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During the course of green plant evolution, numerous light responses have arisen
that optimize their growth under fluctuating light conditions. The blue light receptor
phototropin mediates several photomovement responses at the tissue, cellular and
organelle levels. Chloroplast photorelocation movement is one such photomovement
response, and is found not only in most green plants, but also in some red algae
and photosynthetic stramenopiles. In general, chloroplasts move toward weak light
to maximally capture photosynthetically active radiation (the chloroplast accumulation
response), and they move away from strong light to avoid photodamage (the avoidance
response). In land plants, chloroplast movement is dependent on specialized actin
filaments, chloroplast-actin filaments (cp-actin filaments). Through molecular genetic
analysis using Arabidopsis thaliana, many molecular factors that regulate chloroplast
photorelocation were identified. In this Perspective, we discuss the evolutionary history
of the molecular mechanism for chloroplast photorelocation movement in green plants
in view of cp-actin filaments.
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INTRODUCTION

Green plants (land plants and green algae) have made many evolutionary innovations,
moving from aquatic to terrestrial habitats, with multiple evolutions of multicellularity, and
complex multicellular development. These evolutionary innovations also include numerous
photomovement responses at the tissue, cell, and organelle levels, which allow organisms to
adapt to fluctuating ambient light conditions. Chloroplast photorelocation movement (hereafter,
chloroplast movement) is found in a broad range of plant and algal species including chlorophyte
and charophyte green algae and land plants (Viridiplantae: Chlorophyta and Streptophyta), red
algae (Rhodophyta), and photosynthetic stramenopiles (Senn, 1908). It has been extensively
studied particularly in Streptophyta: embryophytes (land plants, including bryophytes, lycophytes,
ferns, and seed plants) as well as Zygnemataceae (including Mougeotia and Mesotaenium) and
Klebsormidiophyceae (such as Klebsormidium, formerly named Hormidium; Senn, 1908; for
review, see Haupt and Scheuerlein, 1990) (Figure 1). Blue light is the most effective means of
inducing chloroplast movement though red light is also effective in some ferns, mosses, and green
algae (for review, see Suetsugu and Wada, 2007).

In most land plants, where cells have many small chloroplasts, the chloroplasts move toward
weak light to capture light efficiently (the accumulation response), and they move away from
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strong light to reduce photodamage (the avoidance response).
In general, these chloroplast movements are dependent on
actin filaments in most plant species with some exceptions.
In some bryopsis algae (Chlorophyta: Ulvophyceae), such as
Dichotomosiphon and Bryopsis, most chloroplasts are detached
from the plasma membrane and so blue light-induced chloroplast
accumulation is mediated by the slowing of microtubule-
dependent cytoplasmic streaming at the irradiated site, rather
than by autonomous directional movement of individual
chloroplasts (Mizukami and Wada, 1981; Maekawa et al.,
1986). Members of the filamentous green algae Mougeotia
and Klebsormidium, as well as the single-celled Mesotaenium,
each has a single large chloroplast in a cylindrical cell.
Klebsormidium exhibits light-induced chloroplast movement
along the plasma membrane (Senn, 1908; for review, see Haupt
and Scheuerlein, 1990). In Mougeotia and Mesotaenium, the
ribbon-shaped chloroplast is sandwiched between vacuoles,
and only the edge of the chloroplast attaches to the plasma
membrane. In these algae chloroplast movement is due to the
rotation of the chloroplast around the central axis of the cell
(Senn, 1908; for review, see Haupt and Scheuerlein, 1990),
using actin filaments (Wagner et al., 1972; Mineyuki et al.,
1995). In streptophytes, microtubule-dependent chloroplast
movement has only been found in the moss Physcomitrella
patens, and this moss can use both microtubules and actin
filaments for chloroplast movement (Sato et al., 2001). Thus,
it is plausible that actin-dependent chloroplast photorelocation
movement along the plasma membrane may have arisen
subsequent to the divergence of Chlorophyta and Streptophyta
(Figure 1) and P. patens evolved a microtubule-dependent system
independently during land plant evolution. While algae can

generally control light capture by movement in water, land
plants are sessile and thus must adapt to fluctuating light
conditions, such as shading by and sudden sunbeams streaming
through the neighboring plants. To adapt to the harsh light
conditions on land, land plants have evolved a motility system
for chloroplast movement and positioning, using specialized
short actin filaments around the chloroplasts, chloroplast-actin
filaments (cp-actin filaments; Kadota et al., 2009; Yamashita
et al., 2011; Tsuboi and Wada, 2012; Kong et al., 2013).
These filaments are generated (polymerized) and employed for
movement at the interface between the chloroplast and the
plasma membrane (Kadota et al., 2009; Kong et al., 2013). In
this Perspective, we discuss the evolution of actin-dependent
chloroplast movement, and its molecular components, in green
plants.

