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Wild emmer wheat (Triticum turgidum ssp. dicoccoides) is considered a promising

source for improving stress resistances in domesticated wheat. Here we explored

the potential of selected quantitative trait loci (QTLs) from wild emmer wheat,

introgressed via marker-assisted selection, to enhance drought resistance in elite

durum (T. turgidum ssp. durum) and bread (T. aestivum) wheat cultivars. The resultant

near-isogenic lines (BC3F3 and BC3F4) were genotyped using SNP array to confirm

the introgressed genomic regions and evaluated in two consecutive years under

well-watered (690–710mm) and water-limited (290–320mm) conditions. Three of the

introgressed QTLs were successfully validated, two in the background of durum wheat

cv. Uzan (on chromosomes 1BL and 2BS), and one in the background of bread wheat

cvs. Bar Nir and Zahir (chromosome 7AS). In most cases, the QTL x environment

interaction was validated in terms of improved grain yield and biomass—specifically

under drought (7AS QTL in cv. Bar Nir background), under both treatments (2BS

QTL), and a greater stability across treatments (1BL QTL). The results provide a first

demonstration that introgression of wild emmer QTL alleles can enhance productivity and

yield stability across environments in domesticated wheat, thereby enriching the modern

gene pool with essential diversity for the improvement of drought resistance.

Keywords: interspecific introgression, marker-assisted selection, near-isogenic line, Triticum turgidum ssp.

dicoccoides, quantitative trait locus, water stress, wheat, yield

INTRODUCTION

Wheat (Triticum spp.) is one of the world’s major food sources, providing about 20% of the calories
consumed by mankind (FAO, 2011). The germplasm of semi-dwarf spring habit bread wheat,
distributed by the International Maize andWheat Improvement Center (CIMMYT) from the early

Abbreviations: Chr., chromosome; CL, culm length; DP–H, days from planting to heading; G/Sp, grain number per spike;

GY, grain yield; HI, harvest index; NIC, near-isogenic control; NIL, near-isogenic line; OA, osmotic adjustment; OP, osmotic

potential; PCA, principal component analysis; QTL, quantitative trait loci; S, drought susceptibility index; SNP, single

nucleotide polymorphism; Sp/P, fertile spikes per plan; SSR, single sequence repeat; TGW, thousand grain weight; TotDM,

total dry matter; WL, water-limited; WW, well-watered.
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1960s to late 1980s along with advanced agronomic practices,
led to substantial and rapid advances in yield (Fischer et al.,
1998). This genetic improvement was mainly associated with an
increased harvest index (HI) and a shift toward photoperiod-
insensitivity rather than increased total biomass (Sayre et al.,
1997; Ortiz et al., 2008). However, recent reviews suggest that
the rate of yield progress in spring wheat has been slowing down
for the last three decades (Fischer and Edmeades, 2010; Challinor
et al., 2014; Curtis and Halford, 2014).

Drought, the major stress factor limiting crop productivity
worldwide (Boyer, 1982; Araus et al., 2008), is expected to
increase due to global climate change (Wheeler and Von
Braun, 2013). Developing crop cultivars with improved drought
resistance is considered a sustainable and an economically viable
approach to enhance crop productivity and ensure food security
for the growing human population. Past efforts to develop
drought-resistant crop cultivars by traditional breeding were
hampered by low heritability of traits such as yield, particularly
under drought, and by large “genotype × environment”
interactions (Blum, 1988; Passioura, 2012; Langridge and
Reynolds, 2015). However, recent advances in molecular and
genomic tools have enabled the identification of quantitative trait
loci (QTLs) and diagnostic DNA markers in a wide range of
crops, with the promise of accelerating crop improvement toward
future challenges (Salvi and Tuberosa, 2015).

The available genetic diversity in crop plants has been
considerably eroded compared with their wild ancestors, due to
bottlenecks imposed by plant domestication (e.g., founder effect)
and modern breeding (Tanksley andMcCouch, 1997; Ladizinsky,
1998), thusmaking current crop germplasm vulnerable to various
biotic and abiotic stresses. Therefore, amajor objective ofmodern
breeding is to enrich the domesticated gene pool by reintroducing
valuable wild alleles that were “left behind” (Aaronsohn, 1910;
Tanksley and McCouch, 1997; Gur and Zamir, 2004).

Wild emmer wheat, Triticum turgidum ssp. dicoccoides
[Körn.] Thell., is the tetraploid (2n = 4x = 28; genome BBAA)
progenitor of the domesticated tetraploid (2n= 4x= 28; BBAA)
durum wheat [T. turgidum ssp. durum (Desf.) MacKey] and
hexaploid (2n = 6x = 42; BBAADD) bread wheat (T. aestivum
L.; Feldman, 2001). Wild emmer wheat evolved in the Near
Eastern Fertile Crescent under a wide range of ecogeographical
conditions (Peleg et al., 2005, 2008a) and harbors rich allelic
diversity for numerous important traits, including agronomic
characteristics, grain quality and resistance to biotic and abiotic
stresses (Peng et al., 2012 and references therein). A large
number of genes and QTLs that are valuable for wheat
improvement have been identified in the wild emmer gene
pool and mapped (Xie and Nevo, 2008). However, this gene
pool has not been widely exploited in wheat breeding (Jaradat,
2011), possibly due to the complexity and long duration of gene
introgression from wild germplasm. Marker-assisted selection
has been shown effective for the introgression of favorable
genes/QTLs, conferring primarily disease resistances (reviewed
by Peng et al., 2012) from wild emmer wheat to domesticated
germplasm. Marker assisted selection has also been used to
transfer genes/QTLs conferring several agronomic traits to the
domesticated gene pool, including Na+ exclusion (Munns et al.,

2012), plant height (Lanning et al., 2012), tillering (Moeller et al.,
2014), spike branching (Zhang et al., 2012), epicuticular wax
(Miura et al., 2002), heading time (Tanio and Kato, 2007), and
kernel hardness (Lesage et al., 2012). Nevertheless, we are not
aware of any prior report on the transfer of genes/QTLs for grain
yield (GY) or drought resistance in wheat from either wild or
domesticated donor lines.

