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Carotenoids play a critical role in animal and human health. Animals and humans
are unable to synthesize carotenoids de novo, and therefore rely upon diet as
sources of these compounds. However, major staple cereals often contain only small
amounts of carotenoids in their grains. Consequently, there is considerable interest in
genetic manipulation of carotenoid content in cereal grain. In this review, we focus on
carotenoid metabolism and regulation in non-green plant tissues, as well as genetic
manipulation in staple cereals such as rice, maize, and wheat. Significant progress
has been made in three aspects: (1) seven carotenogenes play vital roles in carotenoid
regulation in non-green plant tissues, including 1-deoxyxylulose-5-phosphate synthase
influencing isoprenoid precursor supply, phytoene synthase, β-cyclase, and ε-cyclase
controlling biosynthesis, 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate reductase
and carotenoid cleavage dioxygenases responsible for degradation, and orange gene
conditioning sequestration sink; (2) provitamin A-biofortified crops, such as rice and
maize, were developed by either metabolic engineering or marker-assisted breeding;
(3) quantitative trait loci for carotenoid content on chromosomes 3B, 7A, and 7B were
consistently identified, eight carotenogenes including 23 loci were detected, and 10
gene-specific markers for carotenoid accumulation were developed and applied in
wheat improvement. A comprehensive and deeper understanding of the regulatory
mechanisms of carotenoid metabolism in crops will be beneficial in improving our
precision in improving carotenoid contents. Genomic selection and gene editing are
emerging as transformative technologies for provitamin A biofortification.

Keywords: carotenoid metabolism, carotenoid regulation, marker-assisted breeding, metabolic engineering,
provitamin A biofortification, Triticum

INTRODUCTION

Carotenoids are mainly C40 isoprenoids comprising a large family with more than 700
members that are widely distributed in plants, algae, fungi, and bacteria (Khoo et al.,
2011). In plants, they perform a multitude of functions involving the photosynthetic
apparatus, photoprotection, and precursors to phytohormones such as ABA and
strigolactones (Niyogi, 2000; Cazzonelli and Pogson, 2010). In addition, carotenoids provide

Abbreviations: ABA, abscisic acid; b∗, flour yellow color; CCDs, carotenoid cleavage dioxygenases; CrtI, carotene desaturase;
CRTISO, carotene isomerase; DXS, 1-deoxyxylulose-5-phosphate synthase; GGPP, geranylgeranyl diphosphate; LCYB,
β-cyclase; LCYE, ε-cyclase; LOX, lipoxygenases; MEP, 2-C-methyl-D-erythritol 4-phosphate; PDS, phytoene desaturase; PSY,
phytoene synthase; QTL, quantitative trait loci; YPC, yellow pigment content; ZDS, ζ-carotene desaturase.
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color and aroma to flowers and fruits for attracting insects
and other organisms for pollination and seed dispersal, and
protect the seed from deterioration (Walter et al., 2010; Moise
et al., 2013). Very recently, carotenoid derivatives were found
in association with response to environmental stresses, such as
photoxidative stress (Havaux, 2014).

Carotenoids also play a critical role in animal and human
health. In animals, they can improve sexual behavior and
reproduction, and protect animals from predation as well as
parasitism (McGraw and Toomey, 2010). For humans, the most
important function of carotenoids is as a dietary source of
provitamin A (mainly α-carotene, β-carotene, zeaxanthin, and
β-cryptoxanthin; Giuliano et al., 2008). Vitamin A deficiency
(VAD) is the leading cause of preventable blindness in
children and increases the risk of disease and death from
severe infections. For pregnant women, VAD may cause
night blindness and increase the risk of maternal mortality.
The World Health Organization has estimated that 250,000–
500,000 vitamin A-deficient children became blind each year,
with half of them dying from loss of eyesight within
12 months1. In addition, carotenoids as antioxidants have a
protective function in reducing the risk of age-related macular
degeneration (ARMD), cancer, cardiovascular diseases, and
other chronic diseases (Fraser and Bramley, 2004). Carotenoids
are also used commercially as feed additives to enhance
pigmentation of fish and eggs, colorizing agents for human
food, cosmetics, and pharmaceutical products (Sandmann, 2001).
Thus, understanding the regulatory mechanisms of carotenoids
is a very important scientific pursuit and biofortification of staple
foodstuffs for health benefits has become an important issue in
food production.

Because animals and humans are unable to synthesize
carotenoids de novo they rely upon diet as the source of
these compounds. However, most staple cereals, such as rice
(Oryza sativa), wheat (Triticum aestivum), and maize (Zea
mays), contain very little amounts of carotenoids in their grains.
Therefore, the genetic manipulation of carotenoid accumulation
in staple cereal grains should be a powerful means to combat
vitamin A deficiency, and especially important for developing
countries where people frequently rely on a single crop for
sustenance. For better genetic manipulation of carotenoid
content within cereal grains there is a particular interest in the
regulatory mechanisms of carotenoid biosynthesis in non-green
plant tissues (Farré et al., 2011). Various lines of evidence show
that key nodes in the MEP pathway, carotenoid metabolism, and
sequestration sink play vital roles in regulation of carotenoid
biosynthesis.

In this review, we focus on carotenoid metabolism and
regulation in non-green plant tissues, as well as genetic
manipulation in staple cereals including rice, maize, and wheat.
Compared with maize and rice (Harjes et al., 2008; Yan et al.,
2010; Breitenbach et al., 2014; Bai et al., 2016), carotenoid
biosynthesis in wheat has received much less attention. Therefore,
a comprehensive overview of carotenoid biosynthesis in wheat
was undertaken to provide a platform of understanding of

1http://www.who.int/nutrition/topics/vad/en/

carotenoid biosynthesis as wheat supplies significant amounts
of dietary carbohydrate and protein for over 60% of the world
population, and is also an important source of carotenoids in
human diets (Shewry, 2009). In addition to cereals, the extensive
literature on carotenoid biosynthesis in bacteria or other plants is
also discussed, as it contributes to a better understanding of the
pathway in cereals.

