Ye, 2015). A search
of Buchnera aphidicola homology revealed 4.6% of the 26–27 nt
sequences in the Vat+ library were of bacterial origin. Although
there is no direct experimental evidence implicating the role
of endosymbiont-derived sRNAs in aphid reproduction during
Vat+ interactions, previous studies in other aphid species have
confirmed that the endosymbiont B. aphidicola is required for
successful reproduction (Srivastava and Auclair, 1976; Douglas,
1992; Dunbar et al., 2007; Shigenobu and Wilson, 2011). A
detailed discussion of endosymbiont-derived sRNAs by Hansen
and coworkers is presented in this focus issue. In addition to the
longer sequences, a total of 81 miRNAs belonging to 56 miRNA
families were identified from cotton-melon aphid libraries (Sattar
et al., 2012a). While putative target genes have been predicted

by in silico methods the role that these miRNAs play in aphid
reproduction and their relationship to host plant resistance
remains to be determined.

Reduced fecundity was observed for soybean aphids, feeding
on bean pod mottle virus (BPMV)-infected host plants (Cassone
et al., 2014). BPMV is not vectored by soybean aphids, yet
the presence of the virus showed a negative impact on aphid
fecundity. Although RNAseq analysis of the aphids did not reveal
the presence of transcripts associated with viral immunity, sRNA
biogenesis genes belonging to the siRNA, miRNA, and piRNA
biogenesis pathways were down-regulated in aphids feeding
on BPMV-infected host plants, indicating a defense response.
However, viral replication for BPMV was not observed in the
soybean aphid and Cassone et al. (2014) speculate that the loss
of fecundity may be a result of aphids investing more in “survival
rather than reproduction” due to limited resources available in
virus-infected plants.

MicroRNAs regulating fecundity were identified in adult
brown planthoppers (Fu et al., 2015). MicroRNA-binding regions
in the 3′-UTR of fecundity-associated genes detected in silico led
to the identification of 38miRNAs targeting nine fecundity genes.
Among these 38 putative miRNAs, miR-4868b showed perfect
complementarity to the 3′UTR region of the glutamine synthetase
(GS) gene. The miR-4868b:GS target pair was confirmed using
the dual-luciferase assay reporter assay for the GS target in S2 cell
lines. Microinjecting newly emerged adult female planthoppers
with the miR-4868b mimic reduced GS protein levels within
48 h; however, the accumulation of GS mRNA did not change,
indicating miR-4868b regulated the expression of GS protein by
translational repression. GS protein also accumulated following
treatment with a miR-4868b binding inhibitor. The number
of offspring in the miR-4868b-mimic treatment decreased by
32% compared with the control group, illustrating the effect of
reduced GS protein on fecundity. Ovaries isolated from adult
females 2 days after the miR-4868b mimic treatment showed
delayed development, fewer ovarioles, and fewer developed eggs
per ovary. Earlier studies using RNAi-mediated knockdown of
GS protein in brown planthopper have resulted in severe defects
in ovary development and egg deposition (Zhai et al., 2013).
Taken together they confirm miR-4868b plays a role in brown
planthopper reproduction via regulation of GS. Vitellogenin (Vg)
was also reduced by the miR-4868b mimic treatment. However,
negative effects of microinjecting the miR-4868b mimic on Vg
expression and ovarian development were transient with no
significant differences between the treatment and control groups
6–7 days post-microinjection. The link between GS and Vg in
brown planthopper reproduction is not fully understood, but
may be through the glutamine-activated TOR signaling pathway.
Several studies have shown TOR signaling pathway plays a role
in insect fecundity by regulating Vg accumulation and ovary
development (Patel et al., 2007; Zhai et al., 2015).

Hemipteran sRNAs in Response to Virus
Infection
Hemipteran insects, especially members of the Aphididae, are
common vectors of plant viruses and play significant roles in
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viral epidemiology. Viruses transmitted by aphids outnumber
those transmitted by whiteflies, leafhoppers, and planthoppers
combined (Nault, 1997). The majority of aphids transmit “stylet
borne” viruses in a non-persistent manner, where a very brief
stylet penetration of less than a minute is required for viral
acquisition and inoculation of the host plant (Katis et al., 2006).
Some aphids, however, transmit viruses in a semi-persistent
manner where longer periods are required for acquisition and
inoculation of viral particles. Persistent transmission requires
a latent period between viral acquisition and viral inoculation
allowing the virus to propagate or only circulate within the aphid
during the course of its lifetime (Katis et al., 2006).