The potential of wild emmer wheat for improving drought
resistance in domesticated wheat has been explored in previous
studies in our lab. A wide collection of wild emmer wheat
populations, originating from across an aridity gradient in Israel,
revealed extensive genetic diversity for drought responses in
terms of productivity and related drought-adaptive traits (Peleg
et al., 2005), as well as high DNA polymorphism (Peleg et al.,
2008a). A considerable number of wild accessions exhibited
superior performance under drought as compared to durum
wheat control cultivars. The greatest allelic diversity and highest
drought-resistance potential were observed in wild emmer
populations from intermediate aridity levels exposed to the
widest climatic fluctuations. Subsequently, a recombinant inbred
line population derived from a cross between durum wheat (cv.
Langdon) and wild emmer (acc. G18-16) was used to map QTLs
conferring drought resistance and related traits (Peleg et al.,
2009). Out of 110mapped QTL, in 58 QTLs the wild emmer allele
showed an advantage over the domesticated one. Several QTLs
interacted with the environmental conditions and accounted for
productivity and related traits under either drought treatment (20
QTLs) or a well-watered control treatment (15 QTLs), or in terms
of drought-susceptibility index (S) (22 QTLs).

In the current study, we examined the hypothesis that
introgression of selected genomic regions from wild emmer
wheat can enhance drought resistance in modern durum and
bread wheat cultivars. Our result provide the first evidence that
introgression of QTL alleles fromwild emmer wheat can enhance
productivity and drought resistance in domesticated wheat.

MATERIALS AND METHODS

Development of Near-Isogenic Lines
A marker-assisted backcross program (Figure S1) was employed
for the introgression of the target regions into elite Israeli durum
wheat (cvs. Inbar and Uzan) and bread wheat (cvs. Bar Nir
and Zahir). Genomic regions in which the wild QTL alleles
showed an advantage over the domesticated alleles in plant
productivity, particularly under drought, or in susceptibility
indices, were selected based on a previous mapping study (Peleg
et al., 2009) for introgression. No significant two-locus epistasis
was found between any of the QTLs controlling any of the
mapped traits. Marker-assisted backcrossing was based on SSR
markers flanking and within each of the target QTL regions
(Table 1). In cases where markers were not polymorphic between
the recurrent parent and the wild donor or in cases of DArT
markers, additional SSR markers were selected from our map
(Peleg et al., 2008b) or from other published maps (Somers
et al., 2004; Zhang et al., 2008) and integrated into our target
region using genetic mapping package MultiPoint (MultiQTL
Ltd. Haifa, Israel). The length of the target regions varied from 41
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TABLE 1 | Drought-related QTL regions targeted for introgression from wild emmer wheat acc. G18-16 into bread and durum wheat cultivars, SSR

markers used for selection, and recurrent backgrounds of the introgression lines.

Chromosome and flanking markers (cM) Details of target regiona Markers used for selectionc Recurrent backgrounds

QTLb LOD PEV

Chr.1BL Xgwm18 (74.0), Xgwm806 (130.7) GY-S 3.3 9.9 Xgwm18 (74.0), Xgwm748(107), Xgwm806 (130.7) Inbar, Uzan

Chr.2BS XwPt-8097 (38.4), XwPt-6576 (81.9) GY 11.9 13.1 Xgwm1128 (24.8), Xwmc35 (64.6), Xgwm1177 (78.9) Inbar, Uzan

HI 19.4 12.8

Chr.7AS Xgwm60 (0), XtPt-1755 (46) SpDM-d 4.4 7.3 Xgwm60 (0), Xwmc422 (51.0) / Xwmc596 (48.0)d BarNir, Zahir, Inbar

TotDM-d 3.3 9.0

Chr.7BS (XwPt-8920 (0), Xgwm537 (40.7) GY-d 8.6 12.7 Xgwm569 (0), Xgwm537 (61.12) Inbar

SpDM 9.0 12.5

HI 14.1 22.4

aTarget region locations, QTLs, Log of likelihood (LOD) and percent of variation explained (PEV) are based on Peleg et al. (2009).
bQTLs conferred grain yield (GY), harvest index (HI), spike dry matter (SpDM) and total dry matter (TotDM) under drought (−d), as a susceptibility index (−S), or across the two treatments

(no letter appended).
cSSR markers selected from our map (Peleg et al., 2008b) or from other published maps (Somers et al., 2004; Zhang et al., 2008) were used for selection.
dMarker Xwmc422 was not polymorphic between the wild donor and cv. Zahir, Xwmc596 was used as replacement.

to 57 cM, whereas the flanking markers used for selection were
48–61 cM apart. Extraction of genomic DNA was based on Doyle
and Doyle (1990). PCR amplification of SSR markers followed
Peleg et al. (2008b), fragment analysis was conducted using
an automated sequencer (3130XL, Applied Biosystems, Foster
City, CA) and analyzed with Peak Scanner Software version 2.1
(Applied Biosystems).

For the development of near-isogenic lines (NILs), selected
recombinant inbred lines containing wild donor (G18-16) alleles
in the target regions with ∼50% domesticated backgrounds
(cv. Langdon) were crossed as female parents with the
recurrent cultivars (Figure S1). The resultant F1 plants were
subsequently backcrossed as male parents with the recurrent
cultivars as females to restore the recurrent cytoplasmic genomes.
BC1F1 (and subsequently BC2F1) plants with heterozygous
genotype in the target regions were selected by SSR markers
and then backcrossed as female lines with the recurrent
parent to produce BC3F1 plants, expected to contain ∼6%
of the donor recombinant inbred line chromatin (∼3% wild
chromatin). BC3F1 with heterozygous genotype in the target
regions were self-fertilized to produce BC3F2 progenies from
which homozygous genotypes for the wild allele were selected
using molecular markers and selfed to produce BC3F3 NILs.
In addition, BC3F2 progenies homozygous for the recurrent
parent alleles in the target region were selfed to obtain near-
isogenic controls (NICs). The developed lines were designated
as: NIL/NIC-P-Chr-#, where P is the first letter of the recurrent
parent’s name (B, I, U, or Z), Chr is the chromosome containing
the introgression, and # is the line number.

