

Identification and Comparative Analysis of H₂O₂-Scavenging Enzymes (Ascorbate Peroxidase and Glutathione Peroxidase) in Selected Plants Employing Bioinformatics Approaches

Ibrahim I. Ozyigit¹*, Ertugrul Filiz², Recep Vatansever¹, Kuaybe Y. Kurtoglu^{1,3}, Ibrahim Koc⁴, Münir X. Öztürk^{5,6} and Naser A. Anjum⁷

¹ Department of Biology, Faculty of Science and Arts, Marmara University, Istanbul, Turkey, ² Department of Crop and Animal Production, Cilimli Vocational School, Düzce University, Düzce, Turkey, ³ Department of Molecular Biology and Genetics, Faculty of Science, Istanbul Medeniyet University, Istanbul, Turkey, ⁴ Department of Molecular Biology and Genetics, Faculty of Science, Gebze Technical University, Kocaeli, Turkey, ⁵ Botany Department/Center for Environmental Studies, Ege University, Izmir, Turkey, ⁶ Faculty of Forestry, Universiti Putra Malaysia, Selangor, Malaysia, ⁷ Centre for Environmental and Marine Studies and Department of Chemistry, University of Aveiro, Aveiro, Portugal

Among major reactive oxygen species (ROS), hydrogen peroxide (H₂O₂) exhibits dual roles in plant metabolism. Low levels of H₂O₂ modulate many biological/physiological processes in plants; whereas, its high level can cause damage to cell structures, having severe consequences. Thus, steady-state level of cellular H₂O₂ must be tightly regulated. Glutathione peroxidases (GPX) and ascorbate peroxidase (APX) are two major ROS-scavenging enzymes which catalyze the reduction of H_2O_2 in order to prevent potential H₂O₂-derived cellular damage. Employing bioinformatics approaches, this study presents a comparative evaluation of both GPX and APX in 18 different plant species, and provides valuable insights into the nature and complex regulation of these enzymes. Herein, (a) potential GPX and APX genes/proteins from 18 different plant species were identified, (b) their exon/intron organization were analyzed, (c) detailed information about their physicochemical properties were provided, (d) conserved motif signatures of GPX and APX were identified, (e) their phylogenetic trees and 3D models were constructed, (f) protein-protein interaction networks were generated, and finally (g) GPX and APX gene expression profiles were analyzed. Study outcomes enlightened GPX and APX as major H₂O₂-scavenging enzymes at their structural and functional levels, which could be used in future studies in the current direction.

Keywords: ROS, signal transduction, antioxidant, peroxisome, chloroplast, mitochondria

OPEN ACCESS

Edited by:

Richard Sayre, New Mexico Consortium at Los Alamos National Labs, USA

Reviewed by:

Suleyman I. Allakhverdiev, Russian Academy of Sciences, Russia Golam Jalal Ahammed, Zhejiang University, China Yogesh Abrol, Bhagalpur University, India Kumar Ajit, University of South Australia, Australia

> *Correspondence: Ibrahim I. Ozyigit

ilkozyigit@gmail.com

Specialty section:

This article was submitted to Plant Physiology, a section of the journal Frontiers in Plant Science

Received: 13 January 2016 Accepted: 25 February 2016 Published: 22 March 2016

Citation:

Ozyigit II, Filiz E, Vatansever R, Kurtoglu KY, Koc I, Öztürk MX and Anjum NA (2016) Identification and Comparative Analysis of H₂O₂-Scavenging Enzymes (Ascorbate Peroxidase and Glutathione Peroxidase) in Selected Plants Employing Bioinformatics Approaches Front. Plant Sci. 7:301. doi: 10.3389/fpls.2016.00301

