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The genus Alyssum (Brassicaceae) contains Ni hyperaccumulators (50), many of which

can achieve 30 g kg−1 Ni in dry leaf. Some Alyssum hyperaccumulators are viable

candidates for commercial Ni phytoremediation and phytomining technologies. It is not

known whether these species secrete organic and/or amino acids into the rhizosphere

to solubilize Ni, or can make use of such acids within the soil to facilitate uptake.

It has been hypothesized that in fields with mixed plant species, mobilization of

metals by phytosiderophores secreted by Graminaceae plants could affect Alyssum

Ni, Fe, Cu, and Mn uptake. We co-cropped the Ni hyperaccumulator Alyssum murale,

non-hyperaccumulator A. montanum and perennial ryegrass in a natural serpentine

soil. All treatments had standard inorganic fertilization required for ryegrass growth

and one treatment was compost amended. After 4 months A. murale leaves and

stems contained 3600mg kg−1 Ni which did not differ significantly with co-cropping.

Overall Ni and Mn concentrations were significantly higher in A. murale than in A.

montanum or L. perenne. Copper was not accumulated by either Alyssum species, but L.

perenne accumulated up to 10mg kg−1. A. montanum could not compete with either A.

murale or ryegrass, and neither Alyssum species survived in the compost-amended soil.

Co-cropping with ryegrass reduced Fe and Mn concentrations in A. murale but not to

the extent of either increasing Ni uptake or affecting plant nutrition. The hypothesized

Alyssum Ni accumulation in response to phytosiderophores secreted by co-cropped

grass did not occur. Our data do not support increased mobilization of Mn by a

phytosiderophore mechanism either, but the converse: mobilization of Mn by the Alyssum

hyperaccumulator species significantly increased Mn levels in L. perenne. Tilling soil

to maximize root penetration, adequate inorganic fertilization and appropriate plant

densities are more important for developing efficient phytoremediation and phytomining

approaches.

Keywords: Alyssummurale, Lolium perenne, nickel hyperaccumulators, ryegrass, co-cropping, phytoremediation,
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INTRODUCTION

More than 400 plant species are known to naturally accumulate
high levels of metals such as Cd, Cu, Co, Mn, Ni, and
Zn (Baker et al., 2010; Krämer, 2010; van der Ent et al.,
2013). The genus Alyssum (Brassicaceae) contains the greatest
number of reported Ni hyperaccumulators (50), many of
which can achieve 30 g kg−1 Ni in dry leaf biomass (Baker
and Brooks, 1989; Reeves and Adigüzel, 2008; van der Ent
et al., 2015). Previously we have demonstrated commercially
feasible phytoremediation and phytomining technologies that
can potentially clean up Ni-contaminated soils and recover
high purity Ni metal (Chaney et al., 1999, 2010; Li et al.,
2003a,b; Nkrumah et al., 2016). The technology employs the
Ni-hyperaccumulating species Alyssum murale and A. corsicum
to phytoextract Ni from a range of Ni-rich soil types. A.
murale and A. corsicum are endemic to serpentine soils
developed from ultramafic rock throughout Mediterranean
Southern Europe.

Ni localization patterns have been determined for 10 Alyssum
Ni hyperaccumulator species/ecotypes (Krämer et al., 1997;
Psaras et al., 2000; Küpper et al., 2001; Kerkeb and Krämer, 2003;
Marmiroli et al., 2004; Broadhurst et al., 2004a,b, 2009; McNear
et al., 2005; Asemaneh et al., 2006; Tappero et al., 2007). Nickel
is stored mainly in the leaves, and is particularly concentrated
in in vacuoles of epidermal cells and trichome pedicels. Alyssum
hyperaccumulators also accumulate appreciable Mn in the same
locations that contain Ni (Broadhurst et al., 2004b, 2009).

