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Assessment of genetic diversity and population structure of germplasm collections plays

a critical role in supporting conservation and crop genetic enhancement strategies. We

used a cultivated lentil (Lens culinaris Medik.) collection consisting of 352 accessions

originating from 54 diverse countries to estimate genetic diversity and genetic structure

using 1194 polymorphic single nucleotide polymorphism (SNP) markers which span

the lentil genome. Using principal coordinate analysis, population structure analysis

and UPGMA cluster analysis, the accessions were categorized into three major groups

that prominently reflected geographical origin (world’s agro-ecological zones). The three

clusters complemented the origins, pedigrees, and breeding histories of the germplasm.

The three groups were (a) South Asia (sub-tropical savannah), (b) Mediterranean, and (c)

northern temperate. Based on the results from this study, it is also clear that breeding

programs still have considerable genetic diversity to mine within the cultivated lentil, as

surveyed South Asian and Canadian germplasm revealed narrow genetic diversity.
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INTRODUCTION

Cultivated lentil (Lens culinaris Medikus ssp. culinaris) is the third most important cool-season
grain legume in the world after chickpea (Cicer arietinum L.) and pea (Pisum sativum L.)
(FAO, 2015). Legumes are important components in farming systems, providing environmental
and ecological benefits through crop rotation, especially by contributing to soil fertility and
rhizosphere diversity through biological N2 fixation. Global annual lentil production was around
5 million metric tons (Tg) from nearly 4.3 million ha (Mha) in 2013. Canada was the largest
producer, contributing 38% of the world’s production, followed by India, Turkey, and Australia
(FAO, 2015). Lentil was one of the first domesticated grain legumes, originating from the
Near East center of origin (Zohary, 1999). Lentil subsequently spread to central Asia and the
Mediterranean Basin (Cubero, 1981; Lev-Yadun et al., 2000). It is a relatively new crop in North
America, first introduced into northwest USA in the 1930s and into the northern temperate
prairies of North America in the late 1960s (Muehlbauer et al., 1995). Globally today, lentil
is grown in three major distinct agro-ecological zones: Mediterranean, sub-tropical savannah,
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and northern temperate (Tullu et al., 2011). These zones each
exhibit different day lengths and temperatures, which limits
the exchange of germplasm between agro-ecological adaptation
zones.

Success in crop breeding is a function of heritability, genetic
diversity, and selection. Natural agro-biodiversity stored in
genebanks can be used to expand the diversity in crops.
These collections are a vital source for discovering useful
genes/alleles, which serve as a cornerstone for any pre-breeding
program. There are currently 58,405 Lens accessions held in
various genebanks worldwide (FAO, 2010). International Center
for Agricultural Research in the Dry Areas (ICARDA) hosts
the largest collection (19%) followed by the National Bureau
of Plant Genetic Resources, India (17%) and the Australian
temperate field crops collection (9%). Currently, the most
accessible and accessed lentil collection is held by the USDA-
ARS (United States Department of Agriculture—Agricultural
Research Service; https://npgsweb.ars-grin.gov/).

Assessments of genetic diversity and relationships among
preserved germplasm have important implications both for
facilitating reliable documentation of genetic resources and for
identifying material with possible utility for specific breeding
purposes, particularly in cultivated lentil and other species with
a narrow genetic base. Lentil is an autogamous diploid species
with seven chromosome pairs and a relatively large genome
of ∼4 Gbp in the haploid complement (Arumuganathan and
Earle, 1991). Considerable genetic diversity has been reported in
Lens genetic resources for agro-morphological and phenological
characteristics (e.g., Erskine and Choudhary, 1986; Erskine et al.,
1989; Lazaro et al., 2001; Zaccardelli et al., 2012; Cristóbal et al.,
2014). Molecular markers, as the more reliable and powerful of
genetic tools, have been deployed to characterize lentil genetic
resources. Various molecular marker techniques and types have
been used for this purpose. These include restriction fragment
length polymorphisms (RFLPs, Havey and Muehlbauer, 1989),
amplified fragment length polymorphisms (AFLPs, Sharma et al.,
1996; Alghamdi et al., 2014), random amplified polymorphic
DNAs (RAPDs, Abo-Elwafa et al., 1995; Ford et al., 1997;
Ferguson et al., 1998; Sonnante and Pignone, 2001), and inter
simple sequence repeats (ISSRs, Scippa et al., 2008; Toklu et al.,
2009; El-Nahas et al., 2011). Simple sequence repeats (SSRs)
have the most widely used DNA markers for assessing genetic
diversity in lentil (see Liu et al., 2008; Babayeva et al., 2009;
Kaur et al., 2011; Zaccardelli et al., 2012; Dikshit et al., 2015;
Idrissi et al., 2015).