1

INTRODUCTION

Reactive oxygen species (ROS), once perceived as toxic byproducts, were known to cause oxidative damage in cells (Mittler et al., 2004; Suzuki and Mittler, 2006). Later, novel regulatory roles of these species were revealed in a wide range of biological processes such as cell signaling, growth, development, programmed cell death, and plant responses to various biotic/abiotic stress factors (Mullineaux and Karpinski, 2002; Uzilday et al., 2014). H_2O_2 is an endogenous ROS species known to play a dual role in plants, where it is beneficial at low concentrations but lethal at higher levels (Petrov and Van Breusegem, 2012). Nevertheless, at steady state levels, H₂O₂ acts as signaling molecule inducing the signal transduction mechanism to produce various cellular responses. Interestingly, pre-treatment of plants with H2O2 makes them more tolerant to biotic/abiotic stresses (Hossain et al., 2015). H₂O₂ was also noted for its regulatory functions in photosynthesis, cell cycle, development, senescence, and apoptosis (Mittler et al., 2004; Petrov and Van Breusegem, 2012). H₂O₂ has been accepted as a central component of signal transduction pathways in plant-adaptation to altered environmental conditions as it is both the only ROS with high permeability across membranes (that enables the transport of signals to distant sites) and its high stability when compared to other ROS with $\sim 1 \text{ ms}$ half-life (Bienert et al., 2007; Dynowski et al., 2008; Petrov and Van Breusegem, 2012). On the other hand, when the delicate balance between production and scavenging of H₂O₂ is disturbed, its overproduction results in significant damage to cell structures (Anjum et al., 2015; Sofo et al., 2015). To overcome H2O2-related cellular damage, aerobic organisms have developed various antioxidant machineries with enzymatic and non-enzymatic components. Ascorbate peroxidase (APX), glutathione peroxidase (GPX), and catalase (CAT) are the main enzymes responsible for suppressing toxic levels of H₂O₂ (Apel and Hirt, 2004). However, APX may have pivotal roles in ROSscavenging because even very low concentrations are sufficient for H₂O₂ decomposition (Anjum et al., 2014; Sofo et al., 2015).

APX (EC, 1.11.1.11) belongs to the plant-type heme peroxidase superfamily in plants (Lazzarotto et al., 2011). Genome-wide studies demonstrated that APX in higher plants is encoded by multigenic families. Arabidopsis was reported to contain nine APX genes; whereas, rice has eight and tomato seven (Chew et al., 2003; Teixeira et al., 2004; Najami et al., 2008). Different isoforms are classified into sub-families according to their subcellular localization. Transmembrane domains in Nand C- terminal regions, as well as organelle-specific target molecules are the primary determinants in target localization of APXs (Ishikawa et al., 1998; Negi, 2011). Among nine APX genes identified in Arabidopsis, three were found to be encoded in cytosol whereas the other six were distributed in stroma, thylakoid, and peroxisome (Chew et al., 2003; Mittler et al., 2004). In rice, chloroplastic isoforms were expressed by three genes, cytosolic and peroxisomal forms were both encoded by two genes, and one gene was for the mitochondrial APX (Teixeira et al., 2006; Anjum et al., 2014). APX activity was also reported to increase under various stress conditions. For