Although Ni hyperaccumulation is a constitutive property
for these Alyssum species, it is not known whether they secrete
organic and/or amino acids into the rhizosphere to solubilize Ni,
or can make use of such acids within the soil to greatly facilitate
uptake. Other than rhizobiome interactions, there is essentially
no evidence for unusual ligand species or highly elevated ligand
concentrations associated with Ni in Alyssum (McNear et al.,
2010; Centofanti et al., 2013). There is evidence that rhizosphere
bacteria endemic to serpentine soils may stimulate Ni uptake and
this may be an important factor explaining why field trials and
native vegetation consistently outperform pot and hydroponic
studies with respect to phytoextraction yields (Abou-Shanab
et al., 2003, 2007; Rajkumar et al., 2009, 2013; Cabello-Conejo
et al., 2014; Visioli et al., 2015). Two serpentine-endemic bacteria
in particular (Microbacterium arabinogalactanolyticum and M.
oxydans) were shown to strongly increase Ni accumulation in
A. murale (Abou-Shanab et al., 2003, 2007). Similarly, endemic
Arthrobacter sp. increased Ni uptake in A. pintodasilvae and A.
serpyllifolium (Cabello-Conejo et al., 2014).

Cd/Zn hyperaccumulators have not shown evidence for
specialized ligand secretion into the rhizosphere either (Zhao
et al., 2001; Whiting et al., 2001a; Sterckeman et al., 2005; Wang
et al., 2006). Specifically, root exudates collected from the Cd/Zn
hyperaccumulator Noccaea caerulescens F.K. Mey (Brassicaceae)
(syn. Thlaspi caerulescens J &C Presl) did not mobilize Cd, Cu,
Fe, or Zn (Zhao et al., 2001). Further, Cd/Zn hyperaccumulators
may not take advantage of potential phytosiderophore-related
improvements in metal solubilization provided by intercropping
with Graminaceae.

The grass family of plants differs from all other plant
families by using a different mechanism of absorbing Fe from
soils. All other species use a combination of acidification of
the rhizosphere and reduction of ferric to ferrous coupled
with absorption of ferrous ion. Instead, Graminaceae use a
combination of chelating amino acids, the phytosiderophores
of the mugineic acid family of compounds, for specific uptake
of intact Fe–phytosiderophore chelates. It is known that
phytosiderophores are not highly specific to Fe and can increase
mobilization and possibly support uptake of Zn, Mn, Ni, Cu,
and Cd as well (Zhang et al., 1991a,b; Marschner and Römheld,
1994; Awad and Römheld, 2000). Intercropping peanut (Arachis
hypogaea L.), for example, with maize, oats, barley or wheat
significantly increased Fe, Cu, and Zn uptake to the extent that Fe
deficiency in peanut could be mitigated (Zuo and Zhang, 2011).

Previous results from co-cropping hyperaccumulators and
grasses are mixed. N. caerulescens had no increase in Cd or Zn
concentration when grown in the same pot with ryegrass (Lolium
perenne L.), but yield was almost doubled in an experiment
where plants were grown with sufficient time and soil volume to
establish potential rhizosphere interactions with or without root
mingling (Jiang et al., 2010). It was determined that the ryegrass
did not solubilize Cd and Zn, however Fe was not discussed. The
improved yield could be at least partially due to improved Fe
availability. Increased P availability from arbuscular mycorrhizal
fungi which are known to colonize Graminaceae including
ryegrass (Grimold et al., 2005) is another factor which could
significantly affect yield since many of the metalliferous soils that
hyperaccumulators are native to are P deficient. However, co-
planting the Cd/Zn hyperaccumulator Sedum alfredii (Hance)
with ryegrass reduced both S. alfredii yield and Cd uptake (Wang
et al., 2013). Co-planting with corn improved S. alfredii yield
by providing shade but did not increase Cd uptake. Cd and Zn
uptake by corn was unaltered by co-cropping and corn did not
suffer phytotoxicity (Wu et al., 2007).