Antiviral immunity in both plants and insects is mediated
by RNA interference (RNAi) (Ding and Vionnet, 2007; Obbard
et al., 2009). Virus-derived siRNAs accumulate during viral
infection in plants and insects cleaving the viral dsRNA into
short fragments causing silencing of the viral genes in a systemic
manner (Ding and Vionnet, 2007; Wieczorek and Obrępalska-
Stęplowska, 2015). Concurrently, viruses evolved a counter
mechanism for viRNA-mediated silencing by producing viral
suppressors of silencing (VSR). VSR proteins interfere with
RNA silencing by specifically targeting components of the RNA-
silencing pathway (Ding, 2010). Members of the RNA silencing
(Dcr-2 and R2D2) and piRNA biogenesis pathways have been
implicated in insect viral immunity (Zambon et al., 2006;
Vodovar and Saleh, 2012). Long viral-derived sRNAs similar to
endogenous piRNAs have been reported upon viral infection in
Drosophila ovarian somatic sheet cells, although it could not be
confirmed if they originated from the piRNA biogenesis pathway
(Wu et al., 2010). Understanding the role hemipteran sRNAs play
in viral immunity could enable new approaches in preventing the
systemic spread of plant viruses.

Researchers have investigated sRNA pathways in several
hemipteran species as a response to virus acquisition and
infection in host plants (Li et al., 2013a; Sekhar Nandety et al.,
2013; Li J. et al., 2014; Li et al., 2015; Chang et al., 2016;
Wang et al., 2016). Comparing sRNA sequences from small
brown planthoppers infected with rice black-streaked dwarf
virus (RBSDV) and rice stripe virus (RSV) revealed the greatest
accumulation of viRNAs during RBSDV infection (Li et al.,
2013a). RBSDV induced viRNAs were predominantly 21–22 nt
in length originating in equal proportions from the sense and
antisense strands. Hotspots for viRNA initiation were restricted
to the 5′ or 3′ terminal regions of viral genome. Double infection
of RBSDV and RSV induced more viRNA from the RBSDV RNA
segments. In addition to the RBSDV- and RSV-derived virRNAs,
Himetobi P virus (HiPV)-derived viRNAs were identified in the
sRNA libraries (Li J. et al., 2014). Subsequently, HiPV infection
was confirmed in the insect host. Analysis of all virus-infected
and uninfected samples revealed greater accumulation of HiPV-
derived RNA in the RSV library than in the RBSD or the
double-infection library, suggesting that HiPV abundance is
determined by the RSV infection. Although viral infection in
insects typically produces dcr-2 derived 21–23 nt viRNAs, HiPV-
derived viRNAs showed a wide range of size distribution from 18
to 30 nt. Majority of the 21–22 nt viRNAs were generated from
the antisense strand, whereas the longer viRNAs came from the

sense strand. While initially thought to be piRNAs, these long
sequences lacked the characteristic piRNA peak at 27–28 nt and
uracil bias at the 5′-terminal end. The authors concluded that
these long RNAs were likely derived from the sense strand from
the viral genome by an unknown sRNA biogenesis pathway.

Differentially expressed miRNAs in response to the virus
infection were identified in RBSDV-infected small brown
planthoppers (Li et al., 2015). Nine up-regulated and 12 down-
regulated conserved miRNAs were identified from the RBSD-
infected library. Several miRNAs (miR-2765-5p, miR-87-3p, and
miR-1-3p) were induced, while others were repressed (miR-750-
3p, miR-727-5p, miR-124-3p, and miR-133-3p) in the insect
host. Twenty novel miRNA candidates were also identified in
this interaction. Target identification for these miRNAs was
hampered by the lack of small brown planthopper genome
sequence data. In the future, validated miRNA targets will
provide a better understanding of the physiological significance
of miRNAs in RBSD infection of small brown planthoppers.

Analysis of sRNA libraries prepared from white-backed
planthoppers (S. furcifera) infected with southern rice black-
streaked dwarf virus (SRBSDV) identified eight up-regulated
miRNAs and four down-regulated miRNAs, among which two,
miR-14 andmiR-2798, are conservedmiRNAs and the remaining
10 are unique to the insect (Chang et al., 2016). MicroRNAs
miR-14 and the novel miR-n98a target genes involved in viral
immunity. The highly expressed miR-14 targets transcripts
encoding the patched (Ptc) protein, a positive regulator of
hedgehog signaling. The hedgehog signaling pathway has been
implicated in host interactions with dengue virus inAedes aegypti
(Chauhan et al., 2012). SFU-20.387 mRNA, encoding a Rab-
5 interacting protein with a well-established role in Hepatitis
C virus genome replication in mammals is the putative target
for S. furcifera miR-n98a (Stone et al., 2007). Based on these
observations, it was speculated that miR-14 and miR-n98a are
involved in SRBSDV virus infection and immunity (Chang et al.,
2016).