Finally, the parental lines and most NILs and NICs
were genotyped using the 15K array (TraitGenetics GmbH,
Gatersleben, Germany) containing ∼13,000 markers that have
been selected from the wheat 90K array (Wang et al.,
2014). The genotypes of our lines were aligned with the
recently published high density tetraploid wheat consensus map
integrating SSR, DArT, and SNP markers (Maccaferri et al.,
2015).

Growth Conditions
The resultant NILs and NICs, as well as their recurrent parents,
the wild donor line (G18-16) and domesticated parent of the
mapping population (cv. Langdon), were evaluated for their
drought responses during the winters of 2012–13 (Year 1, BC3F3)
and 2013–14 (Year 2, BC3F4). Most of the genotypes were
examined across the two years, excluding a few that were available
and tested only in Year 2. Seeds were placed in moist germination
paper for two weeks in a dark cold room (4◦C), followed by 3
days acclimation at room temperature (22◦C). The seedlings were
then transplanted into an insect-proof screen house protected
by a polyethylene top at the experimental farm of The Hebrew
University of Jerusalem in Rehovot, Israel (31◦54′N, 34◦47′E;
54m above sea level). The soil at this location is brown-red
degrading sandy loam (Rhodoxeralf), composed of 76% sand,
8% silt, and 16% clay (w/w). A split-plot factorial (genotype x
irrigation regime) block design with five replicates was employed;
each block consisted of two main plots (for the two irrigation
regimes), splited into subplots for genotypes. Each subplot
consisted of a single row, with five plants, 10 cm apart (50-cm
long plots). Two 40-cm spaced rows were planted on each bed,
with 100 cm between each pair of rows. The field was treated with
fungicides and pesticides as needed, and was weeded manually
once a week. Two irrigation regimes were applied via a drip
system: well-watered control (WW) and water-limited (WL). To
mimic the natural pattern of rainfall in the easternMediterranean
region, water was applied during the winter months starting from
planting (23 December 2012 and 19 December 2013 for Years
1 and 2, respectively) and ending in early spring (31 March
2013 and 23 March 2014, respectively) for the WL treatment,
or later (28 Apr 2013 and 20 Apr 2014, respectively) for the
WW treatment. The WW treatment was irrigated twice a week,
whereas the WL treatment was irrigated twice every other week.
The total seasonal water application was 710 and 670 mm for
the WW treatment, and 360 and 290 mm for the WL treatment,
in Years 1 and 2, respectively. Weekly average temperatures in
the screen house varied between a minimum of 4–18◦C and a
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maximum 24–47◦C (Figure 1). The number of hot days (>40◦C)
recorded in Year 1 was 12 with the first occurrence in March, and
23 in Year 2 with first occurrence in January.

Phenotypic Measurements
Heading time, defined as the date at which the first spike of 50%
of the plants in a plot was fully exposed, was recorded based
on daily inspection and used to calculate days from planting to
heading (DP–H). Culm length (CL) was measured at maturity
from the soil surface to the base of the three first spikes per
plot. Osmotic potential (OP) was measured on 7 March and
16 February for Years 1 and 2, respectively. Flag-leaf blades
were sampled at dawn, placed in plastic tubes with their bases
dipped in distilled water and kept for 6 h in a dark cold room
(4◦C) for full rehydration. Leaves were removed from the water,
blotted with a paper towel, placed in plastic test tubes, frozen in
liquid nitrogen and kept at−18◦C until measurement. The leaves
were defrosted, the tube was pierced with hot needle, placed
in a bigger test tube and centrifuged (15 min, 10,0000RPM)
to obtain leaf sap. OP of the leaf sap was assessed using a
vapor pressure osmometer (model 5520; Wescor Inc., Logan, UT,
USA). Osmotic adjustment (OA) was calculated as the difference
between OP in the individual WL plots and the genotypic mean
in the WW treatment (Blum, 1989). At full grain maturity, all
aboveground biomass was harvested; spikes were counted to
assess the number of fertile spikes per plant (Sp/P), separated
from the vegetative organs (stems and leaves), and both were
oven-dried (80◦C or 38◦C for 48 h for vegetative organs and
spikes, respectively) and weighed. Spike dry matter and total
dry matter (TotDM) were determined. Samples (20 and 40 g for
Years 1 and 2, respectively) of spikes from each plot were then
threshed and used to calculate grain yield (GY), harvest index
(HI=GY/TotDM), grain number per spike (G/Sp) and thousand
grain weight (TGW).

Statistical Analyses
Drought susceptibility index (S) was calculated for TotDM
and GY according to Fischer and Maurer (1978) as: S =

(1−YWL/YWW)/(1−XWL/XWW), where YWL and YWW are the

FIGURE 1 | Average weekly minimum and maximum temperatures

measured in the screen house in Year 1 and Year 2.

mean performances of a specific genotype under the respective
treatments, and XWL and XWW are the mean performances of all
genotypes under those treatments.

The JMP version 7.0 statistical package (SAS Institute, Cary,
NC, USA) was used for statistical analyses. A factorial model
was employed for the analysis of variance (ANOVA), conducted
separately for each recurrent parent and its derivative lines, with
blocks as random effects and irrigation regime and genotype as
fixed effects. Mean values of each NIL were compared with those
of its recurrent parent and NIC (where available). The wild donor
line (G18-16) and the mapping population domesticated parent
(cv. Langdon) were presented as references without a statistical
analyses.

The associations among the traits reflecting productivity and
drought responses were examined using correlation analyses
and principal component analysis (PCA). Two components
were extracted using eigenvalues >1 to ensure meaningful
implementation of the data by each factor.