Co-cropping barley (Hordeum vulgare L.) and N. caerulescens
in multiple metal-rich soils from a biosolids management facility
showed little evidence for interaction between plants other than
a slight increase in Cd, Cu, Ni, Zn in co-cropped pots with root
interaction vs. N. caerulescens alone, but this probably reflected
simple depletion of metals in the relatively small soil volume
utilized, and not a specific phytosiderophore mechanism (Gove
et al., 2002). Again, Fe was not considered in the experiment.
Both Gove et al. (2002) and Jiang et al. (2010) observed an
increase in ryegrass Cd but not Zn concentrations when grown
with N. caerulescens. Similarly, Whiting et al. (2001a) showed
no interaction between N. caerulescens and Festuca rubra L. with
respect to Zn levels or yield.

Improved growth and reduced Zn uptake by the non-
hyperaccumulator Thlaspi arvense L. was reported when T.
arvense and T. caerulescens were grown together in pots that
allowed root intermingling. Zinc salts were added to the soils at
a level that was phytotoxic to T. arvense. Zn hyperaccumulation
by T. caerulescenswas not affected, however yield increased when
root intermingling was allowed, leading to the conclusion that
this system could facilitate revegetation of contaminated soils
(Whiting et al., 2001b).

Frontiers in Plant Science | www.frontiersin.org 2 April 2016 | Volume 7 | Article 451

http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive


Broadhurst and Chaney Metal Accuumulation in Co-cropped Alyssum and Lolium

Herein we report a co-cropping experiment with Alyssum
hyperaccumulator and non-hyperaccumulator species and
perennial ryegrass in a natural serpentine soil. The soil is
infertile and high in Ni, but is not Ni phytotoxic (Zhang
et al., 2007) and supports native vegetation. Soils such as
this are candidates for Ni phytomining (Chaney et al., 2010;
Nkrumah et al., 2016). We tested whether ryegrass facilitates
Ni, Fe, and Mn uptake by Alyssum, whether co-cropping
with ryegrass affects Alyssum yield, and whether Alyssum
hyperaccumulator and non-hyperaccumulator species can
benefit from co-cropping.

MATERIALS AND METHODS

Horticulture
A. murale (Waldst. et Kit) “Kotodesh,” a Ni-hyperaccumulator,
was grown from seed collected from a wild Albanian serpentine
population. All Alyssum hyperaccumulator species known have
leaves covered with stellate trichomes (Figure 1). Nickel is stored
in leaf epidermal cells, particularly in the trichome pedicels.
A. montanum L. “Mountain Gold” (a non-hyperaccumulator
species that also has leaf trichomes) was grown from commercial
seed (Hazzard’s Seeds, Deford, MI). Both Alyssum species
were started in flats with Promix R© potting soil and standard
fertilization (half-strength Miracle Grow R©). After 40 days
healthy Alyssum seedling roots were rinsed to remove potting
medium and transplanted to prepared soils in pots. Four
weeks after transplant, when seedlings had become established,
commercial perennial ryegrass (L. perenne L. “Amazing GS,”
Ampac Seed, Tangent, OR) was seeded directly into the pots.
Twenty cm polyethylene pots which hold about 3 kg air dry soil
were utilized. Plastic mesh was not used across the pot over the
drain holes in order to avoid interference with root growth. All
watering was with deionized water, and plastic trays were placed
under each pot. To avoid overwatering Alyssum, 250–650ml was
added 2 or 3 times per week to ensure that soil dried between
waterings. The co-cropped plants were grown for an additional
12 weeks.

We utilized Brockman variant serpentine soil from Josephine
Co., Oregon (Typic Xerochrepts), air dried and sieved <4mm

FIGURE 1 | Scanning electron photomicrograph of frozen hydrated

Ni-hyperaccumulator Alyssum murale ‘Kotodesh’ and surface of leaf.

Note stellate trichome; Ni is very high in the vacuole below the trichome.

using stainless steel sieves. Standard inorganic fertilization for
serpentine soils (75mg N as NH4NO3, 100mg P as KH2PO4,
500mg Ca as CaSO4◦2H2O, and 0.5mg B as H3BO3 per kg
soil) was added. The Brockman soil as collected is pH 6.6, very
high in Ni (4710mg kg−1), more than adequate in Mn and
Fe, but deficient in Ca and P (Table 1). One set of treatments
had 30 vol% (10%DW) aged dairy manure compost from the
USDA Beltsville composting facility mixed into the serpentine
soil. Fertilizer rates allowed normal growth of ryegrass on
this soil which would not normally support growth of non-
serpentinophytes.