MOLECULAR FACTORS REGULATING
CHLOROPLAST MOVEMENT
IDENTIFIED IN Arabidopsis thaliana

Through the analysis of Arabidopsis thaliana mutants that
are defective in chloroplast movement, many components of
the photorelocation system have been identified (for review,
see Wada and Suetsugu, 2013) (Figure 2). These include the
photoreceptor kinase phototropin (phot; Jarillo et al., 2001;
Kagawa et al., 2001; Sakai et al., 2001); an actin-binding protein
CHLOROPLAST UNUSUAL POSITIONING 1 (CHUP1;
Oikawa et al., 2003); the kinesin-like protein KINESIN-LIKE
PROTEIN FOR ACTIN-BASED CHLOROPLAST MOVEMENT
(KAC; Suetsugu et al., 2010); a C2 domain protein PLASTID

FIGURE 1 | Organismal lineages and the presence of molecular factors for chloroplast photorelocation movement. The topology of lineages is derived
from Bowman et al. (2007). Black arrows indicate the lineages in which the orthologs of respective molecular factors were identified in representatives whose
genome and/or transcriptome data are available. Gray arrows indicate the lineages in which homologs of respective molecular factors were identified. Although
hornworts, Chlorokybophyceae, Trebouxiophyceae, Ulvophyceae were not examined, arrows are not interrupted for clarity.
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FIGURE 2 | Domain organization of molecular factors for chloroplast photorelocation movement. For phot, KAC, PMI1/PMIR, phot1, KAC1, and PMI1 are
shown. All proteins are Arabidopsis proteins. Functional domains (black boxes) and regions (parentheses), and coiled-coil domains (gray boxes) are shown.

MOVEMENT IMPAIRED 1 (PMI1; DeBlasio et al., 2005); a
glutaredoxin-like protein THRUMIN 1 (THRUM1; Whippo
et al., 2011); an auxilin-like protein J-DOMAIN PROTEIN
REQUIRED FOR CHLOROPLAST ACCUMULATION
RESPONSE 1 (JAC1; Suetsugu et al., 2005); two related coiled-
coil proteins WEB1 (WEAK CHLOROPLAST MOVEMENT
UNDER BLUE LIGHT 1) and PMI2 (PLASTID MOVEMENT
IMPAIRED 2; Luesse et al., 2006; Kodama et al., 2010). We have
demonstrated that these eight proteins (and their homologs) are
essential for chloroplast movement and positioning via cp-actin
filaments. Phototropins mediate chloroplast photorelocation
movement via blue-light-dependent generation of cp-actin
filaments (Kadota et al., 2009; Ichikawa et al., 2011; Kong et al.,
2013). CHUP1 and KAC are essential for the generation of
cp-actin filaments (Kadota et al., 2009; Suetsugu et al., 2010;
Kong et al., 2013) and the actin-binding activity has been
shown in vitro (Oikawa et al., 2003; Schmidt von Braun and
Schleiff, 2008; Suetsugu et al., 2010). Both chup1 and kac
(kac1kac2 double) mutants in A. thaliana are defective in
chloroplast photorelocation movement and the attachment
of chloroplasts to the plasma membrane (Oikawa et al., 2003,
2008; Suetsugu et al., 2010). THRUM1 is required for the
efficient generation of cp-actin filaments and chloroplast
movement, and co-localized with cp-actin filaments in vivo
(Kong et al., 2013). PMI1 is required for stability of cp-actin
filaments (Suetsugu et al., 2015). JAC1, WEB1, and PMI2

are involved in blue-light-induced reorganization of cp-actin
filaments, although they are not essential to the generation
of cp-actin filaments (Kodama et al., 2010; Ichikawa et al.,
2011). These factors can be classified roughly into three
categories: photoreceptor (phot), motility (CHUP1, KAC,
THRUM1, PMI1), and signal transduction (JAC1, WEB1,
and PMI2). This classification is based on the phenotypes
in cp-actin filaments in respective mutant plants; cp-actin
filaments were severely reduced or not detected in mutants
deficient in factors classified as a motility category, whereas
the amount of cp-actin filaments was not changed but the
light-regulation was impaired in mutants deficient in factors
classified as a signal transduction category. Because chloroplast
movement is found universally in green algae and land plants,
we subsequently investigated whether the molecular factors
identified in A. thaliana are conserved across green algae and
land plants.