In recent years, genome-wide nucleotide-level surveys from
different individuals within or across species have received
increasing emphasis (Yang et al., 2015). Development of
gene-based single nucleotide polymorphisms (SNP) markers is
effective for detecting genetic diversity in plant species (Frascaroli
et al., 2013; Semagn et al., 2014). SNPs are themost abundant type
of polymorphism in all genomes, which allows high-throughput
genotyping that is low cost, locus specific, and co-dominant
with simple documentation. So far, only a limited number of
SNP markers have been used to study the genetic diversity
in lentil (Lombardi et al., 2014; Basheer-Salimia et al., 2015).
The population structure of global lentil accessions has not

been extensively characterized based on their agro-ecological
adaptation zones. The main aims of this study were to assess
the population structure and genetic variation of a group of 352
lentil germplasm accessions of Canadian breeding lines (northern
temperate adaptation) and ex situ germplasm collections of a
diverse origin using a relatively large number of SNP markers
spanning the genome.

MATERIALS AND METHODS

Plant Material and DNA Extraction
A total of 352 lentil accessions originating from 54 countries
were collected from various sources including breeding lines
obtained from the Crop Development Centre (CDC) collection
in Saskatoon, Canada, from ICARDA, and the USDA-ARS.
The accession numbers and origins of the selected accessions
are given in Supplementary Table 1. Accessions were assigned
to different major agro-ecological zones: Mediterranean, sub-
tropical savannah (particularly northeast India, Nepal’s lowland,
and western Bangladesh), and Northern temperate according
to global agro-ecological zones v3.0 (IIASA/FAO, 2012). In
the Mediterranean adaptation zone, sowing occurs after the
autumn equinox following a hot dry summer, prior to the winter
solstice. Similarly, in the sub-tropical savannah (South Asia)
planting occurs after the autumn equinox to take advantage
of declining day lengths and temperatures during the juvenile
phase and increases during the reproductive phase. Temperate
adaptation zones require planting to occur after the spring
equinox following a cold winter, prior to the summer solstice.
Germplasm originating from Iran and Turkey were not assigned
to specific agro-ecological zones due to different agro-ecological
climates within the country borders for lentil production areas
and a lack of specific collection location that would facilitate this
classification. Furthermore, ICARDA breeding lines and USDA
lines designated W6 # (hereafter referred to as USA breeding
lines) were not assigned to an agro-ecological zones, since they
were not specifically attributed a particular zone.

Canadian lines, along with ICARDA germplasm, were grown
in Saskatoon, Canada and leaf tissues from at least five different
plants were collected for genomic DNA extraction using a
modified CTAB extraction method (Doyle and Doyle, 1990).
DNA samples from leaf samples of greenhouse grown plants were
provided by the USDA-ARS for the USA germplasm (PI and W6
lines; see Simon and Hannan, 1995).

SNP Discovery and Genotyping
The Lc1536 GoldenGate high-throughput assay (Illumina, San
Diego, CA) described by Sharpe et al. (2013) was used to genotype
the 352 lentil accessions. The SNP genotyping was performed on
an Illumina BeadStation 500G (Illumina, San Diego, CA) at the
National Research Council (NRC), in Saskatoon, Canada with the
protocol supported by Illumina (Fan et al., 2003). A robust set of
1440 of the SNP markers was used for further analyses.