The experiment was conducted in the USDA Beltsville
greenhouse under controlled temperature and light conditions
and ambient humidity. Photoperiod was 15/9 h day/night.
During this time supplemental high-intensity sodium and
incandescent lights capable of supplying 400 µmolm−2s−1

supplemented sunlight if necessary. Daytime temperature was
24◦C with cooling initiated at 27◦C. Nighttime temperature was
18◦C with cooling initiated at 21◦C. During the final 3 weeks of
growth in lateMay and June supplemental lighting was turned off
to avoid overheating.

Experimental Treatments
Two types of soil and six planting schemes made up 12
treatments, with three replicates per treatment. Alyssum plants
that died soon after transplanting were replaced for the first 2
weeks of growth. OverallAlyssum grew 4months after transplant,
and rye grass grew 3 months after seeding. At harvest plant
roots filled the pot and intermingled but plants were not
pot-bound.

Soil A: Natural Brockman variant serpentine soil.
Soil B: Natural Brockman variant serpentine soil with 10 wt%
compost.

TABLE 1 | Representative average Brockman soil parameters over 12

years testing.

Analyte Units Result

pH 6.30

organic matter % 3.1

Clay % 21.0

Sand % 58.0

Fe g kg−1 222

Mn g kg−1 3.88

Ni g kg−1 4.71

Co mg kg−1 354

Cu mg kg−1 45.0

Zn mg kg−1 180

Ca, exchangeable meq/100 g 1.0

Mg, exchangeable meq/100 g 6.2

Ni, exchangeable mg kg−1 32.0

Ni, DPTA extractable mg kg−1 124

P, Bray extractable mg kg−1 0.02

Note the very low Ca and P levels and Ca:Mg ratio characteristic of serpentine soils.
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Planting Scheme:

1. A. murale, four plants per pot spread radially and evenly.
2. A. montanum, four plants per pot spread radially and

evenly.
3. L. perenne four groups of approximately 20 seedlings

spread radially and evenly.
4. A. murale two plants, and A. montanum, 2 plants with the

same plant spread as #1, alternating species.
5. A. murale two plants, and L. perenne two groups of

approximately 20 seedlings, alternating species.
6. A. montanum two plants, and L. perenne two groups of

approximately 20 seedlings alternating species.

Plant Material Metals Analysis
All clean, healthy aerial plant material was harvested. Material
that was stained from the red serpentine soil or unhealthy was
discarded. Harvested plant material was washed in a dilute
detergent bath and rinsed in deionized water to remove adhering
soil particles. Plants were dried for 72 h at 60◦C, weighed, and
ashed in a 480◦C oven for 16 h. After cooling, the ash was digested
with 2ml concentrated HNO3, mixed well and then heated to
dryness. The sample was then dissolved in 10ml 3N HCl, filtered
through Whatman #40 filter paper and brought to volume in
a 25ml volumetric flask using 0.1 N HCl. Concentrations of
Ca, Cd, Cu, Fe, K, Mg, Ni, Mn, P, and Zn were determined by
inductively-coupled plasma atomic emission spectrometry using
40mg L−1 yttrium as an internal standard in all samples and
standard solutions.

Soil Analysis
Total soil metals were measured by atomic absorption
spectrometry after digestion with boiling HNO3. Exchangeable
Ca, Mg, and Ni were obtained by extracting 5 g air-dried soil

with 50mL 1.0 M ammonium acetate at pH 7, soil texture
by pipette method, and organic matter by combustion. The
Bray-2 method was used to estimate phytoavailable P. The
DTPA-extraction used 5 g soil per 50 mL standard DTPA
extractant rather than the usual 10 g per 20mL because of the
high metals levels in this and other Ni-rich soils studied in
our laboratory.