Homologs of sRNA biogenesis genes ago-1 and dcr-1 have
been identified from whiteflies infected with begomovirus
(Wang et al., 2016). sRNA profiling from viruliferous and non-
viruliferous whiteflies carrying tomato yellow leaf curl China
virus (TYLCCNV) showed an abundance of larger 29–30 nt
sRNAs in the non-viruliferous library, whereas the viruliferous
library was enriched in smaller 21–22 nt sRNA sequences.
The whitefly miRNA profile was also analyzed in response to
virus infection. Among the 52 miRNAs that were differentially
expressed in the nonviruliferous and viruliferous libraries, 26
were specific to the viruliferous library. The expression of these
miRNAs was confirmed by qPCR: miR-bantam, miR-1, miR-
2b, and miR-124 were significantly up-regulated and miR-307,
miR-317, and miR-993a were down-regulated in the viruliferous
library. In addition to conserved miRNAs, seven novel miRNAs
were identified from both the libraries. In silico predicted
target genes of the differentially expressed miRNAs primarily
belonged to three main GO categories: biological processes,
cellular processes, and molecular function.

The glassy-winged sharpshooter is a xylem-feeding leafhopper
that is an important pest on a wide range of plants including

Frontiers in Plant Science | www.frontiersin.org 11 August 2016 | Volume 7 | Article 1241

http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive


Sattar and Thompson sRNAs in Plant-Hemipteran Interactions

citrus, grapes, and almonds and vectors Xylella fastidiosa,
the causal agent of Pierce’s disease of grapevines and citrus-
variegated chlorosis disease. Sekhar Nandety et al. (2013)
identified viRNAs in glassy- winged sharp shooters infected with
either Homalodisca coagulata virus-1 (HoCV-1) or H. vitripennis
reovirus (HoVRV) and mapped the viRNAs to the viral genomes.
Most of the viRNA sequences for HoCV-1 were derived from
the positive strand, whereas HoVRV sequences were evenly
distributed across the genome. In contrast to HoCV-1 viRNAs,
several hotspots were identified for HoVRV on both 5′ and 3′

ends of the viral segments. The distinct mapping patterns for
viRNAs from two taxonomically different viruses in the same
insect vector raises the possibility of unique anti-viral immunity
targets for each virus.

The combined effect of two taxonomically different viruses
on viral immunity in an insect host was documented in soybean
aphid (Vijayendran, 2014). A novel viral pathogen, A. glycines
virus (AGV) was identified from the transcriptome sequencing
of the soybean aphid. AGV infection was ubiquitously present
in several clonal populations of soybean aphids collected from
different geographical locations. The enhanced transfer rate of
AGV to different insect hosts is possibly due to its ability to evade
the RNAi-mediated anti-viral host defense. AGV is susceptible
to RNAi-mediated anti-viral immunity in the host, but only in
the presence of another viral pathogen Aphid lethal paralysis
virus (ALPV). This was clearly demonstrated by a reduction of
viRNAs produced from the AGV genome as compared during
AGV infection alone. In contrast, a large number of viRNAs were
produced in response to the double infection by AGV and ALPV,
and the majority of these viRNAs were mapped to the ALPV
genome.

sRNAS AS A TOOL IN AGRICULTURE FOR
HEMIPTERAN PEST CONTROL

Insects and the microbial pathogens they vector are major
causes of economic losses in production agriculture. Developing
species-specific and environmentally benign approaches are
important considerations when designing pest management
strategies. RNA interference (RNAi) technology appears to be
a promising candidate for such an approach. During RNAi,
dsRNA is cleaved by Dicer to generate 21–24 nt siRNAs. The
siRNAs separate into guide and passenger strands; the guide
strand is introduced into the RISC and the passenger strand is
degraded (Agrawal et al., 2003; Meister, 2013). The discovery
of RNAi machinery in economically important hemipteran
pests, including pea aphids, soybean aphids, whiteflies, brown
planthoppers, and small brown planthoppers provides a robust
rationale to pursue RNAi-based pest management strategies for
hemipterans (Jaubert-Possamai et al., 2010; Ortiz-Rivas et al.,
2012; Bansal and Michel, 2013; Xu et al., 2013; Wang et al.,
2016; Zhou et al., 2016). RNAi protocols for hemipterans typically
introduce dsRNA into the insect by one of several experimental
methods: microinjection where dsRNAs are directly injected into
the body of the insect; feeding dsRNAs in artificial diets or in
planta; direct topical application by spraying or soaking insects