Heritability estimates (h2) were calculated for each trait under
each irrigation treatment using a linear regression coefficient (b)
between BC3F3 (Year 1) and their BC3F4 progenies (Year 2)
(Cahaner and Hillel, 1980).

RESULTS

Main Effects of Genotypes, Water
Regimes, and Years
Four genomic regions (Table 1) were successfully introgressed
(out of six initially targeted regions), three of them into one
or two durum genetic backgrounds and one into two bread
wheat and one durum background, resulting in a total of eight
target x background combinations, with two to four sister NILs
per combination. Out of the ∼13,000 SNP markers used to
genotype the introgression lines and their parents, 7880 markers
were aligned with the two sub-genomes of the high density
tetraploid wheat consensus map (Maccaferri et al., 2015). Out
of these, 4400–4800 (56–61%) SNPs exhibited polymorphism
between the donor parental lines (G18-16 and Langdon) and
their respective recurrent parent. In accordance with the expected
rate of donor chromatin (6%), between 3.3% and 9.5% of
polymorphic markers were identified as introgressed from
either G18-16 or Langdon, including the targeted genomic
regions. The results of the SNP genotyping provided a high
resolution confirmation for the introgressed genomic regions.
SNP genotyping of selected NILs, containing the 2BS QTL in
the background of durum wheat cv. Uzan and 7AS QTL in the
background of bread wheat cv. Bar Nir, as well as their respective
parental genotypes are presented in Table S1.

ANOVA carried out separately for each of the recurrent
cultivars and their derivative lines revealed highly significant
effects of genotype (G) and irrigation treatment (I) on most
traits in both years (Tables S2, S3). GxI interactions were only
significant in a few cases, at a lower significance levels than those
of the main effects. Potential plant productivity, averaged across
all genotypes under WW treatment, was 25.6 g for GY and 50.6 g
for TotDM in Year 1, and 17.9 and 38.5 g, respectively, in Year 2.
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The lower productivity in Year 2 presumably reflects the impact
of higher temperatures (Figure 1) and abundance of heat spells
in that year. The average GY and TotDM production under the
WL treatment was ∼51 and ∼50% of the WW control in Year 1
and Year 2, respectively, suggesting a similar magnitude of water
stress in both years.

Heritability estimates were calculated based on parent–
offspring correlation (between years) for durum and bread wheat
separately; about half of the estimates were found statistically
significant and varied between 0.53 and 0.99 (Table 2), indicating
a stable genotypic ranking across the 2 years. The highest
heritability estimates across the two treatments were obtained for
GY, TotDM, and DP–H in both bread and durum wheat.

Performance of NILs by Genetic
Background
The wild donor line (G18-16) exhibited TotDM similar to
the recurrent cultivars, ∼50% lower GY and 8–18 days later
heading (Table 3, Figure 2A), whereas domesticated parent of
the mapping population (cv. Langdon) exhibited about double
TotDM, similar GY and 24–34 days delayed heading compared
to the recurrent parents.

Bread Wheat cv. Bar Nir and Derivatives

NILs that carry the introgression from wild emmer on Chr 7AS
in the background of bread wheat cv. Bar Nir showed the most
promising results. NIL-B-7A-2 exhibited a significant advantage
(60%) consistently across the 2 years over the recurrent parent
for both GY and TotDM under the WL treatment (Table 3,
Figure 2B). Zooming in on yield components of NIL-B-7A-2
under drought showed an advantage over the recurrent parent
in Sp/P and G/Sp (Table S4, Figure 3) across the two years,
although it did not meet the common statistical threshold
(Table S4). Similar trends were observed in NIL-B-7A-1 and

TABLE 2 | Estimated heritability for the measured traits: total dry matter

(TotDM), grain yield (GY), harvest index (HI), spikes per plant (Sp/P), grains

per spike (G/Sp), thousand grain weight (TGW), days from planting to

heading (DP–H), culm length (CL), and osmotic potential (OP), for each

ploidy level under WW, well-watered; WL, water-limited treatments.

Trait Heritability estimates

Bread wheat (n = 7) Durum wheat (n = 17)

WW WL WW WL

GY 0.85* 0.99*** 0.45 0.72***

TotDM 0.92** 0.91** 0.64** 0.72**

HI 0.35 −0.39 0.56* 0.69**

Sp/P 0.88** 0.89** 0.42 0.44

G/Sp 0.50 0.68 0.17 0.61**

TGW 0.25 0.82* 0.81*** 0.53*

DP–H 0.80* 0.73 0.82*** 0.92***

CL 0.96*** 0.95** −0.14 0.10

OP 0.20 0.66 0.37 0.50*

*, **, ***P < 0.05, 0.0,1 and 0.001, respectively, for the calculated linear regression

coefficient (b).

NIL-B-7A-3 (the latter containing a partial introgression),
although in most cases they were not statistically significant.
NIC-B-7A-2, a sister line of NIL-B-7A-2, did not differ from
the recurrent parent, “Bar Nir,” thus supporting the assumption
that the superior performance of the latter (NIL-B-7A-2) is
governed by the introgressed region. The phenology (DP-H) of
these NILs and NIC was slightly and inconsistently modified
(significant; Table 3), whereas CL exhibited higher values in most
lines, with the exception of NIL-B-7A-3, which was similar to the
recurrent parent (Table S5). Interestingly, NIL-B-7A-2 exhibited
also a significantly lower OP under drought and greater OA, with
similar trends observed in NIL-B-7A-3.

Bread Wheat cv. Zahir and Derivatives

Three NILs were introgressed with the Chr 7AS target region
from wild emmer in the background of bread wheat cv. Zahir,
each containing a segment of the target region. NIL-Z-7A-5,
which was introgressed with the upper segment of the 7AS
target region, exhibited between 32 and 45% advantage over
the recurrent parent in GY and TotDM (significant for WW
and nearly significant for WL) coupled with 6–9 days delayed
DP-H, consistently across the two years (Table 3, Figure 2C).
NIL-Z-7A-2, also introgressed with the upper segment of the
7AS target region, as well as NIL-Z-7A-4, introgressed with the
lower segment, largely resembled the recurrent parent both in
productivity and phenology.