RESULTS

Yields and dry weight metal concentrations are reported in
Table 2, and examples of co-cropped healthy plants in the
serpentine soil (A) are given in Figures 2, 3. All results
were statistically analyzed by ANOVA with SAS. None of the
Alyssum transplants survived in compost-amended soil B. The
compost evidently contained pathogen(s) that both species were
susceptible to, and it also kept the soil damp longer between
waterings. Normally this is desirable in pot studies, however A.
murale in particular is adapted to semi-arid conditions, and once
established survives with watering once per week or less. The
symptoms exhibited were consistent with fungal infection. None
of the plants in soil A or seedlings in Promix were affected.

In soil A, A. murale shoots contained approximately 3600mg
kg−1 Ni which did not differ significantly with co-cropping
(Figure 4). Overall Ni and Mn concentrations were significantly
higher in A. murale than A. montanum or L. perenne
(Figures 4, 5). However, A. murale Fe concentrations were
significantly reduced (p < 0.05) by co-cropping with ryegrass,
and Mn was somewhat reduced (p < 0.4) but half-pot yield
was equivalent. In general Fe concentrations were unreliable in
A. montanum due to contamination with Fe3+ oxide staining
deep within the leaves, coupled with only a small amount of
plant material available for analysis, but this does not affect the

TABLE 2 | Half-pot dry weight yield and element concentrations of all treatments that survived.

Species Treatment Yield g ½ Ca G Cu mg Fe mg K g Mg g Mn mg Ni mg P g Zn mg

pot−1 kg−1 kg−1 kg−1 kg−1 kg−1 kg−1 kg−1 kg−1 kg−1

A. murale A1 alone 7.5± 3.2 13.6± 0.6 2.35± 0.42 336± 260 14.4± 1.2 2.09± 0.28 225± 150 3320±330 2.92±0.37 27.9±7.6

A4 + mon 10.3± 5.1 13.1± 2.4 2.31± 0.27 285± 240 15.4± 1.1 2.08± 0.75 202± 19 4030±1170 3.32±0.57 20.7±1.4

A5 + peren 7.87± 0.75 12.4± 1.3 2.01± 0.51 89.3± 40 14.1± 1.9 2.41± 0.62 145± 32 3640±830 2.50±0.54 18.1±6.4

A. montanum A2 alone 3.60± 0.4 24.1± 2.4 1.76± 1.1 589± 350 19.9± 2.6 7.50± 1.1 47± 10 50±16 3.54±0.55 14.1±2.1

A4 + mur* 1.33 22.0 1.20 342 22.2 6.76 64 57.5 3.54 13.5

A6 + peren 0.71± 0.30 26.0± 1.5 2.00± 0.37 1689± 80 25.9± 6.2 9.32± 1.3 54.7± 21 71.3±14 3.87±0.53 16.8±2.7

L. perenne A3 alone 2.7± 0.7 4.37± 0.3 6.46± 0.06 179± 20 25.7± 2.5 4.46± 0.51 110± 28 50.7±4.9 3.95±0.46 29.6±1.5

A5 + mur 1.75± 1.2 4.71± 0.84 5.93± 0.86 231± 120 26.3± 5.1 4.78± 0.67 202± 15 39.7±28 2.96±0.56 28.3±3.2

A6 + mon 4.01± 0.95 4.10± 0.62 5.49± 1.6 352± 350 20.5± 6.9 4.38± 0.77 102± 28 45.7±2.3 2.79±0.34 24.4±3.9

B3 alone 3.1± 1.7 2.45± 0.35 8.79± 0.92 60.0± 00 37.1± 5.6 3.49± 0.09 52.7± 8.1 19.3±4.0 4.00±0.74 82.5±15

B5 + mur 8.61± 2.8 2.25± 0.65 10.1± 0.97 62.0± 27 41.8± 11 3.24± 0.31 46± 8.5 23.3±2.5 3.61±0.70 77.1±5.2

B6 + mon 7.20± 0.79 2.81± 0.38 11.1± 0.89 96.7± 31 46.9± 7.4 3.43± 0.18 53.3± 6.0 19±2.0 3.71±0.32 80.5±2.0

Mean and s.d. of three replicates except where noted. Soil A: 100% Brockman variant serpentine; soil B Brockman serpentine soil with 10 dw% manure compost mixed in. Plants

designated “alone” grown in monoculture; other treatments were mixed culture as listed. Only L. perenne survived in the manure compost amended soil.