CAROTENOID METABOLISM

Carotenoid metabolism in plants is a complex process, and has
been extensively characterized in a range of organisms providing
an almost complete pathway for carotenogenesis and degradation
(Cunningham and Gantt, 1998; Giuliano et al., 2008). The main
steps of carotenoid metabolism in higher plants are briefly
summarized below and presented in Figure 1.

Biosynthesis
Carotenoids are derived from the plastid-localized MEP pathway
for which glyceraldehyde-3-phosphate and pyruvate act as initial
substrates leading to the synthesis of GGPP, the common
precursor for biosynthesis of carotenoids and several other
terpenoid compounds (Farré et al., 2010; Rodriguez-Concepcion,
2010). The first committed step in the carotenoid biosynthesis
pathway is condensation of two GGPP molecules by PSY to
produce 15-cis-phytoene. Phytoene is converted into lycopene
by two desaturation reactions catalyzed by PDS and ZDS. These
enzymes give rise to poly-cis compounds which are converted to
the all-trans form by ζ-carotene isomerase (ZISO) and CRTISO,
as well as a light-mediated photo-isomerization. In bacteria, a
single enzyme, CrtI, is believed to confer the same desaturation
and isomerization reactions.

Lycopene constitutes a branching point in the pathway
since it is the substrate of two competing cyclases, LCYB and
LCYE. α-carotene is produced when LCYE and LCYB act
together on the two ends of lycopene (β, ε-branch), whereas
β-carotene is formed when LCYB acts alone (β, β-branch). Alpha-
carotene and β-carotene are hydroxylated to produce lutein
and zeaxanthin, respectively. These reactions are catalyzed by
the β-ring carotene hydroxylase [HYDB, also known as non-
heme di-iron β-carotene hydroxylase (BCH) or heme-containing
cytochrome P450 β-ring hydroxylase (CYP97A and CYP97B)]
and heme-containing cytochrome P450 carotene ε-ring carotene
hydroxylase (CYP93C). Whereas lutein represents the natural
end point of the β, ε-branch, zeaxanthin is further epoxidized by
zeaxanthin epoxidase (ZEP) in a two-step reaction to produce
violaxanthin via antheraxanthin. This reaction is reversed by
violaxanthin deepoxidase (VDE) to give rise to the xanthophyll
cycle for plants to adapt high light stress (Demmig-Adams
and Adams, 2002). Violaxanthin is converted into neoxanthin
by neoxanthin synthase (NXS), the final carotenoid of the β,
β-branch of the classical biosynthetic pathway.

In some plants, the classical carotenoid biosynthesis pathway
extends further to synthesize specialized ketocarotenoids. One
such example is the red fruits of chili peppers, where the
capsanthin and capsorubin are synthesized from antheraxanthin
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FIGURE 1 | Carotenoid metabolism, regulation and genetic manipulation in higher plants. Names of bacterial enzymes are in italics. Candidate genes for
carotenoid accumulation obtained by QTL analysis are displayed in parentheses and in red. Red upward pointing arrows, gene expression positively correlated with
carotenoid biosynthesis; red downward pointing arrows, gene expression negatively correlated with carotenoid biosynthesis; green asterisk, main genetic
manipulation nodes in staple cereals. Other MEP isoprenoid-derived metabolites and carotenoid cleavage products apocarotenoids are shown in the green box.
ABA, abscisic acid; AO, aldehyde oxidase; CCD, carotenoid cleavage dioxygenase; CKX, cytokinin oxidase/dehydrogenase; CrtB, bacterial phytoene synthase;
CrtE, bacterial GGPP synthase; CrtI, bacterial phytoene desaturase/isomerase; CRTISO, carotene isomerase; CrtY, bacterial lycopene β-cyclase; CrtZ, bacterial
β-carotene hydroxylase; CYP97C, heme-containing cytochrome P450 carotene ε-ring hydroxylase; DCS, delta-cadinene synthase; DMADP, dimethylallyl
diphosphate; DXP, 1-deoxy-D-xylulose 5-phosphate; DXR, 1-deoxy-D-xylulose 5-phosphate reductoisomerase; DXS, 1-deoxyxylulose-5-phosphate synthase; GA3P,
D-glyceraldehyde-3-phosphate; GGPP, geranylgeranyl diphosphate; GGPPS, GGPP synthase; HDR, 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate reductase;
HYDB, β-carotene hydroxylase [also known as non-heme di-iron β-carotene hydroxylase (BCH) and heme-containing cytochrome P450 β-ring hydroxylase (CYP97A
and CYP97B)]; IPP, isopentenyl diphosphate; IPPI, IPP isomerase; KARI, ketol-acid reductoisomerase; LCYB, lycopene β-cyclase; LCYE, lycopene ε-cyclase; MEP,
2C-methyl-D-erythritol-4-phosphate; MGAT1, alpha-1, 3-mannosyl-glycoprotein 2-beta-N-acetylglucosaminyltransferase; MK, mevalonate kinase; NCED,
9-cis-epoxycarotenoid dioxygenase; NXS, neoxanthin synthase; PDS, phytoene desaturase; PSY, phytoene synthase; RAP2.2, a member of the APETALA2
(AP2)/ethylene-responsive element-binding protein transcription factor family; RIN, MADS-box transcription factor RIPENING INHIBITOR; SDG8, SET2 histone
methyltransferase; SLC, secologanin synthase; VDE, violaxanthin de-epoxidase; ZDS, ζ-carotene desaturase; ZEP, zeaxanthin epoxidase; ZISO, ζ-carotene
isomerase.
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and violaxanthin by capsanthin-capsorubin synthase (CCS)
enzyme (Gómez-García and Ochoa-Alejo, 2013). Another
example is the ornamental plant Adonis aestivalis whose
petals synthesize the red ketocarotenoid astaxanthin, which is
usually found in microbes (Cunningham and Gantt, 2005).
With progress in high-performance liquid chromatography-
tandem mass spectrometric (HPLC-MS) and high-performance
liquid chromatography-nuclear magnetic resonance (HPLC-
NMR) technologies, more specialized ketocarotenoids will be
detected, which will further enrich our knowledge of this
pathway.