Durum Wheat cv. Inbar and Derivatives

Four target regions (on Chr 1BL, 2BS, 7AS, 7BS) were successfully
introgressed into the background of durum wheat cv. Inbar.
Nevertheless, none of these introgressions was associated with
improved productivity in the resultant NILs (Table 3). On the
contrary, in several cases, significantly lower productivity, in
terms of GY or TotDM, was recorded. Surprisingly, NIC-I-7A-
1, which according to the SNP genotyping contains a small
(8cM) unintentional introgression at the lower end of the 7AS
target region (and beyond), presented significantly higher GY
and TotDM in both years under WW conditions.

Among the three yield components studied, in most cases,
G/Sp was significantly reduced relative to the recurrent parent
(Table S4). Introgression of the Chr 1BL and 7BS QTLs induced
5- to 10-day earlier heading in the resultant NILs, as well as in
the respective NICs, albeit to a lesser extent (Table 3). The NILs
introgressed with Chr 2BS QTLs exhibited lower OP under the
WL treatments and greater OA capacity in Year 2.

Durum Wheat cv. Uzan and Derivatives

Two target regions (on Chr 1BL and 2BS) were successfully
introgressed into the background of durum wheat cv. Uzan, and
both showed significantly improved performance relative to the
recurrent parent (Table 3).

Among the NILs carrying the 1BL target region introgressed
in the background of cv. Uzan, NIL-U-1B-1 exhibited greater GY
and TotDM under drought and a lower S (greater stability across
environments) for both variables in Year 2, whereas NIL-U-1B-4
exhibited similar trends which were only significant for S values.
In these two lines, the improved GY in Year 2 was associated with
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FIGURE 2 | Photographs of typical experimental plots of mapping population parental lines (A), recurrent parents and their derivative NILs (B–D) in

Year 1 under the well-watered (WW) and water limited (WL) treatments.

greater Sp/P, G/Sp (Figure 3) and TGW, although these effects
were only significant in a few cases (Table S4). Compared to the
recurrent parent, heading time of NIL-U-1B-1 was delayed by∼6
days (averaged across the two years and treatments), whereas it
was not significantly delayed in NIL-U-1B-4 (Table 3). Both NILs
exhibited a slight increase in CL, which was significant in only a
couple of cases.

For the 2BS target region, three NILs were developed (NIL-U-
2B-1, 2, and 3), each containing a different segment of the target
(3, 2, and 1 markers, respectively), as well as one NIC. NIL-U-2B-
1, containing the entire target region (3 markers), consistently
exhibited the highest GY and TotDM among the three NILs
across years and treatments, accompanied by a 25 day-delayed
heading time (Table 3, Figure 2D), which makes it unsuitable for
meaningful comparison to the recurrent parent. The two other
NILs, tested only in Year 2, also exhibited improved productivity
across the two treatments without a major modification in their
phenology. NIC-U-2B-3, a sister line of NIL-U-2B-3 and also
related to the other two NILs, did not differ from the recurrent
parent, ‘Uzan,’ thus validating the effects of the introgressed QTL
region. All three NILs exhibited greater (and usually significant)
Sp/P and TGW compared to the recurrent parent (Table S4).

Association between Productivity and
Related Traits
The PCA analyses of the introgression lines and recurrent parents
(n = 25 and 32 in Years 1 and 2, respectively) extracted two
major principal components (eigenvalues >1) that accounted,

collectively between 58.7 and 63.5% of the variance for each
treatment x year combination (Figure 4). All four PCAs revealed
a fairly clear separation between the durum wheat genotypes (in
blue or green) and the bread wheat genotypes (in orange or red).
Under the WW treatment, PCAs exhibited similar trends across
years (Figures 4A,C); PC1 (X-axis) was positively loaded with
TotDM, GY, Sp/P, and DP–H, whereas PC2 (Y-axis) was loaded
with G/Sp and at the opposite direction with TGW and OP. In
contrast, under the WL treatment, mixed trends were observed
across years.

Correlation analyses of GY vs. yield components and
physiological traits were conducted separately for durum and
bread genotypes in each of the four environments. In most
cases, GY exhibited highly significant positive correlations with
both TotDM and Sp/P (Table 4) in agreement with the similar
directions of these traits’ vectors in all four PCAs (Figure 4).
Among the two other yield components, G/Sp correlated
positively with GY only in two cases in the durum genotypes,
whereas TGW did not show any significant correlation to GY.

DISCUSSION

QTL mapping is a widely accepted approach to dissect
quantitative traits into their single genetic determinants and
relating phenotypic differences to their genetic basis (Paterson,
1995; Tuberosa and Salvi, 2006; Collins et al., 2008). A large
number of QTL studies have been published in the last few
decades on various traits in crop plants, including wheat.
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FIGURE 3 | Three first spikes of the wild emmer wheat donor acc. G18-16 (articulated) the recurrent parents bread wheat Bar Nir and durum wheat Uzan and

their derivative NILs, grown under water-limited treatment, 2013-14.

TABLE 4 | Correlation of various traits with grain yield (GY) under the different treatments and years.

Trait Confidents of correlation with GY

Bread wheat Durum wheat

Year 1 (n = 7) Year 2 (n = 9) Year 1 (n = 17) Year 2 (n = 22)

WW WL WW WL WW WL WW WL

TotDM 0.99*** 0.98*** 0.81** 0.96*** 0.86*** 0.67 0.89*** 0.90***

HI −0.13 0.50 0.43 0.08 0.04 0.05 0.33 0.38

Sp/P 0.66 0.82* 0.68* 0.83** 0.74*** 0.57* 0.86*** 0.92***

G/Sp 0.63 0.70 −0.03 0.22 0.51* 0.32 0.37 0.60**

TGW 0.20 −0.13 0.06 0.15 0.10 0.48 0.12 0.04

DP–H 0.43 0.30 0.05 0.66 0.29 0.47 0.46* 0.53*

CL 0.70 −0.14 −0.11 0.19 0.38 0.25 0.69*** 0.73***

OP −0.52 0.61 0.34 −0.57 −0.17 0.21 0.49* 0.55**

OA −0.27 −0.29 0.44 0.45 −0.15 −0.21 −0.15 −0.47*

*, **, ***P < 0.05, 0.01, and 0.001, respectively.