*only two replicates survived.
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FIGURE 2 | A. murale (most of the plant material in pot, with long

stems, and darker oblong leaves) and A. montanum (a few plants in

center with larger, lighter leaves in a rosette pattern) co-cropped in the

fertilized serpentine soil. A. montanum grew less vigorously than A. murale

in the fertilized serpentine soil, and was outcompeted and shaded after 4–5

weeks.

FIGURE 3 | Lolium perenne and A. montanum co-cropped in the

fertilized serpentine soil. The nonhyperacumulator Alyssum species was

not able to compete with the grass.

relationship between Ni and Mn in A. murale vs. A. montanum.
Although Fe is much higher in A. montanum than A. murale,
both Ni and Mn are significantly lower (p < 0.01), a result that
cannot be due to soil contamination.

Nickel concentrations in A. montanum and L. perenne
remained relatively constant and below 75mg kg−1 in for A2

through A6. However, there was increased variability of the Ni
concentration in both A. murale or L. perenne with A. murale
intercropping, and intercropping with A. murale significantly
increased Mn in L. perenne (Figure 5). Calcium concentrations
were three to six times greater in Alyssum species as compared to
L. perenne due to the high Ca in Alyssum leaf trichomes (Table 2;
Figure 1). However, Cu concentrations were consistently greater
in L. perenne than Alyssum (Figure 6).

In soil A, A. montanum could not compete with either A.
murale or ryegrass and was nearly killed by co-cropping, with
10-fold yield reductions (Figures 3, 4). Due to its poor growth,
A. montanum did not significantly affect the growth or metal
concentrations of A. murale or L. perenne. However, there
was a significant ryegrass yield reduction with A. murale co-
cropping. Ryegrass yield was increased when co-cropped with
A. montanum because it thoroughly out-competed A. montanum
with only half the plants.

FIGURE 4 | Ni concentrations for species in monoculture and

co-cropped. Nickel levels were significantly greater in the hyperacccumulator

Alyssum murale (p < 0.001) but did not differ significantly within a given

species as a function of co-cropping. Error bars means ± Standard Error.

FIGURE 5 | Mn concentrations for species in monoculture and

co-cropped. Mn levels were significantly greater in A. murale than A.

montanum. Mn was increased in L. perenne with A. murale co-cropping. Error

bars means ± Standard Error.

Because Alyssum did not survive in the treatments with
compost, all three ryegrass planting schemes grew ryegrass only.
Essentially there were nine replicates for B3, all of which had Ni
concentrations that did not differ significantly from one another,
but did differ from A3 and A5, as expected due to the high
levels of Ni in the serpentine soil (Figure 4). There was a trend
for increased yield with compost but it was not significant.
Calcium, Fe, Mg, and Ni concentrations in ryegrass were reduced
with compost and Cu and Zn concentrations were increased. Ni
concentrations in ryegrass were about twice as high in treatment
A compared to B, while the reverse was true for Cu and Zn.

Frontiers in Plant Science | www.frontiersin.org 5 April 2016 | Volume 7 | Article 451

http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive


Broadhurst and Chaney Metal Accuumulation in Co-cropped Alyssum and Lolium

FIGURE 6 | Cu concentrations for species in monoculture and

co-cropped. Copper levels were significantly greater in Lolium perenne

compared to both Alyssum species (p < 0.001). With the exception of a slight

Cu reduction in A. montanum co-cropped with A. murale, Cu concentrations

did not differ significantly within a given species as a function of co-cropping.

Error bars means ± Standard Error.