In grasses, PSY are encoded by three paralogous genes
(PSY1-3; Dibari et al., 2012). PSY1 is correlated with carotenoid
accumulation in grain, PSY2 is involved in protecting the
photosynthetic apparatus from photo-oxidative degradation in
green tissues, and PSY3 is associated with root carotenogensis
channeled into ABA formation, mainly responsing to abiotic
stresses, such as drought and salt (Gallagher et al., 2004; Li
et al., 2008; Welsch et al., 2008). PSY duplication has provided
an opportunity for subfunctionalization whereby gene family
members vary in tissue specificity of expression to control
carotenogenesis independently of photosynthesis or in response
to certain stresses (Li et al., 2008; Welsch et al., 2008; Arango et al.,
2010).

Degradation
Carotenoid degradation can occur via non-specific mechanisms
such as photo chemical oxidation or LOX (Siedow, 1991;
Auldridge et al., 2006). However, specific tailoring of carotenoids
is carried out by a family of CCDs, which appear to have
different substrate preferences (Vallabhaneni and Wurtzel,
2009). The CCD gene family is divided into two types: nine-
cis-epoxycarotenoid dioxygenases (NCEDs) catalyze both
violaxanthin and neoxanthin to produce xanthoxin, the
precursor of ABA (Seo and Koshiba, 2002; Walter et al., 2010),
and CCDs that catalyze a vast array of different cleavage steps
giving rise to apocarotenoids. For example, CCD1 is involved in
β-ionone biosynthesis, whereas CCD7 and CCD8 are associated
with strigolactone biosynthesis. These apocarotenoids are crucial
for various biological processes in plants, such as regulation of
growth and development and plant-insect interaction (Walter
et al., 2010; Alder et al., 2012; Avendano-Vazquez et al., 2014).

Sequestration
Carotenoids are usually synthesized de novo in nearly all
types of differentiated plastids of leaves, roots, flowers, fruits,
and seeds, including chloroplasts, chromoplasts, amyloplasts,
elaioplasts, leucoplasts, and etioplasts, but accumulate in
large quantities in chloroplasts and chromoplasts (Howitt and
Pogson, 2006; Cazzonelli and Pogson, 2010). Chloroplasts and
chromoplasts differ considerably in the way they sequestrate
end-product carotenoids. In chloroplasts, carotenoids are
located in photosynthetic membranes and integrated with
chlorophyll-binding proteins to form pigment–protein
complexes (Vishnevetsky et al., 1999). Whereas, in chromoplasts,
carotenoids are associated with polar lipids and carotenoid
associated proteins to form carotenoid-lipoprotein sequestering

substructures (e.g., globules, crystals, membranes, fibrils, and
tubules) to effectively sequester and retain a large quantity of
carotenoids (Vishnevetsky et al., 1999; Egea et al., 2010; Li and
Yuan, 2013).

To date, there is little understanding of carotenoid
degradation. Much more effort to understand CCD gene
family members, their substrates and products, is still needed.
In addition, some acronyms of carotenogenes were confused in
the previous literature, such as β-hydroxylases being replaced
by BCH and HYD in rice (Du et al., 2010), crtRB1 and HYD in
maize (Yan et al., 2010), BCH in Arabidopsis (Kim et al., 2009),
and CHY in potato (Diretto et al., 2007), respectively. For a
better understanding and communication, international efforts
are needed to uniform the acronyms.

CAROTENOID REGULATORY
MECHANISMS IN NON-GREEN PLANT
TISSUES

Relatively little is known about the regulation of carotenogenesis
in chloroplasts. Although expression of carotenoid genes does
take place in etiolated plants, most carotenoid biosynthetic genes,
including those in the MEP pathway, are activated during light-
triggered de-etiolation (Giuliano et al., 2008; Cazzonelli and
Pogson, 2010; Rodriguez-Concepcion, 2010). The phytochrome-
interacting factor 1 (PIF1) is shown to bind to the PSY
promoter and represses PSY expression under dark conditions.
Toledo-Ortiz et al. (2010) indicated that light triggered the
degradation of PIF1 by photoactivated phytochromes, which
allowed PSY expression and subsequently rapid production of
carotenoids. In addition, the relative concentration of zeaxanthin
and violaxanthin in plant photosynthetic tissues is important in
stimulating energy dissipation within light-harvesting antenna
proteins through non-photochemical quenching to protect
against photoinhibition. Under high light condition, violaxanthin
is de-epoxidized into zeaxanthin by VDE to dissipate light
energy, whereas the reverse reaction converts zeaxanthin to
violaxanthin by ZEP under dark condition (Demmig-Adams and
Adams, 2002). In conclusion, light played a significant role in
regulation of carotenoid biosynthesis in green tissues, but how
light ultimately regulates this process remains to be elucidated.
Further researches are required to illustrate the carotenoid
synthesis regulation in chloroplasts.

Regulatory mechanisms of carotenoid biosynthesis in non-
green tissues are distinct from those in green tissues. Briefly, there
are three major mechanisms affecting carotenoid accumulation
in non-green plant tissues: (1) regulation of genes controlling
carotenoid biosynthesis; (2) the regulation of genes for carotenoid
degradation; and (3) the regulation of plastid development.
Various lines of evidence show that the MEP pathway, GGPP
pool, PSY and branch point enzymes might be key regulatory
nodes for carotenoid content. They are discussed in detail below.

Regulation of Isoprenoid Precursor
Carotenoid biosynthesis requires an available source of
isoprenoid substrates derived from the MEP pathway, which is a

Frontiers in Plant Science | www.frontiersin.org 4 August 2016 | Volume 7 | Article 1197

http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive


fpls-07-01197 August 8, 2016 Time: 11:42 # 5

Zhai et al. Review of Carotenoid Metabolism in Staple Cereals

key bottleneck influencing flux through the entire pathway (Farré
et al., 2010; Rodriguez-Concepcion, 2010). In the MEP pathway,
the transcript levels of DXS, 1-deoxy-D-xylulose 5-phosphate
reductoisomerase (DXR) and 1-hydroxy-2-methyl- 2-(E)-butenyl
4-diphosphate reductase (HDR) were positively correlated with
carotenoid content in maize endosperm (Vallabhaneni and
Wurtzel, 2009; Suwarno et al., 2015).