Nevertheless, the number of studies attempting to validate
mapped QTLs and explore their potential for crop breeding is
very small, particularly with respect to complex polygenic traits
such as yield and responses to abiotic-stresses (Cattivelli et al.,

2008; Levi et al., 2009; Salvi and Tuberosa, 2015). Therefore,
the current study provides a unique opportunity to evaluate the
potential of QTL introgression via marker assisted selection for
the improvement of such traits.
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FIGURE 4 | Principal component analysis (PCA) based on correlation matrix of traits: (TotDM), total dry matter; (GY), grain yield; (HI), harvest index;

(Sp/P), spikes per plant; (G/Sp), grains per spike; (TGW), thousand grain weight; (DP–H), days from planting to heading; (CL), culm length; fertile

spikes per plant, (OP), osmotic potential; recorded on 25 and 32 genotypes in Year 1 (A,B) and Year 2 (C,D), respectively, under well-watered (WW),

and water-limited (WL) irrigation regimes. Biplot vectors are trait factor loadings for PC1 and PC2. Each of the recurrent cultivar groups is colored differently (cv.

Inbar–blue, cv. Uzan–green, cv. Bar Nir–orange, cv. Zahir–red). Recurrent cultivars are indicated by open symbols.

Validation of the Introgressed QTL Alleles
The Chr 7AS target region, in which the wild allele conferred, in
our previous mapping study (Peleg et al., 2009), higher GY and
TotDM exclusively under WL conditions (inductive QTLs), was
introgressed into three genetic backgrounds. NILs introgressed
with this region in the background of durum wheat cv. Inbar
did not manifest improved productivity (Table 3). Nevertheless,
NIC-I-7A-1, containing a small unintentional introgression at
the lower end of the 7AS target region, exhibited improved
productivity in both years under WW conditions. This finding
suggests that cv Inbar can be improved by wild emmer allele
introgressions, which is however subjected toQTL× background
and G× E interactions.

In the background of bread wheat cv. Bar Nir, SNP genotyping
showed two separate introgressions within the Chr 7AS target
region (Table S1), which might have resulted from a double
recombination that was not identified due to absence of
central marker for selection. Nevrtheless, NILs introgressed
with this regions into the background of Bar Nir exhibited a

pronounced improvement in GY and TotDM production, which
was found to be significant only under WL treatment (Table 3,
Figure 2B), thus validating the QTL X environment interaction.
Introgression of the upper part of this genomic region into
the background of cv. Zahir (NIL-Z-7A-5) also improved
plant productivity, which was found to be significant under
WW treatment and somewhat below significance threshold
in WL treatment (Figure 2C). NIL-Z-7A-2, selected for the
same introgression did not exhibit such advantage, presumably
because of a modified introgression which was not traced (SNP
genotyping not available).

The 7AS genomic region seems to play a major role with
respect to productivity and stress responses in wheat. A large
number of studies, using a wide variety of genetic materials
and populations, have found a large number of QTLs for
numerous traits in the 7AS chromosome arm, including plant
productivity, yield components, phenology, morphology,
physiology and metabolites (Table S6 and references
therein).
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QTLs for drought (Quarrie et al., 2006; Bennett et al., 2012;
Hill et al., 2013) and salinity (Shavrukov et al., 2011) tolerance,
two related abiotic stresses (Munns, 2002), were also mapped
to the 7AS chromosome arm, thus expanding the scope of
this region for improving abiotic-stress resistance in wheat.
QTLs associated with several tricarboxylic acid (TCA) cycle
intermediates were mapped on 7AS (Hill et al., 2013). Modified
TCA-cycle intermediate levels have been associated with OA and
drought resistance in cotton (Gossypium spp.; Levi et al., 2011).
Thus, it is possible that a change in TCA intermediates (not
measured in the current study) contributed to the superior OA
found in NIL-B-7A-2 and 3 (Table S5).

QTLs for time to heading were previously mapped within
the chromosome 7AS target region as well as somewhat above
it (Maccaferri et al., 2014 and references therein). It is possible
that an introgression of such QTL(s) is responsible for the
later time to heading (higher DP-H) observed in several of
our 7AS NILs. Nevertheless, heading time of the NILs in the
backgrounds of Bar-Nir was only 2–4 days delayed, which enables
their comparison to the parental genotypes. Moreover, NIL-
B-7A-2 and NIC-B-7A-2 had the same DP-H and yet only
the NIL exhibited superior productivity under drought, thus
confirming the effect of the introgression regardless of the later
phenology.

The Chr 7BS target region, in which the wild allele conferred, in
our previousmapping study (Peleg et al., 2009), greater GY under
drought, higher spike dry matter and HI under both treatments,
was introgressed into the background of durum wheat cv. Inbar.
The respective NILs (NIL-I-7B-1 and NIL-I-7B-2) exhibited no
improvement in yield (Table 3), thus failing to validate the QTL
effect. Both NILs exhibited earlier DP-H than their recurrent
parent, validating the phenology QTLs mapped in this region by
Peleg et al. (2009).

The Chr 1BL target region, in which the wild allele conferred,
in our previous mapping study (Peleg et al., 2009), lower GY-S
(higher stability across environments), was introgressed into two
durum wheat backgrounds.