DISCUSSION

Our results indicate there is no value with respect to phytomining
or phytoextraction in co-cropping A. murale with L. perenne.
Neither yield nor Ni uptake was improved; the ryegrass shoots
only interfered with the growth of A. murale. The average
full-pot yield for A. murale grown alone was 15.0 ± 6.3 g,
therefore phytoextraction could be doubled just with Alyssum
monoculture. Further, given larger pot sizes or field growth, A.
murale and A. corsicum develop extensive root systems than can
increase shoot Ni concentration up to five times that achieved
in 1 kg pots (Baklanov et al., 2015; Bani et al., 2015a). Therefore,
root growth interference from the equally extensive L. perenne
root system is almost certainly a negative factor with respect
to maximizing Ni phytoextraction. Co-cropping Lupinus albus
and A. murale in natural serpentine soils showed similar results
in a study investigating whether co-cropping with a nitrogen-
fixing plant could improve overall A. murale Ni phytoextraction
(Jiang et al., 2015). Without supplemental P fertilization, 90%
of the biomass in the pots was L. albus. With P fertilization
A. murale increased to 39%, however Ni accumulation in the
shoots was significantly reduced compared to monocropping.
Overall Ni phytoextraction was maximized in the monocrop with
P fertilization.

Co-cropping with ryegrass somewhat reduced Fe and Mn
concentrations in A. murale but not to the extent of either
increasing Ni uptake or affecting plant nutrition, so the result,
while interesting, has a neutral effect on phytoextraction in this
soil. The increased variability of the Ni concentration in both
A. murale and L. perenne, and increased Mn in L. perenne
with A. murale co-cropping may reflect increased rhizosphere
mobilization of Ni and Mn by A. murale but in this experiment

it did not translate to any tangible benefit. The hypothesized
increase in Ni accumulation in response to phytosiderophores
secreted by co-cropped grasses clearly did not occur. Our data do
not support increased mobilization of Mn by a phytosiderophore
mechanism either, but the converse: mobilization of Mn by the
Alyssum hyperaccumulator species significantly increased Mn
levels in the grass.

A. montanum could not compete with either A. murale or
ryegrass and was nearly killed by co-cropping. In field growth it
would be unlikely to survive. In contrast to results with Noccaea
(Whiting et al., 2001b), there would be no value in utilizing
an Alyssum hyperaccumulator to improve the growth of a non-
hyperaccumulator; A. montanum yield was strongly reduced by
co-cropping, yet it grewwell alone in the fertilized serpentine soil.

A murale and A. montanum accumulated about 13 and 24 g
Ca kg−1 respectively, consistent with all previous observations
in which CaCO3 nodules cover the surface of the trichomes
(Krämer et al., 1997; Psaras et al., 2000; Küpper et al., 2001;
Kerkeb and Krämer, 2003; Marmiroli et al., 2004; Broadhurst
et al., 2004a,b; Broadhurst et al., 2009; McNear et al., 2005;
Asemaneh et al., 2006; Tappero et al., 2007). Calcium fertilization
was necessary for L. perenne growth in this experiment, however
Alyssum hyperaccumulator species native to typically low Ca,
low Ca:Mg ratio serpentine soils nonetheless accumulate Ca
in the absence of fertilization. A. montanum is not a Ni
hyperaccumulator but had twice the Ca of A. murale, but only
half the Mn.

Both Ni and Mn concentrations were significantly higher
in A. murale than A. montanum or L. perenne. The high
variability in the A. murale Mn concentration is typical of
the species, which in natural serpentine soils is observed to
hyperaccumulate Mn only in some leaves on a given plant.
If Mn soil levels are exceedingly high without addition of Ni,
Mn is not hyperaccumulated throughout the plant and instead
becomes phytotoxic (Broadhurst et al., 2004b, 2009; Tappero
et al., 2007). Ni hyperaccumulators are very specific to Ni
and to a lesser extent Mn and Co, and do not non-selectively
accumulate/hyperaccumulate other transition metals such
as Fe, Cr, or Cu. In the case of Cu, despite 3600mg kg−1 Ni
accumulation,A. muraleCu concentrations were only 2mg kg−1,
far below L. perenne, which accumulated typical foliar Cu levels
for ryegrass. These observations support a specific relationship
between Mn accumulation and Ni hyperaccumulation
(Broadhurst et al., 2009; Ghaderian et al., 2015) rather than
a general situation for Alyssum species where Mn uptake and
storage is related to enhanced Ca uptake to synthesize the unique
trichome tissues (McNear and Kupper, 2013).