In addition to its role in carotenoid biosynthesis, GGPP is a
precursor for synthesis of many other terpenoid compounds in
plants. Therefore, the pool of GGPP represents the metabolic
link between biosynthesis of carotenoids and other terpenoids,
and is responsible for inter-pathway regulation via competition
for GGPP. The expression level of GGPP synthase (GGPPS)
was positively correlated with endosperm carotenoid content in
maize (Vallabhaneni and Wurtzel, 2009; Suwarno et al., 2015).
Another key regulatory issue is what mechanisms control the
partitioning of precursors into various terpenoid pathways. There
is clear evidence for multiple GGPPS genes in Arabidopsis,
encoding dedicated enzymes for different branches of various
terpenoid pathways (Okada et al., 2000).

Regulation of Carotenoid Biosynthesis
Phytoene synthase catalyzes the first committed step in
carotenoid biosynthesis and is generally accepted as the most
important regulatory node in the carotenoid biosynthesis
pathway, whose transcripts were positively correlated with
carotenoid accumulation (Cong et al., 2009; da Silva Messias
et al., 2014). Moreover, PSY seems to be a key integrator for
several signals regulating carotenoid biosynthesis. For example,
blocking of the MEP pathway and loss-of-function of PDS result
in down-regulation of PSY, whereas increased activity of DXS
induces PSY expression in tomato (Rodriguez-Concepcion et al.,
2001; Laule et al., 2003). Orange (OR) protein directly interacts
with PSY to regulate carotenoid biosynthesis (Zhou et al., 2015).
In addition, carotenoid metabolites also regulate PSY protein
level and total carotenoid content (Kachanovsky et al., 2012;
Arango et al., 2014). For example, expression of the PSY gene
is positively up-regulated by ABA and has been associated with
pre-harvest sprouting in cereals (Fang et al., 2008; Cazzonelli,
2011).

The cyclization of lycopene has a major role in modulating the
β, β/β, ε branch ratio, suggesting that coordination between LCYE
and LCYB activities may be necessary for regulation of metabolic
flux through different branches of the carotenoid pathway
(Cazzonelli et al., 2010; Farré et al., 2011). Over-expression of
LCYB shifts the balance toward the β, β-branch, whereas over-
expression of LCYE has the opposite effect (Rosati et al., 2000;
D’Ambrosio et al., 2004). However, expression of PSY1, CrtI,
and LCYB in transgenic maize endosperm increased β, β/β,
ε ratio from 1.2 to 3.5 and also enhanced flux through the
β, ε-branch of the pathway, producing almost 25 times more
lutein than the normal level (Zhu et al., 2008). Naqvi et al.
(2011) also found that when metabolic flux is shifted toward
β-carotene there is still enough flux through the β, ε-branch to
produce more lutein. These examples showed that regulation
of the flux through different branches of the pathway was
complex.

Some other carotenogenes also regulated carotenoid content.
For example, viviparous mutants vp5, vp2, and w3 in maize
have defective copies of the PDS gene and exhibit increased
accumulation of phytoene (Matthews et al., 2003). High
expression of the ZDS gene was consistent with accumulation of
lycopene during carrot root development (Clotault et al., 2008).
ZISO and CRTISO are essential for establishing an equilibrium
between cis- and trans- carotenoid isomers (Chen et al., 2010;
Yu et al., 2011). In addition, expression of crtRB1 was negatively
correlated with β-carotene levels and positively correlated with
zeaxanthin levels in maize (Yan et al., 2010; da Silva Messias et al.,
2014).

Apart from the carotenogenes per se, transcriptional factors
regulating carotenoid biosynthesis have been reported. Reduced
transcript level of RAP2.2, a member of the APETALA2 (AP2)/
ethylene-responsive element-binding protein transcription factor
family, was accompanied by a significant decrease in transcript
levels of both PSY and PDS with a concomitant 30% decrease
in carotenoid content relative to wild-type (Welsch et al., 2007).
The transcription factor RIN induces PSY1 expression to regulate
the flux of carotenoid biosynthesis in tomato (Martel et al.,
2011). Moreover, epigenetic regulation was also considered
important in carotenogenesis. A chromatin-modifying histone
methyltransferase enzyme SDG8 (SET DOMAIN GROUP 8)
maintains a transcriptionally permissive chromatin state
surrounding the CRTISO and thus is able to regulate carotenoid
content (Cazzonelli et al., 2009). Overexpression ofmicroRNA156
in Brassica napus enhanced carotenoid content in seeds (Wei
et al., 2010).

Regulation of Carotenoid Degradation
Recent studies have demonstrated that the carotenoid pool
is determined in part by the rate of carotenoid degradation
(Vallabhaneni and Wurtzel, 2009; Gayen et al., 2015). The
expression of CCD1 or CCD4 was negatively correlated with
carotenoid accumulation (Gonzalez-Jorge et al., 2013; da Silva
Messias et al., 2014). It was shown that down-regulation of
LOX enzyme activity reduces degradation of carotenoids in
Golden Rice suggesting an effective tool to reduce large economic
losses of biofortified rice seeds during storage (Gayen et al.,
2015). Compared to carotenoid biosynthesis, little is known
about the impact of carotenoid degradation on regulation of
carotenoid accumulation, and much more work is needed to
understand it.