NILs introgressed with this QTL into the background of
durum cv. Inbar did not validate the expected phenotype. In
the background cv. Uzan, out of the four NILs introgressed
with the 1BL target region, two lines (NIL-U-1B-1 and NIL-U-
1B-4) exhibited remarkable stability across environments, thus
validating the QTL phenotype (Table 3). Moreover, under WL
conditions, these two NILs also presented higher productivity
in terms of GY and TotDM with no modification in plant
phenology, as compared to their recurrent parent, demonstrating
this QTL’s potential for enhancing wheat performance under
drought conditions in certain genetic contexts. This advantage
was associated with a greater number of Sp/P and G/Sp, while
maintaining a stable TGW (Table S4).

The Chr 2BS target region, in which the wild allele was
responsible for a higher GY and HI (Peleg et al., 2009), was
introgressed into two durum wheat backgrounds (Inbar and
Uzan).

In the background of durum cv. Inbar, no improvement in
GY or HI was recorded in most cases, whereas in a few cases,
significantly lower productivity was observed (Table 3).

In the background of durum wheat cv. Uzan, the set of
NILs introgressed with various segments of the 2BS QTL
region (Table S1) provide an opportunity to break down the
introgressed QTL. NIL-U-2B-1, containing the entire QTL
region, exhibited a pronounced advantage in productivity over
the parental cultivar (Table 3, Figure 2D), which may reflect the
considerably later heading date of the NIL. QTLs for phenology
(Hanocq et al., 2004; Maccaferri et al., 2008, 2010) as well as
the gene PPD-B1, responsible for a photoperiod-insensitivity
(Maccaferri et al., 2014) have been previously mapped in the 2BS
chromosome arm using various populations. Such QTLs were
not mapped in our previous study (Peleg et al., 2009), suggesting
the absence of polymorphism in the respective loci between the
two late-heading parental lines (Table 3), in contrast to the earlier
heading of the recurrent parent.

Interestingly, both NIL-U-2B-2 and NIL-U-2B-3, which do
not contain the wild allele in the upper part of the target
region, also exhibited superior performance over the recurrent
parent with a similar phenology (Tables 3). The superior yield
exhibited by NIL-U-2B-3, containing only the lowest part of the
target region, highlights this segment as the locus of interest.
The performance of the near-isogenic control (NIC-U-2B-3) was
similar to that of the parental genotype and inferior to the three
NILs (significant only for NIL-U-2B-1), thus further validating
the QTL effect.

The current study validated the Chr 2BS QTLs for GY and CL
which were mapped in the same population (Peleg et al., 2009),
in agreement with a published QTL for GY (Verma et al., 2004).
The respective NILs also exhibited greater TotDM and TGW,
the latter in agreement with a published QTL (Kumar et al.,
2006).

Environmental and Physiological
Considerations
Four genomic regions carrying QTLs conferring drought
resistance (Peleg et al., 2009) were introgressed from the wild
emmer wheat donor line into elite durum or bread wheat
cultivars. Three of these introgressions were validated in a specific
genetic background: two in the background of durum cultivar
Uzan, and the third in the backgrounds of two high-yielding
bread wheat cultivars. Moreover, in most of these cases, the
QTL X environment interaction (Peleg et al., 2009) was also
validated, i.e., an inductive effect specifically expressed under
drought for the 7AS QTL, a constitutive effect expressed under
both treatments for the 2BS QTL, and a greater stability across
the two treatments for the 1BL QTL. The phenotypic effects of
the QTL introgressions were usually consistent across the two
years, thus lending further support to the validation of the QTL
effects. In our previous mapping studies in cotton (Saranga et al.,
2001) and wheat (Peleg et al., 2009), partially different sets of
QTLs accounted for plant productivity under contrasting water
treatments (i.e., WW and WL), suggesting that adaptation to
both conditions can be combined in the same genotype. The
current validation of QTL X environment interaction reinforces
the importance of these results and their applicability. The
relatively high heritability estimates of TotDM and GY (Table 2)
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reflect a high degree of consistency between the two years and a
high potential for improvement through selection.

Among the three yield components recorded in our study,
Sp/P exhibited the highest correlation with GY consistently
across all years, treatments and ploidy levels (Table 4). Moreover,
NILs that exhibited an advantage in GY compared to their
recurrent parent (Tables 3) also exhibited higher Sp/P (although
not always significant, Table S4), a trait that seems to have
been contributed by wild donor acc. G18-16 (Figure 2A). An
optimal balance between sowing rates and plant tillering can be
achieved when using restricted tillering lines in a predictable
environment (Donald, 1968); however, results from the current
(Table 4) as well as other studies (Reynolds et al., 2000; Naruoka
et al., 2011) indicate that plasticity in terms of fertile Sp/P or
per area is a very important attribute for yield progress. Free-
tillering lines are better able to respond to the environment,
thus shaping yield components in accordance with dynamic
environmental cues such as precipitation, temperature, nutrient
availability and plant competition (Assuero and Tognetti, 2010;
Evers and Vos, 2013; Moeller et al., 2014). Therefore, higher
tillering capacity may be beneficial in semi-arid Mediterranean-
type environments, particularly under the projected increasingly
erratic climate conditions (Wheeler and Von Braun, 2013).

Prospects for Wheat Improvement
Empirical selection has largely improved drought adaptation
in wheat through earlier flowering, reduced plant height and
increased HI (Richards et al., 2010). Once the major genes
for these traits have been fixed in the modern germplasm
and exploited, there is a crucial need to identify and deploy
genes or alleles conferring genuine improvement of the plants’
physiological capacity to tolerate drought stress (Curtis and
Halford, 2014; Lopes et al., 2014). Harnessing QTL alleles from
wild relatives is essential for enhancing drought tolerance and
other important traits (Tuberosa and Salvi, 2006). Nevertheless,
most mapping studies utilize domesticated materials, while there
has been hardly any attempt to map QTLs originated from wild
germplasm (e.g., Table S6 and references therein). Therefore,
the current study provides a unique opportunity to identify and
reintroduce genes or alleles that were “left behind” during crop
domestication and breeding, thereby enriching the modern gene
pool with essential allelic diversity.