example, APX is differentially upregulated in response to heavy metal, drought, water, and heat stress (Sharma and Dubey, 2005; Koussevitzky et al., 2008; Yang et al., 2008; Anjum et al., 2014). In a previous study, Arg-38, Glu-65, Asn-71, and Asp208 residues were reported to be conserved among the entire APX family and known to be important in ligand (heme)-binding (Welinder, 1992). In addition to enzymatic properties, structural investigations on catalytic domains of the enzymes have been also performed. Three-dimensional structures of cAPX, sAPX, and their substrates showed the relationship between loop structure and stability in the absence of ascorbate (AsA; Yabuta et al., 2000; Anjum et al., 2014). The mitochondrial and chloroplastic APXs (<30 s) have shorter half inactivation times (>1 h) compared to cytosolic and peroxisomal isoforms, which makes them more sensitive in either low concentrations or the absence of AsA (Caverzan et al., 2012; Anjum et al., 2014). Another important enzyme in H₂O₂-scavenging is the GPX from the non-heme containing peroxidase family (Bela et al., 2015). In Arabidopsis, eight GPX genes were reported (Milla et al., 2003; Koua et al., 2009). Based on in silico analysis, GPXs were predicted in chloroplast, mitochondria, cytosol, and ER localizations (Rouhier and Jacquot, 2005), and demonstrated high level of sequence similarity with strictly conserved cysteines and motifs (Dietz, 2011). Plant GPXs have cysteine residue in their active site (Koua et al., 2009), which is functional in both glutathione (GSH) and thiol peroxidase classes of the non-heme family. GPXs were also reported to be involved in stress responses. Many studies have demonstrated the significant increase in mRNA levels of GPXs under various abiotic/abiotic stress conditions such as oxidative stress, pathogen attack, metal, cold, drought, and salt (Navrot et al., 2006; Diao et al., 2014; Fu, 2014; Gao et al., 2014). For example, GPX genes were found to be upregulated under excess H₂O₂ and cold stresses in rice (Passaia et al., 2013). Transcriptome analysis indicated high level of GPX transcripts in dehydrated Glycine max samples (Criqui et al., 1992; Ferreira Neto et al., 2013). Several transgenic studies also supported the proposed function of GPXs. For example, the overexpression of GPX in its transgenic tomato resulted in higher tolerance against abiotic stress (Herbette et al., 2011). In addition to stress response, GPXs are also thought to regulate cellular redox homeostasis by modulating the thiol-disulfide balance (Bela et al., 2015). GPX expression was found to be highly upregulated to maintain redox homeostasis under oxidative stress which helped Brassica rapa to adapt long-term spaceflight (Sugimoto et al., 2014).

A scan of contemporary literature reveals a paucity of information on the identification and comparative analysis of GPX and APX in model and economically important food crops. Given the above, employing bioinformatics approaches, efforts were made in this study (a) to identify potential GPX and APX genes/proteins from 18 different plant species, (b) to analyze their exon/intron organization, (c) to provide detailed information about their physico-chemical properties, (d) to identify conserved motif signatures of GPX and APX, (e) to construct their phylogenetic trees and 3D models, (f) to generate protein-protein interaction networks, and finally (g) to analyze GPX and APX gene expression profiles.

MATERIALS AND METHODS

Retrieval of GPX and APX Genes/Proteins

Eight Arabidopsis GPX reference protein sequences such as GPX1 (P52032.2), GPX2 (O04922.1), GPX3 (O22850.1), GPX4 (Q8L910.1), GPX5 (Q9LYB4.1), GPX6 (O48646.2), GPX7 (Q9SZ54.2), and GPX8 (Q8LBU2.1), as well as and eight Arabidopsis APX reference sequences such as APX1 (Q05431.2), APX2 (Q1PER6.3), APX3 (Q42564.1), APX4 (P82281.2), APX5 (Q7XZP5.2), APX6 (Q8GY91.1), APXT (Q42593.2), and APXS (Q42592.2) were obtained from UniProtKB/Swiss-Prot database of NCBI (Romiti, 2006). These reference sequences were queried in proteome datasets of selected 18 plant species: Arabidopsis thaliana (L.) Heynh., Brachypodium distachyon (L.) P. Beauv., Brasica rapa L., Chlamydomonas reinhardtii P. A. Dang., Cucumis sativus L., Eucalyptus grandis W. Hill ex Maiden, Glycine max (L.) Merr., Gossypium raimondii Ulbr., Medicago truncatula Gaertn., Oryza sativa L., Phaseolus vulgaris L., Physcomitrella patens (Hedw.) Bruch & Schimp., Populus trichocarpa Torr. & A.Gray ex. Hook., Prunus persica (L.) Batsch, Solanum lycopersicum L., Sorghum bicolor (L.) Moench, Vitis vinifera L., and Zea mays L., all found in the Phytozome v.10.3 database (Goodstein et al., 2012). After sequences were obtained, the Hidden Markov Model (HMM) search of protein sequences were performed by Pfam (http://pfam.sanger.ac.uk) to confirm the protein domain families (Finn et al., 2016). Species were arbitrarily selected to represent the main plant groups such as monocots, dicots, and lower plants.