Regulation of Carotenoid Sequestration
Various studies have shown that carotenoid accumulation is
greatly modulated by size, number, and anatomical structure
of the plastids in which carotenoid biosynthesis and storage
occur. Organelle biogenesis is a major determinant of plastid
size and storage compartment number, and affects carotenoid
accumulation by providing a larger sink. CHCR (chromoplast-
specific carotenoid-associated protein) enhances carotenoid
content in high pigment tomato mutants (hp1, hp2, and hp3)
due to increased chromoplast number and/or volume (Galpaz
et al., 2008; Kilambi et al., 2013). A mutation in the OR gene led
to differentiation of plastids to chromoplasts causing enhanced
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carotenoid accumulation in the curds of cauliflower (Lu et al.,
2006). A change in chromoplast architecture is associated with
carotenoid composition in Capsicum fruits (Kilcrease et al.,
2013).

Esterification limits degradation of xanthophylls and
increases their sequestration within the chromoplast by
increased lipophilic properties and integration into lipid-rich
plastoglobules (Ariizumi et al., 2014; Mellado-Ortega and
Hornero-Méndez, 2016). Moreover, it was suggested that
carotenoid accumulation might be correlated with expression of
genes influencing lipoprotein components of chromoplast
structures, such as plastid-encoded acetyl coenzyme A,
carboxylase D and Hsp21 (Neta-Sharir et al., 2005; Barsan
et al., 2012; Carvalho et al., 2012).

Although significant progress has been made in understanding
carotenoid regulatory mechanisms in plants, several key
issues are yet to be addressed. Firstly, very little is known
about the global regulatory mechanisms underlying carotenoid
metabolism. Cross-talk between carotenoid biosynthesis and
other pathways and how interaction responds to plant growth
and development and environment remain unclear. Secondly,
the molecular nature of regulation of metabolic feedback
remains unknown. Finally, research on regulation of carotenoid
biosynthesis has mostly focused on model species and such
regulatory mechanisms in non-model species are not well
documented, hence restricting a detailed understanding of
regulation of carotenoid biosynthesis in specific crops.

GENETIC MANIPULATION OF
CAROTENOID BIOSYNTHESIS IN
STAPLE CEREALS

Maize, rice, and wheat comprise the main foods for human
nutrition. However, carotenoid contents in the grains of these
crops are usually low. Therefore, breeding staple cereals with
high carotenoid content could have a huge impact on human
health, without significantly altering current human diets. Such
attempts to enhance carotenoid contents or improve carotenoid
composition in staple cereals have been made, mainly based on
metabolic engineering and marker-assisted breeding as described
below.

Metabolic Engineering
Various metabolic engineering approaches have been made to
increase the levels of nutritionally relevant carotenoids in staple
cereals and to enable the use of plants as ‘cell factories’ for
producing special carotenoids. Amplification of the rate-limiting
enzyme with the highest flux control coefficient is the principal
target for manipulation. Alternatively, it may be desirable to
change the carotenoid composition or extend the classical
carotenoid pathway in the tissue of interest.

A breakthrough in metabolic engineering of carotenoids for
improved nutritional value of staple crops was achieved in rice,
best-known as ‘Golden Rice.’ Here, daffodil PSY and LCYB
genes together with the bacterial CrtI were transferred to a
japonica rice cultivar in which the β-carotene content in the

endosperm was 1.6 µg/g of seed dry weight, providing 10–
20% of the recommended daily allowance (RDA) of β-carotene
(Burkhardt et al., 1997; Ye et al., 2000). Further optimization
of the pathway using the maize PSY gene driven by a rice
glutelin promoter considerably increased carotenoid formation
in transgenic rice endosperm, resulting in Golden Rice II lines
with carotenoid levels up to 37 µg/g (Paine et al., 2005). Higher
carotenoid accumulation was recently achieved through the
combined expression of ZmPSY1, PaCRTI with AtDXS or AtOR
in rice endosperm, suggesting that the supply of isoprenoid
precursors and metabolic sink are important rate-limiting steps
in carotenoid biosynthesis (Bai et al., 2016). Similarly, total
carotenoid levels in wheat were enhanced by co-transformation
with maize PSY1 and the bacterial CrtI gene, but the elevation of
carotenoid content was only moderate compared with that in the
donor wheat cultivar EM12 (Cong et al., 2009). In order to further
enrich the provitamin A content in wheat grains, the bacterial
CrtB and CrtI genes were co-transformed into cultivar Bobwhite
(Wang et al., 2014), resulting in a total carotenoid content
increase to 4.76 µg/g, a β-carotene increase to 3.21 µg/g, and
a provitamin A content increase to 3.82 µg/g. Recently, higher
levels of β-carotene accumulation up to 5.06 µg/g were obtained
by simultaneously overexpressing CrtB and silencing carotenoid
hydroxylase (Zeng et al., 2015b). Although the level was still
insufficient to combat VAD, the progress was still important, as
a small increase in carotenoid contents in wheat grains would
have a large impact based on the huge daily consumption of
wheat-based products throughout the world.

A wide variety of unusual keto-carotenoids and carotenoid
intermediates, such as astaxanthin, adonixanthin, 3-hydroxye-
chinenone, and echinenone have been engineered in transgenic
maize plants with seed colors ranging from white and yellow to
dark-red, despite the white-endosperm genetic background (Zhu
et al., 2008). The carotenoid pathway in rice was recently further
extended to form astaxanthin and 4-keto-α-carotene, with co-
transformation of ZmPSY1, the bacterial CrtI and β-carotene
ketolase genes (Breitenbach et al., 2014).

As already mentioned, most of the research on carotenoid
manipulation in staple cereals has focused on a few main
carotenogenes. In the future, manipulation of carotenoid
biosynthesis could be extended to different regulatory nodes,
such as the MEP pathway, carotenoid degradation, and
sequestration. Moreover, the current status of metabolic
engineering is somewhat restricted due to its reliance on gene-
by-gene approaches. In other pathways, the focus has shifted
from individual genes or collections thereof toward overarching
regulatory mechanisms that may allow multiple genes in the
pathway to be controlled simultaneously. Although enhancement
of carotenoid biosynthesis by metabolic engineering proves to
be a useful tool, the transgenic lines may induce hitherto
undiscovered feedback mechanisms with unpredictable results.
One of the major hurdles for commercialization of genetically
engineered crops is the legal requirements and acceptance by
consumers in various countries. Golden Rice has not yet been
released in any country although daily consumption of 75 g of
Golden Rice II grains can receive the RDA of β-carotene (Paine
et al., 2005).
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Marker-Assisted Breeding
Over the past decade, increasing carotenoid content in grains
of staple cereals such as rice, maize, and wheat, has been an
important breeding objective. However, conventional breeding
to select for QTL with positive effects on carotenoid levels is a
slow and laborious process. The identification of rate-limiting
steps, the elucidation of molecular basis of known QTL, or the
characterization of new alleles for higher carotenoid content,
will allow development of functional markers or gene-specific
markers for a more efficient selection in breeding. Such functional
markers allow breeders to select quantitative traits at the gene
level rather than at the phenotypic level.