Tuberosa and Salvi (2006) argued that a major pitfall of most
QTL studies lies in the selection of parental lines based on
differences in target traits, rather than on their overall agronomic
value. High drought resistance and water-use efficiency are
often associated with reduced yield potential (Blum, 2009), and
therefore selection of parental lines based mainly on the former
criteria can lead to a mapping population that is characterized
by poor productivity. A different approach was employed in our
previous study (Peleg et al., 2005), in which we identified seven
wild emmer natural populations with the greatest potential for
wheat improvement based on a combination of high productivity
and low susceptibility. One of these populations, included acc.
G18-16, the parental line of ourmapping study (Peleg et al., 2009)
and the donor of the current introgression study. The use of a
high-yielding cultivar (Langdon, Figure 2A) as the domesticated

parent possibly eliminated from our genetic map QTL alleles
for yield potential that are already available in the domesticated
gene pool (that could have been identified with a less productive
domesticated parent), thus highlighting the most beneficial wild
alleles. Finally, the QTLs targeted for introgression in this work
were chosen specifically for improvement of production capacity
particularly under drought and for their stability across water
availabilities, a strategy that proved successful across the two
experiments in this study.

The current introgression lines were developed based on our
previous mapping study, in which a total of 152 recombinant
inbred lines were genotyped by a set of 690 SSR and DArT
markers (Peleg et al., 2009), yielding a relatively low resolution
QTL map. As a result, relatively large genomic regions were
targeted for introgression. These large chromosomal segments
contain hundreds of genes, many of which may have negative
effects on the performance of the resultant lines, on their own or
in interaction with either other genes or environmental factors
(Salvi and Tuberosa, 2015). It is possible that the NILs that
failed to validate the QTL effects in all or specific backgrounds
reflected such negative effects. Moreover, elite cultivars present
an optimal balance between all plant systems and gene networks,
which might have been interrupted by such large introgressions.
Modern high-throughput genotyping (e.g., SNP marker chips)
and phenotyping (e.g., remote sensing) technologies, which have
recently become more readily available and affordable, enable the
use of large plant populations with thousands of genetic markers,
and are thus expected to improve map resolution and enable
more focused introgression studies, paving the way to a better
exploration of genetic resources.

The introgression of favorable traits from wild relatives was
recognized as a potential pathway for wheat improvement long
ago (Aaronsohn, 1910). Nevertheless, a recent genome-wide
diversity study of landraces and modern cultivars of hexaploid
wheat suggests that past efforts have not notably altered the
genetic composition of elite cultivars (Cavanagh et al., 2013).
It was also noted that the contribution of advanced genomics-
assisted technologies to develop drought-resistant cultivars has
been limited so far (Tuberosa and Salvi, 2006; Salvi and Tuberosa,
2015).

CONCLUDING REMARKS

The current study provides first evidence that introgression
of ancestral QTL alleles from wild emmer wheat can enhance
productivity and drought resistance in domesticated wheat.
A number of NILs exhibited significant advantage over their
recurrent parents under the test environment, i.e., drip irrigated
small plots in a rain protected facility. However, under
commercial open field conditions competition and genotype
x environment interactions might affect plant performances.
Preliminary results from an ongoing study suggest that selected
NILs maintain their advantage over the parental genotypes also
in larger field plots, though to a smaller extent. Other current
studies in our lab deal with physiological mechanisms underlying
drought responses in selected NILs and fine mapping of selected
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genomic regions. The novel results obtained thus far and the
findings of our current studies may pave the way to improving
wheat productivity in arid regions, thereby enhancing global food
security under climate change toward increasing aridity.
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Figure S1 | Pedigree of the developed near-isogenic lines and

near-isogenic controls. G and P designate the wild and domesticated alleles at

the target region. Genotypes indicated by strikeout line were excluded from the

backcross program.

Table S1 | SNP genotyping of selected NILs, NICs and parental lines for

chromosomes 7A and 2B, aligned with the high density tetraploid wheat

consensus map (Maccaferri et al., 2015, Table S2). Yellow highlighted cells

indicate the target genomic regions (columns A & R) and the estimated

introgressed segments (columns M-P & AD-AG); markers used for selection or

alternative co-located markers are highlighted in Red . (1) A, G, C, and T indicate

the respective nucleotides; (2) G, L, P, and NP indicate wild donor G18-16,

Langdon and recurrent parent alleles, or non-polymorphic SNP,

respectively.

Table S2 | Analysis of variance for total dry matter (TotDM), grain yield

(GY), their susceptibility (TotDM-s and GY-s), days from planting to

heading (DP–H), spike number per plant (Sp/P), grain number per spike

(G/Sp), 1000 grain weight (TGW), harvest index (HI), culm length (CL),

osmotic potential (OP), and osmotic adjustment (OA) in the 2012–13

experiment (Year 1). In parentheses, degrees of freedom for S and OA values.

Table S3 | Analysis of variance for total dry matter (TotDM), grain yield

(GY), their susceptibility (TotDM-s and GY-s), days from planting to

heading (DP–H), spike number per plant (Sp/P), grain number per spike

(G/Sp), 1000 grain weight (TGW), harvest index (HI), culm length (CL),

osmotic potential (OP) and osmotic adjustment (OA) in the 2013–14

experiment (Year 2). In parentheses, degrees of freedom for S and OA

values.

Table S4 | Spike per plant (Sp/P), grains per spike (G/Sp) and 1000 grain

weight (TGW) under the well-watered (WW) and water-limited (WL)

treatments in Year 1 and Year 2.

Table S5 | Harvest index (HI), culm length (CL) and osmotic potential (OP)

under the well-watered (WW) and water-limited (WL) treatments, and

calculated osmotic adjustment (OA) in Year 1 and Year 2.

Table S6 | Summary of published QTLs or genes for productivity and

drought-related traits, mapped to chromosome 7AS in durum and bread

wheat: GY, grain yield; Sp/P, spikes per plant; TGW, 1000 grain weight;

DP–H, days from planting to heading; WW, well-watered; WL,

water-limited.
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