Analysis of GPX and APX Genes/Proteins

Physicochemical properties of GPX and APX proteins were determined by using ProtParam tool (Gasteiger et al., 2005). Sub-cellular localization was predicted by CELLO (Yu et al., 2006) and WoLF PSORT (Horton et al., 2007) servers. Exonintron organization of GPX/APX genes was analyzed by using a GSDS server (Hu et al., 2014). The Conserved motif structure of GPX/APX sequences was analyzed using the MEME tool with the following parameter settings: maximum number of motifs to find, 5; minimum width of motif, 6 and maximum width of motif, 50 (Bailey et al., 2009). Protein sequences were aligned by ClustalW (Thompson et al., 1994) and phylogenies were constructed by MEGA 6 (Tamura et al., 2013) with the maximum likelihood (ML) method for 1.000 bootstraps. The gene duplication events were detected using the following criteria: (a) length of alignable sequence covers >75% of the longer gene, and (b) similarity of aligned regions is >75% (Gu et al., 2002). The expression data of APX and GPX genes at anatomical and developmental levels were retrieved from the Genevestigator database (Hruz et al., 2008). 3D models of APX/GPXs were predicted by using the Phyre² server (Kelley and Sternberg, 2009). Model validation was performed by Rampage Ramachandran plot analysis (Lovell et al., 2003). 3D structure comparisons were done by calculating RMSD values of models using the CLICK server employing α -carbon superposition (Nguyen et al., 2011). Putative interaction partners of APX/GPXs were predicted with the STRING server (Franceschini et al., 2013) and an interactome network was generated using cytoscape (Smoot et al., 2011).

RESULTS AND DISCUSSION

 H_2O_2 plays double roles in plants and modulates various crucial metabolic processes (Petrov and Van Breusegem, 2012). However, its increased levels can cause severe damage to cell structures; hence, steady-state level of cellular H_2O_2 is required to be tightly regulated (Anjum et al., 2014, 2015; Sofo et al., 2015). GPX and APX are two major ROS-scavenging enzymes which catalyze the reduction of H_2O_2 to prevent H_2O_2 -derived cellular damage. In order to understand the structural, functional as well as evolutionary aspects of GPX and APX, employing bioinformatics approaches, this study attempted to present comparative analyses of putative GPX and APX homologs identified from18 plant species.

Analysis of GPXs

Retrieval of GPX Genes/Proteins

Eight potential Arabidopsis GPX protein sequences, namely GPX1-8, obtained from the UniProtKB/Swiss-Prot database of NCBI were used as queries in Phytozome database to retrieve the very close homologs of GPX sequences in 18 plant species. In the selection of GPX homologs from blastp hits, very strict criteria (only the highest hit sequence) was applied to avoid the redundant sequences and alternative splices of the same gene. A total of 87 GPX sequences were identified from the protein datasets of 18 plant species. These include; 8 genes for A. thaliana, 4 genes for B. distachyon, 8 genes for B. rapa, 1 gene for C. reinhardtii, 6 genes for C. sativus, 5 genes for E. grandis, 5 genes for G. max, 6 genes for G. raimondii, 5 genes for M. truncatula, 5 genes for O. sativa, 5 genes for P. vulgaris, 2 genes for P. patens, 5 genes for P. trichocarpa, 5 genes for P. persica, 5 genes for S. lycopersicum, 4 genes for S. bicolor, 5 genes for V. vinifera, and 3 genes for Z. mays (Table 1). Then, genomic, transcript, CDS, and protein sequences of identified 87 GPX sequences were retrieved for further analyses.