In maize, previous studies showed that two polymorphic
sites within PSY1 each explained 7 and 8% of the total
carotenoid variation (Harjes et al., 2008); four polymorphic sites
in LCYE explained 58% of β, β/β, ε branch ratio variation
and a threefold difference in provitamin A compounds (Yan
et al., 2010); three polymorphisms in crtRB1 were significantly
associated with variation in carotenoid content (Fu et al.,
2013). Allele-specific markers of three key genes involved
in maize endosperm carotenoid biosynthesis were developed
to facilitate provitamin A biofortification in maize through
marker-assisted selection (MAS). The effectiveness of these
molecular markers was verified across diverse tropical yellow
maize inbred lines (Azmach et al., 2013; Babu et al., 2013).
A favorable crtRB1 allele was introgressed into seven elite inbred
parents using a crtRB1-specific marker, and concentration of
β-carotene among crtRB1-introgressed inbreds varied from 8.6
to 17.5 µg/g, with a maximum increase of up to 12.6-fold over
recurrent parent (Muthusamy et al., 2014). Introgression of a
favorable allele of the crtRB1 gene using molecular markers also
significantly increased provitamin A content in quality protein
maize inbred lines (Liu et al., 2015). In rice, no carotenoids
were detected in the endosperm due to lack of endosperm-
specific PSY expression (Ye et al., 2000). Therefore, molecular
marker-assisted breeding for rice carotenoid improvement is
still not feasible. Although many molecular markers have been
developed for genes involved in carotenoid biosynthesis in
wheat as described below, there are no reports of higher
carotenoid content wheat cultivars developed by marker-assisted
breeding.

The objectives of Harvest Plus2, a worldwide collaboration that
drives biofortification as a project within the Consultative Group
of International Agricultural Research (CGIAR), are to breed
more nutritious cultivars of staple food crops by conventional
breeding technologies strengthened with molecular markers.
Provitamin A-biofortified crops, including maize, cassava, and
sweet potato, have been developed and released in Nigeria,
Zambia, and Uganda. Eating orange sweet potato has been shown
to improve vitamin A status of children.

The carotenoid biosynthesis is very complex, therefore
multiple genes must be taken into consideration during marker-
assisted breeding in order to enhance the accuracy of prediction
and selection. In addition, mutants with desirable carotenogenic
properties generated by chemical treatment may provide new

2http://www.harvestplus.org/

insights into carotenoid improvement in staple cereals that are
not categorized as genetic manipulation and can be immediately
introduced into breeding programs. Meanwhile, such mutants
are not involved in the expensive and time-consuming gene
transformation, and therefore, easy to be used in breeding
programs.

CAROTENOIDS IN Triticum SPP.

Carotenoids, the main components of grain yellow pigment in
wheat determine the flour color and affect both the nutritional
value of the grain and its utility in different applications
(Mares and Campbell, 2001). High yellow pigment is a very
important quality parameter for pasta made from durum wheat
and yellow alkaline noodles made from bread wheat, but
low or medium levels of yellow pigment are preferred for
Chinese white noodles and steamed bread produced by bread
wheat. Thus, manipulations of yellow pigment in opposite
directions are important breeding objectives in bread wheat and
durum breeding programs. However, compared with maize and
rice, carotenoid biosynthesis in wheat has received much less
attention. Therefore, we provide a comprehensive overview of
carotenoid biosynthesis in wheat in order to facilitate future
studies of the carotenoid metabolism.

Carotenoid Profiles in Wheat
Lutein is the predominant carotenoid in wheat, and accounts
for 80–90% of total carotenoids along with small amounts
of zeaxanthin, α-carotene, β-cryptoxanthin, and β-carotene
(Abdel-Aal et al., 2007; Digesù et al., 2009). The pigments
are variably distributed in the seed; the endosperm has the
highest lutein content, whereas zeaxanthin and β-carotene are
concentrated near the outer layers of the kernel (Hentschel et al.,
2002; Borrelli et al., 2008). Although levels of carotenoids in
wheat are low, there is significant genetic variation. Previous
studies showed that primitive and wild relatives, landraces,
and synthetic hexaploids usually accumulate higher levels of
carotenoids. For example, einkorn (2n = 14), and Khorasan and
durum wheat (2n = 28) contain higher levels of lutein (5.4–
7.4 µg/g) compared to common wheat (1.9 µg/g; Hidalgo et al.,
2006).

Carotenoid biosynthesis during grain development was
examined using a doubled haploid (DH) bread wheat population
(Howitt et al., 2009). During the early stages of grain
development, carotenoids from the β, β-branch (zeaxanthin,
antheraxanthin, and violaxanthin) were present at higher levels
than those from the β, ε-branch (lutein). The highest amounts
of lutein and zeaxanthin were detected at 10 days post
anthesis (DPA). Although the level of lutein did not change
significantly during endosperm development, carotenoids from
the β, β-branch declined gradually and were undetectable in
mature grains.

QTL Underpinning Carotenoids in Wheat
Although environmental factors play an important role
in determining carotenoid contents in wheat, the genetic

Frontiers in Plant Science | www.frontiersin.org 7 August 2016 | Volume 7 | Article 1197

http://www.harvestplus.org/
http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive


fpls-07-01197 August 8, 2016 Time: 11:42 # 8

Zhai et al. Review of Carotenoid Metabolism in Staple Cereals

component is predominant and heritability is relatively high at
0.85–0.97 for YPC, a trait strictly related to carotenoids (Elouafi
et al., 2001; Van Hung and Hatcher, 2011).