in dsRNA solutions; or incorporating dsRNAs into nanoparticles
(Scott et al., 2013). The mode of introducing dsRNA into the
insect and the tissue in which the target gene is expressed
are important criteria to obtain successful gene silencing in
hemipteran insects.

Direct Delivery of dsRNA or siRNA via
Injections in Hemiptera
Microinjection has been successfully used to deliver RNAi
in several insect species belonging to lepidoptera, coleoptera,
diptera, as well as hemiptera (Yu et al., 2013). RNAi-mediated
silencing ofHox, wg, and decapentaplegic (dpp) in large milkweed
bug (O. fasciatus) (Angelini and Kaufman, 2005) and salivary
gland gene Coo2, gut-specific cath-L genes, and calreticulin in pea
aphid (Mutti et al., 2006; Jaubert-Possamai et al., 2007) employed
microinjection to deliver the dsRNA. Microinjecting brown
planthoppers with dsRNA against calreticulin, cathepsin-B, and
nicotinic acetylcholine receptors (nAChRs) β2 subunit Nlβ2
resulted in ∼50% silencing effect; however, high insect mortality
is often reported especially in smaller insects as a result of
wounding duringmicroinjection (Liu et al., 2010; Li et al., 2013b).

Oral Delivery of dsRNA in Hemiptera
Oral delivery through diet is a less invasive method for
introducing dsRNA into hemipteran insects (Scott et al., 2013).
Unlike microinjection, oral delivery of dsRNA through feeding
sachets does not result in wounding-induced mortality and can
be a useful tool when working with smaller insects. However,
it is difficult to quantitate the dsRNA dose ingested by the
insects to produce the silencing effect and thus, higher dosages
are often required for oral delivery. In the absence of systemic
RNAi machinery, the success of oral delivery may be limited
to gut-specific target genes. Pea aphids feeding on an artificial
diet supplemented with dsRNA against aquaporin showed 50%
silencing of aquaporin transcript (Shakesby et al., 2009), whereas
lethal effects were obtained in response to orally administered
dsRNAs against gut vATPase (Whyard et al., 2009). Such effects
could be species specific, as in the brown planthopper where
orally-delivered vATPase dsRNA resulted in only∼50% silencing
of vATPase subunit E (Li et al., 2011), whereas dsRNA against
trehalose phosphate synthase (TPS) showed a marked reduction
in TPS activity in the fat body, ovary, and midgut (Chen
et al., 2010). Diet-delivered dsRNA-mediated silencing of sugar
transporter gene 6 (Nlst6) showed reduced Nlst6 expression
in the midgut with a negative effect on brown planthopper
growth and fecundity (Ge et al., 2015). In whitefly, diet-delivered
dsRNA against glutathione S-transferase (GST) showed significant
decreases in mRNA levels that correlated with mortality in the
insects (Asokan et al., 2015).

Chaitanya et al. (2016) studied effect of gene silencing
using the sachet diet method to deliver dsRNA to cotton-
melon aphid. Aphids fed on sachet diets containing dsRNA
specific to sodium channel (AgSCN) or ultraspiracle genes
(AgUSP) resulted in high levels of mortality that corresponded
to decreased transcript levels for both genes. Oral delivery of
dsRNA to silence cotton-melon aphid juvenile hormone binding
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protein (JHBP) and vacuolar ATPase subunit H (V-ATPase-
H) showed a 10–73% reduction in mRNA for both JHBP
and V-ATPase-H and mortality in the range of 10–63% for
both treatments (Rebijith et al., 2016). Comparative analysis
of microinjection and oral delivery of dsRNA targeting the
cathepsin-L gene in pea aphid demonstrated efficacy for each
method that was tissue or organ specific (Sapountzis et al.,
2014). Microinjection was most successful for gene knockdown
in the head and carcass that induced altered morphology.
In contrast, diet delivery showed enhanced silencing effect
in the gut and gut-specific epithelial cells, possibly due to
weak systemic spread of the RNAi signal. A similar study
in potato/tomato psyllid (Bactericera cockerelli) compared the
efficacy of microinjection and oral feeding (Wuriyanghan et al.,
2011). Double-stranded RNAs introduced into the psyllids
were experimentally shown to be processed into 21-nt siRNAs.
Although microinjections were effective for dsRNA-mediated
silencing for actin, mortality rates due to wounding were also
higher. Sachet feeding of dsRNA or siRNA targeting actin,
ATPase, hsp70, and CLIC showed tissue-specific gene knockdown
of actin in the gut tissue, whereas silencing of the other genes
was achieved in the whole insect (Wuriyanghan et al., 2011).
The gut-specific knockdown of actin could be due to the lack
of a systemic RNAi response for potato/tomato psyllid actin
transcript.