Sequence Analysis of GPX Genes/Proteins

A total of 87 GPX homologs were identified in the protein datasets of 18 plant species using Arabidopsis GPX1-8 for homology search. Identified GPX homologs belonged to the GSHPx (PF00255) protein family. They encoded a polypeptide of 166-262 amino acids residues (average length 197.5) and 18.4-29.7 kDa molecular weight with 4.59-9.60 pI value. The sequence variations in analyzed GPXs primarily derived from the "transit peptide" residues between organelle and non-organelle related GPXs (Table 1). Studies of molecular cloning and sequencing in A. thaliana have reported that chloroplastic GPX1 and GPX7 consisted of 236 and 233 amino acids, respectively; the first 1-64 residues in GPX1 and 1-69 residues in GPX7 from N-terminal site contained the transit peptides (Mullineaux et al., 1998; Lin et al., 1999; Mayer et al., 1999). Arabidopsis GPX2 and GPX4 were reported to be 169 and 170 residues, respectively with cytosolic localization: thereby, they did not contain any transit peptide (Lin et al., 1999). Arabidopsis GPX3 and GPX6 were 206

gene ID Protein domain family ² Domain family description Exon no. Protein length MW (KD) Trace, pl Description Analosization fundame (L) Art2520500 GSHPA (PR02255) Glutathione peroxidase 6 167 13.0 6.11 Opto Opto Art25220500 GSHPA (PR02255) Glutathione peroxidase 6 107 13.0 6.10 Opto <	Species name	Phytozome gene ID		Gene/protein features of GPX sequences									
Antickopsis Maleral LJ Hoynh. AT1G83400 GSHPk (PF00255) Glutathione peroxidase 6 167 19.0 5.11 Cyto Cyto Hoynh. AT2G31570 GSHPk (PF00255) Glutathione peroxidase 6 296 26.0 9.42 Maleral LJ AT2G31570 GSHPk (PF00255) Glutathione peroxidase 6 206 2.22 0.24 Mileral LJ AT2G31570 GSHPk (PF00255) Glutathione peroxidase 6 170 19.3 8.67 Cyto Chi/Mile AT3G30380 GSHPk (PF00255) Glutathione peroxidase 6 226 2.4 9.67 Chi/o Chi/o Bradg10110 GSHPk (PF00255) Glutathione peroxidase 6 226 2.4 9.67 Chi/o Chi/o Bradg10100 GSHPk (PF00255) Glutathione peroxidase 6 186 224 7.60 O/ro O/ro O/ro O/ro Chi/o Bradg101010 GSHPk (PF00255) Glutathione peroxidase 6 196 2.59 0.65		gene ID	Protein domain family ^a	Domain family description	Exon no.	Protein length	MW (KDa)	Theor. pl	Localization CELLO ^b	Localization WoLF PSORT ^b			
Instance AT7202803 GSHPA (PF02265) Gulations peroxidase 6 169	Arabidopsis	AT1G63460	GSHPx (PF00255)	Glutathione peroxidase	6	167	19.0	5.11	Cyto	Cyto			