The genetic architecture of YPC was investigated through QTL
analysis in both durum and bread wheat. QTL located in the
telomeric regions of the long arms of the homeologous group 7
chromosomes, especially 7AL and 7BL, largely influenced YPC
(Elouafi et al., 2001; Patil et al., 2008). Various minor QTLs
were also detected on chromosomes of homeologous groups 2,
3 and 4, and chromosomes 1A, 1B, 5A, 5B, 6A, and 6B (Zhang
et al., 2008; Blanco et al., 2011; Colasuonno et al., 2014). In
addition, the 1BL.1RS wheat-rye translocation carried a major
QTL for YPC and b∗ explaining 25.4–32.2% of the phenotypic
variance (Zhang et al., 2009; Zhai et al., 2016). Wheat cultivars
with the 1BL.1RS translocation had higher total carotenoid
contents (0.76 vs. 0.61 µg/g), lutein (0.46 vs. 0.40), zeaxanthin
(0.08 vs. 0.07) and β-carotene (0.22 vs. 0.14) than those without
the translocation (Li et al., 2016), an aspect that should be
considered in breeding for higher provitamin A content in bread
wheat.

Gene Cloning and Molecular Marker
Development
Most of carotenogenes in wheat have been cloned and
characterized. Briefly, the full-length genomic DNA sequence
of PSY1 was cloned, and two co-dominant markers (YP7A
and YP7B-1) and two dominant markers (YP7B-2 and YP7B-
3) were developed for PSY-A1 and PSY-B1 (He et al., 2008,
2009). YP7A co-segregated with a QTL for YPC on chromosome
7AL and explained 20–28% of the phenotypic variance (He
et al., 2008). Cultivars with PSY-B1c had the highest YPC
(2.01 µg/g), followed by PSY-B1a (1.71 µg/g), whereas those
with PSY-B1b had the lowest value (1.40 µg/g; He et al.,
2009).

Dong (2011) cloned the full-length PDS gene and designed
two complementary markers YP4B-1 and YP4B-2 corresponding
to higher and lower YPC, respectively (no significant difference).
The full-length genomic sequence of ZDS was cloned and
co-dominant molecular markers YP2A-1 and YP2D-1 were
developed for ZDS-A1 and ZDS-D1, respectively (Zhang
et al., 2011; Dong et al., 2012). YP2A-1 and YP2D-1 co-
segregated with QTL for YPC on chromosome 2A and
2DL, respectively, explaining 11.3–18.4% of the phenotypic
variance.

The entire sequence of the LCYE gene was isolated and
located on homoeologous group 3 chromosomes, and it was
identified as a candidate gene underlying QTL for lutein
content on chromosome 3B (Howitt et al., 2009). Dong
(2011) developed a co-dominant functional marker YP3B-1 for
TaLCYE-B1, but values of YPC from cultivars with TaLCYE-
B1a were not significantly different from those with TaLCYE-
B1b. Therefore, the effect of TaLCYE-B1 on carotenoid contents
in wheat grains need to be further investigated. e-LCY3A-
3, a co-dominant functional marker, was developed based
on e-LYC3Aa and e-LYC3Ab alleles (Crawford and Francki,
2013b). A highly significant (P < 0.01) association with QTL
on chromosome 3A indicated that e-LYC3A is functionally

associated with variation in b∗. The TaLCYB gene was cloned
and shown to have a role in β-carotene biosynthesis using
RNAi (Zeng et al., 2015a). In addition, HYD1, HYD2, and
HYE were cloned and characterized (Kawaura et al., 2009; Qin
et al., 2012). Information relating to these genes and molecular
markers is provided in Table 1. The functional markers have
been used in routine germplasm characterization and cultivar
development.

For carotenoid degradation, three copies of the LOX-1
gene (LOX-B1.1, LOX-B1.2, and LOX-B1.3) were cloned in
durum wheat (Hessler et al., 2002; Verlotta et al., 2010).
In bread wheat, the full-length genomic DNA sequence of
TaLOX-B1 gene was cloned, and complementary markers
LOX16 and LOX18 were developed (Geng et al., 2012).
However, CCD sequences of wheat have not been reported to
date.

The Molecular Basis of QTL for
Carotenoid Content
With carotenogenes identified and functional markers developed,
there is a growing interest in understanding the molecular basis
of QTL underpin carotenoid content in wheat.

As expected, PSY1 gene was considered as a candidate gene
responsible for YPC variation in wheat grains since YP7A
and YP7B co-segregated with QTL for YPC on chromosomes
7AL and 7BL (He et al., 2008; Zhang and Dubcovsky, 2008;
Singh et al., 2009). Other studies indicated that a second gene
other than PSY1 in the distal regions of chromosomes 7A
and 7B affects YPC (Singh et al., 2009; Crawford and Francki,
2013a). The geranylgeranyl transferase I α-subunit (RGGT) gene
was mapped to distal regions on chromosomes 7BL and 7DL
(Crawford et al., 2008). This gene encodes enzyme involved
in the terpenoid backbone biosynthesis pathway, providing the
precursor GGPP for carotenoid biosynthesis, and it could be
a candidate for the additional gene. Moreover, a Cat3-A1 gene
was co-located to the QTL for b∗ on 7AL, encoding a catalase
enzyme which controls varying degrees of bleaching action
on lutein by regulating hydrogen peroxide accumulation in
developing wheat grain, and it could be another candidate for
the additional gene (Crawford and Francki, 2013a; Li et al.,
2015).

The LCYE gene was considered as a candidate gene for QTL
affecting b∗ variation and lutein content on chromosomes 3A and
3B in bread wheat (Howitt et al., 2009; Crawford and Francki,
2013b). In addition, a QTL for pasta color on chromosome 4B
was linked to a polymorphic deletion in LOX-B1, suggesting
that it was associated with pigment degradation during pasta
processing (Hessler et al., 2002).