In Planta Delivery of dsRNA
Expressing dsRNA within the host plant, either transiently or
through stable integration, allows the effects of specific gene
targeting on insect performance to be evaluated in the most
relevant environment. The effect of Rack1 and Coo2 gene
silencing on green peach aphid performance and fecundity
was evaluated in Nicotiana benthamiana and Arabidopsis plant
tissues (Pitino et al., 2011). Aphid gut-specific Rack1 and salivary
gland-specific Coo2 transcripts were down-regulated in aphids
feeding on N. benthmiana leaves transiently expressing dsRack1
and dsCoo2. Transient expression experiments reduced aphid
fecundity by 25%, whereas, dsRack1 and dsCoo2 transgenic
plants showed a 50–60% decrease in mRNA levels with a
20% reduction in aphid fecundity. Neither method negatively
affected aphid survival. These results deviated from the earlier
microinjection studies in pea aphid where dsCoo2 was lethal
(Mutti et al., 2006).

Guo et al. (2014) compared two distinct approaches to gene
silencing by developingN. benthamiana transgenic lines carrying
intron-spliced hairpin RNA (hpRNA)-expressing plant vectors
for acetylcholinesterase 2 (MpAChE2), vATPase, and tubulin
folding cofactor D (TBCD) or artificial miRNAs (amiRNAs)
targeting two different sites in the Mp-AChE2. Transgenic
tobacco plants expressing Mp-vATPase and Mp-TBCD hpRNAs
showed enhanced resistance toward green peach aphids with
∼30% reduction in fecundity. Aphids feeding on transgenic
plants expressing Mp-AChE2 amiRs showed significantly more
silencing of Mp-AChE2 as compared to those feeding on hpRNA-
expressing plant vectors for Mp-AChE2. Also the transgenics
expressingMp-AChE2 amiRs showed improved insect resistance.
The improved efficacy of Mp-AChE2 amiRs over the hpRNA,

could be due to the stability and the specificity of the amiRNAs
compared to hpRNAs, which could be a better strategy for
implementing RNAi in planta.

RNAi silencing of three gut-specific brown planthopper genes,
hexose transporter gene NlHT1, carboxypeptidase gene Nlcar,
and the trypsin-like serine protease gene Nltry in transgenic
rice plants expressing dsRNA constructs failed to generate
phenotypic changes in the insect (Zha et al., 2011). Third instar
brown planthopper nymphs feeding on transgenic rice plants
reduced the NlHT1 and Nlcar transcript levels by about half
in the midgut. However, such a significant reduction in the
expression of target mRNA did not induce lethal phenotype,
possibly due to either multiple copies of the target gene or
limited changes at the protein level. In contrast, RNAi silencing
of the abnormal wing disc (Awd) gene in Asian citrus psyllid
had phenotypic effects (Hajeri et al., 2014). Pysillds feeding on
citrus trees infected with recombinant Citrus tristeza virus (CTV)
expressing Awd-silencing constructs had malformed wings and
increased adult mortality. Gene expression analysis detected
significant reduction in Awd transcripts in psyllids feeding
on CTV-Awd infected citrus plants. The successful application
of RNAi for Asian citrus psyllid control could significantly
impact Huanglongbing (HLB) disease caused by the psyllid-
vectored bacterial pathogen Candidatus Liberibacter asiaticus
(CLas) (Hajeri et al., 2014).