Heyrth. A12G31570 A12045500 GSHPs, (PF00255) GMuthicer peroxidase 6 16.9 18.9 5.80 Cyto Cyto Cyto A120445500 GSHPs (PF00255) GMuthicer peroxidase 6 2.00 2.2.2 0.24 Mto/Plus Chis/Mio A13G3500 GSHPs (PF00255) GMuthicer peroxidase 6 173 1.3. 0.87 Chic/Chio Mio A14G31870 GSHPs (PF00255) GMuthicer peroxidase 6 223 2.5.7 9.53 Chic Chic Rachysochim Brad1gs1010 GSHPs (PF00255) GMuthicer peroxidase 6 224 9.57 Chic Chic PBoaux Brad1gs1000 GSHPs (PF00255) GMuthicer peroxidase 6 188 2.4.4 9.57 Chic Chic PBoaux Brad1gs1010 GSHPs (PF0255) GMuthicer peroxidase 6 108 2.4.4 9.57 Chic Chic Brad1gs1010 GSHPs (PF0255) GMuthicer peroxidase 6 108 12.4 6.3.1 Cyto<	thaliana (L.)	AT2G25080	GSHPx (PF00255)	Glutathione peroxidase	6	236	26.0	9.42	Chlo/Mito	Chlo			
A12043805 GSHPx (FR0255) Olutathione peroxidase 6 206 23.2 0.24 Mto/Ples Ohumio A120416103 GSHPx (FR0255) Glutathione peroxidase 6 170 13.3 8.27 Ohumio Mto A140318100 GSHPx (FR0255) Glutathione peroxidase 6 223 25.7 9.33 Ohu Ohu Ohu Bradtgr17010 GSHPx (FR0255) Glutathione peroxidase 6 223 24.4 9.57 Ohu	Heynh.	AT2G31570	GSHPx (PF00255)	Glutathione peroxidase	6	169	18.9	5.60	Cyto	Cyto			
AT2048150 AT3063000 AT4011000 AT4011000 AT4011000 AT4031870 GSHPR, (PF00255) Glutathione peroxidase 6 173 19.3 6.87 Oylo Mile Crib At1011000 AT4031870 Brachypothum Brachypothum PEBeaux Brachypothum Br		AT2G43350	GSHPx (PF00255)	Glutathione peroxidase	6	206	23.2	9.24	Mito/Plas	Chlo/Mito			
AT3G8300 AT4G1100 AT4G11100 GSHPk (PF00255) Glutathione peroxidase Glutathione peroxidase 6 173 232 9.28 ExtrC/InhuNucl Chio Chio Brad1947140 GSHPk (PF00255) Glutathione peroxidase 6 232 25.7 9.33 Mino/Chio Mino Brad1947140 GSHPk (PF00255) Glutathione peroxidase 6 226 24.4 9.57 Chio Chio Brad1947140 GSHPk (PF00255) Glutathione peroxidase 6 128 2.44 2.57 0.53 Chio Chio Brad2s10100 GSHPk (PF00255) Glutathione peroxidase 6 128 0.55 Chio Chio Brad2s10100 GSHPk (PF00255) Glutathione peroxidase 6 177 11.2 0.55 EntrC/No Chio Brad2s1010 GSHPk (PF00255) Glutathione peroxidase 6 176 11.2 0.55 EntrC/No Chio Brad2s1020 GSHPk (PF00255) Glutathione peroxidase 6 176 11.5 0.55 Chio Chio B		AT2G48150	GSHPx (PF00255)	Glutathione peroxidase	6	170	19.3	8.87	Cyto	Mito			
AT4G11600 AT4G31670 GSHPk (PF00255) GSHPk (PF00255) Glutathione peroxidase 6 232 25.5 9.83 Mito Chio Mito Chio Brad1g61701 GSHPk (PF00255) Glutathione peroxidase 6 223 25.7 9.53 Chio Chio Brad1g61300 GSHPk (PF00255) Glutathione peroxidase 6 226 244 7.66 Cylo Cylo PBeaux. Brad1g61300 GSHPk (PF00255) Glutathione peroxidase 6 226 244 7.66 Cylo Cylo Brad1g61300 GSHPk (PF00255) Glutathione peroxidase 6 168 18.4 6.31 Cylo/Chio Nucl/Chio Brad201218 GSHPk (PF00255) Glutathione peroxidase 6 170 19.2 9.05 Chio Chio Brad201218 GSHPk (PF00255) Glutathione peroxidase 6 176 19.2 9.05 Chio Chio Brad201214 GSHPk (PF00255) Glutathione peroxidase 6 167 19.3 Mito Chio		AT3G63080	GSHPx (PF00255)	Glutathione peroxidase	6	173	19.3	9.28	Extr/Chlo/Nucl	Chlo			
AT4G31570 GSHPx (PF00255) Glutathione peroxidase 6 233 25.7 9.53 Chio Chio Backpoolunt, Bradlogfo101,Li, Peakur, Pe		AT4G11600	GSHPx (PF00255)	Glutathione peroxidase	6	232	25.5	9.38	Mito/Chlo	Mito			