Statistical Analysis
The SNP marker data were analyzed using PowerMarker v. 3.25
(Liu and Muse, 2005) to calculate minor allele frequency (MAF),
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heterozygosity, gene diversity, and polymorphic information
content (PIC).

Population Structure and Genetic Diversity
The program STRUCTURE v. 2.3.4 (Pritchard et al., 2000) was
used to calculate the most probable number of sub-populations
(K) in the panel. Five independent runs were conducted for
each K ranging from 1 to 10 with both a burn-in time and
Markov Chain Monte Carlo (MCMC) replication number of
500,000 using an admixture model. Selection of the best K-
value was based on the procedure presented in Evanno et al.
(2005) by submitting the results for each K to the STRUCTURE
HARVESTER website, which returned the L(K) and 1K-value
(Earl and vonHoldt, 2012), as well as a basic understanding of the
nature of the germplasm. The results from STRUCTURE were
presented at the country level, using the “rworldmap” package
(South, 2011) in R (R Core Development Team, 2015).

Genetic structure of the lentil population was analyzed by
performing principal coordinate analysis (PCoA) using GenAlEx
v. 6.5 (Peakall and Smouse, 2012) based on standardized
covariance of genetic distance for co-dominant markers.
GenAlEx v. 6.5 was also used to calculate Analysis of
Molecular Variance (AMOVA) among and within assigned
groups. The genetic distance between genotypes and countries
were computed using Nei’s standard genetic distance (Nei, 1973)
with PowerMarker software. A dendrogram was constructed
from Nei’s distance matrix using UPGMA and the resulting tree
was visualized using iTOL v. 3.0 (Letunic and Bork, 2011).

The sequences of all the markers used in this study are
described in Sharpe et al. (2013). All data are also available
in KnowPulse (http://knowpulse.usask.ca) and Supplementary
Table 2.

RESULTS

SNP Markers Information
Of 1400 SNP markers, 5.46% were monomorphic among the
accessions, 2.14% generated ambiguous products, and 7.21%
were rejected on the grounds of excess missing data points
(>30% missing data per marker). This filtering resulted in 1194
high quality polymorphic SNP markers for use in the clustering
analyses. Around 40% of these SNP markers were previously
mapped and shown to be evenly distributed throughout the
genome (Sharpe et al., 2013). The overall PIC value was 0.3092
± 0.0789. Measurements of the average observed heterozygosity
over all loci and gene diversity were 0.0375 ± 0.0755 and 0.3932
± 0.1160, respectively (Supplementary Table 3).

Population Structure and Genetic
Relationship
We ran STRUCTURE for a range of K (number of fixed
subgroups or cluster) from 1 to 10 on the entire set of accessions.
The estimated log probability of the data [LnP(K)] for each K
plateaued at K = 3. The maximum 1K-value was also reached at
K = 3 (Supplementary Figure 1) suggesting three distinct groups.
Geographical distribution of the 352 lentil accessions along with
their projected population structure are shown in Figure 1. These

three clusters closely reflected the origins, pedigrees and breeding
history of germplasm used in this study. Accessions collected
from southern Asia and the Middle East were assigned to the
same gene pool. Lentil accessions originating mainly from the
Mediterranean, northeast Africa (along the Nile valley from
Egypt to Ethiopia), and South America were assigned to the
second group, whereas the third group consisted mostly of
genotypes from northern latitudes (Canada and Russian). Results
from principal coordinates analysis (Figure 2) were consistent
with those of STRUCTURE and UPGMA cluster analysis by
revealing three clusters (Supplementary Figure 2). The AMOVA
based on PhiPT-values revealed that genetic variation mainly
occurred within groups (86%), while the variation between the
groups was 14% (Supplementary Table 4).

Based on the 1194 polymorphic SNP markers, three pairs
of accessions were genetically indistinguishable despite having
different accession numbers: PI 163589 and PI 320945, PI 431675
and PI 431731, and PI 297284 and PI 297285.