PHOTORECEPTORS AND THE
REGULATOR FOR MOTILITY SYSTEM
ARE CONSERVED IN STREPTOPHYTA

The molecular factors for chloroplast photorelocation movement
in green plant species other than A. thaliana, the fern
Adiantum capillus-veneris, and P. patens, were not reported
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previously. As a comprehensive analysis of phototropin
gene phylogeny has been already published (Li et al., 2014,
2015), we focused our search on the orthologs of CHUP1,
KAC, PMI1, THRUM1, JAC1, WEB1, and PMI2. In addition
to searching in NCBI GenBank’s nr database and the JGI
genome database, we used the published transcriptome data
from the fern Lygodium japonicum (Aya et al., 2015) and
five charophyte algae (Spirogyra pratensis, Nitella mirabilis,
Coleochaete orbicularis, Klebsormidium flaccidum, and
Mesostigma viride; Ju et al., 2015). No orthologous proteins
of these factors, including phototropins, were identified in
sequence data from non-green plants, i.e., orthologs were
only found in green plants. Chlorophytes do not have
orthologous proteins of CHUP1, KAC, PMI1, THRUM1,
JAC1, WEB1, or PMI2, but have a phototropin (Li et al.,
2015). We found that there are CHUP1, KAC, and PMI1
orthologous proteins in charophyte algae as well as land plants
(Figure 1). It was shown that CHUP1, and KAC orthologs
mediated chloroplast photorelocation movement and the
attachment of chloroplasts to the plasma membrane in the
fern A. capillus-veneris and the moss P. patens (Suetsugu
et al., 2012; Usami et al., 2012; Shen et al., 2015). In each
case, cp-actin filaments were detected (Yamashita et al.,
2011; Tsuboi and Wada, 2012). Furthermore, although
P. patens uses both actin filaments and microtubules for
chloroplast movements (Sato et al., 2001), CHUP1 and
KAC orthologs specifically mediated the actin-dependent
movements (Usami et al., 2012; Shen et al., 2015). These
results suggest that the motility system using cp-actin
filaments is likely to be conserved throughout land plants.
A. thaliana has two PMI1-related proteins, PMIR1 and
PMIR2: PMIR1 mediates blue light-induced plastid movement
via cp-actin filaments in epidermal cells, together with
PMI1 (Suetsugu et al., 2015). PMI1 and PMIR are likely
to have diverged before the gymnosperm and angiosperm
divergence (Suetsugu et al., 2015), suggesting that PMI1/PMIR
homologs in charophyte algae and non-seed plants should
be able to regulate cp-actin-filament-mediated chloroplast
movement.

THRUM1 belongs to the glutaredoxin-like (GRL) protein
family (of which there are 15 in A. thaliana); rice has the
THRUM1-orthologous proteins (Navrot et al., 2006; Whippo
et al., 2011). JAC1 belongs to the clathrin-uncoating factor
auxilin-like proteins (of which there are seven in A. thaliana);
rice and probably other monocot species have JAC1-orthologous
proteins (Suetsugu et al., 2005). However, it remained to be
determined whether these monocot THRUM1-like or JAC1-
like genes are also involved in chloroplast movement. WEB1
and PMI2 belong to the DUF827 coiled-coil protein family
which is divided into four subfamilies, WEB1, PMI2, WPRa,
and WPRb; conifers have WEB1-orthologous proteins (Kodama
et al., 2011). Although all streptophytes studied to date have
GRL proteins and auxilin-like proteins (DUF827 proteins are
found only in land plants), we could not identify direct
orthologs of THRUM1, JAC1, WEB1, or PMI2 in charophyte
algae or non-seed plants (Figure 1). Compared with vascular
plants, the liverwort Marchantia polymorpha and the moss

P. patens require much higher fluence rates of blue light
to induce the avoidance response (Kadota et al., 2000; Sato
et al., 2001; Komatsu et al., 2014). Our genetic analyses
in A. thaliana suggest that WEB1 and PMI2 are necessary
for suppression of the accumulation response (probably the
suppression of JAC1 activity) under strong blue light (Kodama
et al., 2010). Strong blue light can activate the signal transduction
pathway for both the accumulation and avoidance responses (for
review, see Suetsugu and Wada, 2007). Thus, the suppression
of the accumulation response should be required for an
efficient induction of the avoidance response, under strong light
conditions. Thus, the evolution of JAC1, WEB1, and PMI2 may
have permitted a more efficient avoidance response in land
plants.

Thus, phot, CHUP1, KAC, and PMI1/PMIR proteins are
core factors for chloroplast movement in Streptophytes. In
A. thaliana, mutants deficient in phot, CHUP1, KAC, or
PMI1/PMIR proteins exhibit severe defects in chloroplast
movement and positioning (Sakai et al., 2001; Oikawa et al.,
2003, 2008; Suetsugu et al., 2010, 2015) whereas mutants
deficient in THRUM1, JAC1, WEB1, and PMI2 show only
partial defects in chloroplast movement (Suetsugu et al., 2005;
Luesse et al., 2006; Kodama et al., 2010; Whippo et al.,
2011).

Although cp-actin filaments were found in A. thaliana,
A. capillus-veneris, and P. patens, different structures of
actin filaments associated with chloroplast movements were
observed in some plant species using different experimental
procedures (Kadota and Wada, 1989; Kandasamy and Meagher,
1999; Kumatani et al., 2006; Anielska-Mazur et al., 2009).
Thus, we need to observe dynamics of actin filaments in
various species using the same procedure in which cp-actin
filaments were examined in A. thaliana. Nevertheless, the
conservation of CHUP1 and KAC in streptophytes suggests
that chloroplast movement in charophyte algae such as
Klebsormidium, Mougeotia, and Mesotaenium might be regulated
by cp-actin filaments. In Mougeotia cells fixed after irradiation
with strong white light, short actin filaments have been observed
at the leading edge of the moving chloroplast (Mineyuki
et al., 1995), implying the presence of cp-actin filaments in
Mougeotia. Further exploration of genetic model systems in
charophyte algae will be required to elucidate the conservation
across Streptophyta of the motility system for chloroplast
photorelocation movement.
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