Hemipteran insects readily develop resistance to pesticides,
which could be overcome by targeting pesticide resistance genes
using RNAi. The carboxylesterase (CbE E4) gene in grain aphids
(Sitobian avenae) is responsible for developing resistance to a
wide range of chemical pesticides that are routinely applied in
agricultural fields (Xu et al., 2014). Grain aphids feeding on stable
transgenic wheat plants expressing CbE E4 dsRNA showed a 30–
60% decrease in the CbE E4 mRNA levels and reduced aphid
numbers. Decreasing CbE E4 gene expression could delay the
development of resistance in this insect pest extending the utility
of chemical management tools.

A novel method for in planta delivery of RNAi was tested
for whiteflies by Luan et al. (2013). In separate experiments,
uptake of dsRNA through the cut end of a tomato leaflet
was accomplished by dipping petioles into solutions containing
dsRNAs targeting whitefly genes Cyp315a1 and Cyp18a1,
involved in ecdysone 20E synthesis and degradation, respectively,
or ecdysone response genes EcR and E75. In each of these
treatments, silencing of these genes did not impact the survival
and fecundity of the adult whiteflies. The exception was EcR-
silenced adults, which laid fewer eggs. In all treatments, nymphs
showed delayed development and poor survival rates (Luan et al.,
2013).

Proof of principle for RNAi application in hemipteran insect
control is demonstrated in these studies. However, successful
deployment of RNAi technologies depends on the mode of
delivery, effective dose, and target gene selection. In planta
and spray delivery RNAi has potential for field applications,
whereas microinjections and artificial diets are primarily limited
to laboratory studies. As the cost of production of RNAi products
become more economical, sprays, direct delivery of dsRNAs
through plant cuttings or rooted seedlings, injecting trees and
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drip irrigation becomes more feasible (Hunter et al., 2012; Luan
et al., 2013; Camargo et al., 2015).

CROSS-KINGDOM TRANSFER OF sRNAS

The ability to target insect genes by expressing dsRNAs in
host plants provides compelling evidence for the cross-kingdom
transfer of sRNAs; however, the role of endogenous plant-derived
sRNAs directly impacting hemipteran insects has not been
demonstrated. Phloem sap contains mobile sRNAs that are likely
consumed by phloem-feeding hemipterans. Indeed, conserved
plant miRNAs have been identified in phloem sap isolated by
aphid stylectomy (Varkonyi-Gasic et al., 2010) and detected
in aphid sRNA libraries (Sattar et al., 2012a). Direct evidence
that sRNAs are readily consumed during normal feeding was
demonstrated by aphids feeding on an artificial diet containing
radio-labeled 24 nt dsRNA, which was detected in whole aphid
tissues and in the honeydew excretia (Sattar et al., 2012a).
However, the functional consequences for these dietary derived
plant-sRNAs on the insect herbivore remains to be clarified
(Cottrill and Chan, 2014; Witwer and Hirschi, 2014).

CONCLUDING REMARKS

Recent studies have recognized that sRNAs are important
regulatory components of plant-hemipteran interactions. Within
host plants, transcriptional changes in response to this unique
form of insect herbivory are beginning to be correlated
with concurrent changes in sRNA profiles. Co-expression
networks and mRNA:sRNA interactomes are being assembled
that are providing additional and sometimes unexpected
information on the regulation of plant responses to insect
herbivory. It is becoming increasingly clear that sRNAs
are responsible for fine-tuning responses in a wide variety
of plant-hemipteran interactions; however, unifying concepts

for sRNA-mediated regulation across systems have yet to
fully emerge. Understanding specific roles of sRNAs in host
plant resistance along with advanced knowledge about the
different components of the sRNA biosynthesis pathways can
inform new pest control strategies for agricultural applications.
Insects have co-evolved strategies to suppress plant immunity.
Understanding these strategies, along with the contribution
of insect sRNAs in regulating insect fitness and fecundity,
provides additional insights that could allow sRNAs to be
utilized in pest control. Insect anti-viral viRNAs that offer
immunity against viral pathogens provide a new paradigm in
understanding the complex plant-insect-virus interactions. The
accumulation of viRNAs in response to virus acquisition leads
to silencing of the viral genes, contributing to the vitality of
the insect vector and its ability to infect new host plants.
Emerging technologies based on our increasing knowledge of
the role of sRNAs in regulating different aspect of plant-
hemipteran interactions will greatly aid in developing next-
generation alternatives to chemical pesticides. Ongoing work to
identify and deliver effective RNAi approaches for hemipterans
is paving the way for the rational design of target-specific

pesticides that can complement current IPM techniques in the
field.
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