Based on Nei’s genetic distance matrix, a close relationship
exists between Indian material and germplasm from Nepal,
Pakistan, and Afghanistan (0.0575, 0.0202, and 0.1310,
respectively). Generally, South Asian and Middle Eastern
(i.e., Iran and Turkey) germplasm grouped together, however,
some of the Iranian and Turkish germplasm skewed to those
from Mediterranean and northern climates. Within the second
group, germplasm from Chile exhibited the closest relationship
to germplasm from Morocco (0.0828). Canadian cultivars
and breeding lines, representative of group 3, were closely
related to much of the “W6” numbered lines which used in
USDA lentil breeding program as parents in recombinant
inbred lines development (USA breeding materials; 0.0968)
and Russian (0.0961) germplasm (Supplementary Table 5).
Most of the Canadian breeding lines were clustered together
with the exception of CDC Plato, CDC Imigreen and CDC
Cherie. Conversely, USA breeding lines and ICARDA breeding
lines were relatively well distributed among the three groups
(Figure 2).

DISCUSSION

The deep population structure of cultivated lentil and its
importance in explaining genetic diversity underscores the value
of using global lentil genetic resources to broaden the genetic
base in breeding programs and to improve our knowledge of
adaptation in this species. Given the sample size (individuals
and country of origins) and relatively high marker density, this
study identified three major clusters of germplasm reflecting
the geographical origins, pedigrees, and breeding history of
accessions.We categorized these clusters as (a) subtropical, South
Asian, (b) Mediterranean, including Southern Europe and North
Africa, and (c) northern temperate climates. These three groups
reflect the main climatic regions in which lentil is widely grown
as described by Tullu et al. (2011).

Lentil accessions from South Asia (primarily Nepal, India, and
Pakistan) have a narrow genetic base and are genetically more
isolated relative to other origins included in our study. This is
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FIGURE 1 | Map of the world showing the country-specific distribution of 352 lentil accessions based on population structure (K = 3). The size and color

of pie chart is corresponding to sample size and the percentage of samples in each group, respectively.

FIGURE 2 | Principal coordinate analysis (PCoA) of the 352 lentil accessions using 1194 polymorphic SNP markers. Each symbol/color combination

represents different country of origin. The most two distinct accessions, Indianhead and ILL 5588, are labeled.
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likely a result of their specific phenological adaptation to the sub-
tropical savannah environment and a potential genetic bottleneck
during a time when lentil was introduced to South Asia around
2000 BC (Erskine et al., 1989). Most previous diversity studies
of lentil diversity using molecular markers to date revealed two
distinct groups: South Asian and all other origins (Ferguson et al.,
1998; Alo et al., 2011; Kumar et al., 2014). In our study, however,
germplasm from South Asia grouped with parts of material from
Iran and Turkey, likely a stopping point on their move eastward
on trade routes extending from the center of origin. A manual
inspection of genetic distances between these regions shows
that germplasm from Nepal, India, Afghanistan, and Pakistan
are closely related, while relatively distant from Middle Eastern
germplasm (Iran and Turkey). This implies there might be two
distinct sub-groups within this particular cluster (South Asian
and Middle Eastern). Germplasm from Afghanistan was found
to be related to germplasm from South Asia as was previously
reported using another set of molecular markers (e.g., Ferguson
et al., 1998; Kumar et al., 2014).

Our results demonstrate that the Mediterranean, North
African, and Chilean germplasm collections are similar with only
a few deviations, following the classification of theMediterranean
agro-ecological zone. This is consistent with results from
Ferguson et al. (1998) and Lombardi et al. (2014). Lentil was
domesticated in the Eastern Mediterranean around 7–8 BC,
after which it spread to Europe. Lentil was introduced to South
America by the Spanish via Chile (after 1500 AD). Lentil is
mainly grown as a winter crop in these regions, under conditions
of declining day length followed by gradual increase in day
length and temperature during the life cycle (6–7 month).
This may explain the similarity among accessions of these
regions.