Although the compost utilized was a standard, mature aged
product from USDA Beltsville it was very detrimental to Alyssum
growth, most likely due to pathogenic fungi. We have repeatedly
observed fungal infections in Alyssum species grown in humid
summer greenhouse conditions. Although we grew the plants in
the late winter/spring season and in a majority of their native
soil, they were nonetheless unable to survive transplant to the
manure compost amended soil. Seeding in the pot was tried
but the germination rate of A. montanum was below 40% and
seedlings that did come up were very weak. Several plants were
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transplanted to soil B and grown outdoors but also succumbed
with the same disease pattern. However, both Alyssum species
grew very well alone in the fertilized serpentine soil with no
evidence of disease or phytotoxicity.

In a similar recent study, Álvarez-López et al. (2016)
grew the hyperaccumulators A. serpyllifolium ssp. lusitanicum,
A. serpyllifolium ssp. malacitanum, A. pintodasilvae, and A.
bertolonii. in their native serpentine soil with 2.5, 5, and 10
wt% commercial municipal solid waste compost added. These
species grow slowly so did not achieve the large shrub size that A.
murale can in one season. The lower levels of compost addition
significantly increased yield but no further benefits were achieved
with 10%. All levels of compost addition reduced extractable Ni;
at the 10% level the reduction was 11-fold. Overall yield was
lower without compost but with inorganic NPK fertilization,
however NPK addition did not affect Ni accumulation. In
an Albanian field trial with ultramafic Vertisols, Bani et al.
(2015b) found A. murale yield was increased 10-fold with 120 kg
NPK and 77 kg Ca ha−1 plus monocot herbicide to control
Graminaceae—as opposed to encouraging co-cropping. These
agronomic practices increased Ni phytoextraction yield from 2.0
to 29.5 kg ha−1. Thus, in a long-term field Ni phytoextraction
or phytomining situation, standard inorganic fertilization may
be both adequate and preferable. If a compost source is utilized,
it should be tested with every species/ecotype used in the field
program prior to application. Another factor to consider is a
possible negative effect of compost biota on serpentine-endemic
rhizobacteria which can act to facilitate Ni uptake. The two
bacteria shown to strongly increase Ni accumulation inA. murale

(M. arabinogalactanolyticum andM. oxydans) were isolated from
the Oregon soil that we utilized in this study (Abou-Shanab et al.,
2003, 2007), thus were potentially present in each pot. They may
not have thrived in the compost-amended soil just as theAlyssum
species did not, however rhizobiome interactions cannot explain
our results.

Ryegrass growth was not negatively affected by the compost
and the Ni concentration was significantly reduced without
inducing Fe or Mn deficiency. With fertilization and adequate
water ryegrass grew reasonably well on the serpentine soil; adding
compost would be a significant benefit to retain soil moisture
and improve root growth. Ryegrass yield may have increased
in treatment B if grass was cut one or two times during the
experiment. This was not done because in a field intercropping
situation A. murale would need to grow as long as the season
permits in order to maximize Ni phytoextraction, and it would
not be practicable to selectively cut the ryegrass. Similarly, regular
light irrigation and cool, relatively humid conditions tomaximize
L. perenne yield would not be practicable since A. murale grows
better with infrequent but thorough waterings and relatively hot,
sunny, low humidity conditions. In commercial phytomining of
Ni, weed control to prevent grasses would normally be practiced
to limit competition for water and nutrients (Bani et al., 2015b).

Overall, tilling soil to maximize root penetration, adequate
inorganic fertilization and appropriate plant densities are
more important for developing efficient phytoremediation and
phytomining approaches with Alyssum Ni hyperaccumulator
species than organic soil amendments or co-cropping.
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