With advances in genomics and bioinformatics, some other
genes were found to be associated with carotenoid biosynthesis
in wheat. A genome scan for QTL in durum and SNP homology
prediction against annotated proteins in the wheat and
Brachypodium genomes identified diphosphomevalonate decar-
boxylase (DMAPD) and aldehyde oxidase (AO) co-located
with the major QTL for YPC on chromosomes 5BL and 7AL,
respectively (Colasuonno et al., 2014). Six candidate genes
related to terpenoid backbone biosynthesis were within QTL

Frontiers in Plant Science | www.frontiersin.org 8 August 2016 | Volume 7 | Article 1197

http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive


fpls-07-01197 August 8, 2016 Time: 11:42 # 9

Zhai et al. Review of Carotenoid Metabolism in Staple Cereals

TABLE 1 | Summary of carotenogenic genes and molecular markers in bread wheat.

Enzyme Gene GenBank No. Chromosomal
location (IWGSC)

Marker Allele Fragment
size (bp)

YPC

Phytoene synthase 1 PSY1 EF600063 7AL, 7BL,7DL YP7A PSY-A1a/PSY-A1c 194 High

PSY-A1b 213 Low

YP7B-1 PSY-B1a 151 Medium

PSY-B1b 156 Low

YP7B-2 PSY-B1c 428 High

YP7B-3 PSY-B1d 884 –

Phytoene desaturase PDS FJ517553 4AS, 4BL, 4DL YP4B-1 TaPDS-B1b 562 High

YP4B-2 TaPDS-B1a 382 Low

ζ-Carotene desaturase ZDS HQ703016 2AS, 2BS, 2DS YP2A-1 TaZDS-A1a 183 Low

TaZDS-A1b 179 High

YP2D-1 TaZDS-D1a No High

TaZDS-D1b 981 Low

Lycopene ε-cyclase LCYE EU649785 3AL, 3B, 3DL e-LCY3A-3 e-LCY3Aa 537 –

e-LCY3Ab 309 & 230

YP3B-1 TaLCYE-B1a 635 –

TaLCYE-B1b No

Lycopene β-cyclase LCYB FJ814767 6AS, 6DS

Carotenoid β-ring hydroxylase CHYB1 JX171673 2AL, 2BL, 2DL

CHYB2 JX171670 6AL, 6BL, 6DL

Carotenoid ε-ring hydroxylase CHYE AK334877 1AL, 1BL, 1DL

IWGSC, International Wheat Genome Sequencing Consortium; YPC, yellow pigment content; – Unknown.

intervals associated with four color-related traits in bread
wheat (Zhai et al., 2016); these included genes for alpha-1,3-
mannosyl-glycoprotein 2-beta-N-acetylglucosaminyltransferase
(MGAT1), mevalonate kinase (MK), delta-cadinene synthase
(DCS), ketol-acid reductoisomerase (KARI), cytokinin
oxidase/dehydrogenase (CKX), and secologanin synthase
(SLC). All these genes further enrich carotenoid biosynthesis
pathway (Figure 1).

Because quantification of carotenoids by HPLC is expensive
and time-consuming, most studies of wheat carotenoid contents
have depended on indirect parameters such as YPC and
b∗. In order to deepen understanding of the carotenoid
metabolism in wheat, fast, cost-effective methods to detect
individual carotenoids should be developed and improved,
such as UPLC (ultra-high performance liquid chromatography),
UPLC-MS and UPLC-NMR. Moreover, many QTLs affecting
carotenoid content could not be explained by known genes. This
provides opportunities to discover additional genes controlling
carotenogenesis in wheat grain. With progress in next-generation
DNA sequencing and SNP chips, it will be much easier to
construct high-density genetic maps useful in detecting QTL for
carotenoid content, identifying candidate genes, and map-based
cloning of candidate genes.

FUTURE PROSPECTS

As discussed above, significant progress has been made in our
understanding of carotenoid metabolism, genetic regulation,
and genetic manipulation in higher plants. This has improved
our capacity for breeding new cultivars with high carotenoid

contents. Compared to other plants, there are still numerous
unknown aspects on carotenoid biosynthesis in the staple cereals.
Firstly, a more comprehensive and deeper understanding of
carotenoid regulatory mechanisms will undoubtedly facilitate
genetic manipulation to modify overall carotenoid contents and
individual components with predictable outcomes. Secondly,
genetic manipulations in crops were mainly focused on
β-carotene enhancement to combat the VAD, but improvements
in other carotenoids were rarely reported, even for lutein
and zeaxanthin which play significant roles in promoting
eye and skin health and in reducing the risk of several
chronic diseases. Therefore, future studies should give more
attention to improve other carotenoids or simultaneously
engineer multiple carotenoid molecules. In addition, the
carotenoid pathways in maize and rice have been extended
to accumulate a wide variety of unusual keto-carotenoids,
which could be exploited to other crop plants, including
wheat.

New technologies provide novel opportunities for
genetic manipulation of carotenoid biosynthesis in staple
cereals. With progress in next-generation DNA sequencing
and SNP chips, genomic selection is expected to play a
key role in breeding programs (Varshney et al., 2014).
KASP (Kompetitive Allele Specific PCR) technology with
its much faster and higher detection accuracy offers
cost-effective and scalable flexibility in application of gene-
specific markers in breeding programs (Semagn et al.,
2014). Development of practical breeding chips based
on KASP markers and closely linked SNP markers from
GWAS will be a big step forward in improving marker
application in breeding high provitamin A-enriched
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cereals. New gene editing technologies, such as TALENs
(transcription activator-like effector nucleases) and CRISPR
(clustered regularly spaced palindromic repeat), are currently the
most widely used methods for understanding gene function, and
are emerging as transformative technologies for crop breeding
due to ability to edit genomic sequences at defined sites rather
than random introduction of foreign DNA (LaFountaine et al.,
2015). We are strongly confident that provitamin A-enriched
crops will be developed in the near future by application of
improved genetic knowledge and new technologies.
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