Nearly 50% of the world’s lentil production now originates
from Canada (northern temperate climate) and Australia
(Mediterranean climate) (FAO, 2015), regions in which lentil is a
relatively new crop. Clearly, the breeding programs in these two
regions have drawn from distinct global lentil genetic resources
that originate in regions with climatic and growing conditions
that match their local conditions. Most Canadian germplasm is
related to Laird and Eston. Laird was the first Canadian lentil
cultivar, released in 1978. It was a pure line selection derived from
PI 343028, originally from Russia, selected for higher yield and
larger seeds in the Canadian growing environment. Eston, the
second cultivar released in Canada in 1980, was similarly selected
for adaptation from a Turkish accession, PI 179307. The results
from PCoA and genetic distance cluster analyses all demonstrate
a narrower genetic variability among Canadian breeding lines.
This may be attributable to relatively recent adaptation to long
day northern temperate conditions in the prairies of Canada and
selection pressure for improving yield and specific adaptations.
A similar trend has been reported for Australian lentil breeding
lines and cultivars (Lombardi et al., 2014). In contrast, breeding
lines from the USA and ICARDA represent the most diverse
material in this study and elsewhere (Alghamdi et al., 2014).
ICARDA breeding strategies are more internationally-focused,
covering a wide variety of regions and adaptive traits as part
of CGIAR’s policy. For example, ILL 7502 and ILL 7537 were

bred for Western Asian climates, while ILL 8008 was targeted for
South Asian climates (Shiv Kumar, personal communication).

Lentil domestication already has led to ∼40% loss in genetic
diversity (Alo et al., 2011) and breeding in specific regions
has narrowed this even more. Breeding new genotypes for
traits of interest requires sampling broad genetic diversity.
The various statistic methods we employed here support the
presence of considerable genetic variability in global germplasm
that is not being accessed in some regions. The results from
population structure and PCoA in this study show, to some
extent, a separation by origin of the accessions with closely
related pedigrees typically group together. Phenotyping of
available genetic diversity has demonstrated the importance
of incorporating exotic germplasm into breeding programs
focusing on biotic and abiotic stresses. For example, ILL 5588
(also known as PI 592998), an ICARDA accession originally
collected from Jordan, is a known source of Ascochyta blight
resistance in lentil (Erskine et al., 1996). It is clearly distinct from
most of the temperate germplasm (Figure 2) but it has been used
in the pedigrees of some Canadian lines, including CDC Plato
and CDC Cherie. This may explain why they did not cluster with
the other Canadian lines.

The grouping of some accessions outside of their geographic
origin may be the result of outcrossing, migration, and
adaptation during cultivation of the crop by local farmers. For
example, Moroccan germplasm expresses slightly less variation
compared to those from Turkey due to narrower environmental
conditions (Idrissi et al., 2015). The major agro-morphological
changes related to adaptation are mostly improvements to yield,
increasing seed size, tolerance to biotic and abiotic stresses as well
as improving market-dependent quality traits. Another source
of division may be the growth habit of spring and winter types,
which are most adapted to different climatic regions. It has also
been noted that photoperiod plays a critical role to characterize
lentil cultivation areas into the respective climatic regions (Tullu
et al., 2011).

The availability of EST sequences and SNP discovery are
strong tools for investigating polymorphism in different species,
for quantifying biological factors that influence the patterns of
genetic diversity and for investigating bottlenecks due to the
domestication of crop species. An allele-specific Illumina Golden
Gate 1536-SNP array was constructed using SNPs discovered in
expressed sequence tag (EST) sequences from nine L. culinaris
accessions. This study has confirmed that the sub-set of SNP
markers previously reported by Sharpe et al. (2013) can provide
good resolution at low cost for genetic characterization of
cultivated lentil germplasm in relation to the world’s agro-
ecological zones.

CONCLUSIONS

Global cultivated lentil germplasm selected for this study
clustered primarily based on eco-geographical origin into three
basic groups: subtropical savannah,Mediterranean, and northern
temperate. The narrow genetic base of some groups of germplasm
(e.g., Canadian and South Asian) raises concern over the
loss/penalty in yield due to biotic and abiotic stresses, particularly
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with the threat to global food security from climate change. This
highlights the importance of harnessing the potential of lentil
wild species in breeding programs by introgression of favorable
genes from other regions. Based on the results from this study,
it is also clear that breeding programs still have a lot of genetic
diversity to mine within the cultivated species.
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