Brachypodum distart/yon (L) PBeauw Bradis (§1930) Fradis (§1930) GSHPX (PF00255) Giutathione peroxidase 6 226 24.4 9.57 Ohio Ohio Bradis (§1030) GSHPX (PF00255) Glutathione peroxidase 6 198 22.4 7.56 Cyto Cyto Bradis (§1000) GSHPX (PF00255) Glutathione peroxidase 6 126 18.4 6.31 Cyto Nucl Chio Bradis (§1000) GSHPX (PF00255) Glutathione peroxidase 6 197 21.9 8.55 Extr/Pase Extr Brara. E00003 GSHPX (PF00255) Glutathione peroxidase 6 197 21.9 8.55 Extr/Pase Extr Brara. C01994 GSHPX (PF00255) Glutathione peroxidase 6 176 19.5 9.15 Extr/Pyto Cyto Cyto Brara. L01234 GSHPX (PF00255) Glutathione peroxidase 6 123 2.8 9.29 Mito//Extr Ohio Brara. L01234 GSHPX (PF00255) Glutathione peroxidase 6 176 19.7 <td< td=""><td></td><td>AT4G31870</td><td>GSHPx (PF00255)</td><td>Glutathione peroxidase</td><td>6</td><td>233</td><td>25.7</td><td>9.53</td><td>Chlo</td><td>Chlo</td></td<>		AT4G31870	GSHPx (PF00255)	Glutathione peroxidase	6	233	25.7	9.53	Chlo	Chlo			
distations Bradigs1010 GSHPX (FP00255) Glutathione peroxidase 6 198 22.4 7.56 Cyto Cyto PBeaux. Bradigs1000 GSHPX (FP00255) Glutathione peroxidase 6 198 12.4 7.56 Cyto Cyto Ortio	Brachypodium	Bradi1g47140	GSHPx (PF00255)	Glutathione peroxidase	6	226	24.4	9.57	Chlo	Chlo			
PH368UN. Bradisg1010 GSHPA (PF00255) Glutathione peroxidase 6 240 25.9 9.05 Ohio Ohio Bradisg16000 GSHPA (PF00255) Glutathione peroxidase 6 188 6.31 Cyto/Chio Nucl/Chio Brass.02198 GSHPA (PF00255) Glutathione peroxidase 6 197 21.9 8.55 Extr/Plas Extr Brass.02198 GSHPA (PF00255) Glutathione peroxidase 6 197 21.9 8.55 Extr/Plas Extr Brass.01194 GSHPA (PF00255) Glutathione peroxidase 6 167 19.5 9.15 Extr/Cyto Chio Brass.01124 GSHPA (PF00255) Glutathione peroxidase 6 167 19.5 9.60 Mito/Extr Chio Chiomydomonas Cre03.g197750 GSHPA (PF00255) Glutathione peroxidase 6 176 19.7 8.86 Cyto Chio Cucasa.184280 GSHPA (PF00255) Glutathione peroxidase 6 176 19.7 8.86 Cyto Ch	distachyon (L.)	Bradi1g61930	GSHPx (PF00255)	Glutathione peroxidase	6	198	22.4	7.56	Cyto	Cyto			
Bradieg 18000 GSHPX (PF00255) Glutathione peroxidase 6 168 18.4 6.31 Cytor/Chio Nucl/Chio Brasce rapel L. Brare.B02692 GSHPX (PF00255) Glutathione peroxidase 6 197 21.9 8.55 Extr/Plass Extr Brare.B0003 GSHPX (PF00255) Glutathione peroxidase 6 170 19.2 9.05 Extr/Cyto Chio Brare.B01294 GSHPX (PF00255) Glutathione peroxidase 6 169 18.9 6.34 Cyto Cyto Brare.B01294 GSHPX (PF00255) Glutathione peroxidase 6 167 19.5 9.15 Extr/CytoNucl Chio Brare.M0392 GSHPX (PF00255) Glutathione peroxidase 6 233 25.8 9.29 Mito/Chio/Extr Chio PADarg. Chio253 Glutathione peroxidase 6 176 19.7 8.86 Cyto Chio Cucurvis Cucas.084960 GSHPX (PF00255) Glutathione peroxidase 6 176 19.7 8.86	P.Beauv.	Bradi3g51010	GSHPx (PF00255)	Glutathione peroxidase	6	240	25.9	9.05	Chlo	Chlo			
Brascar report Brana. B02892 GSHPx (PF00255) Glutathione peroxidase 6 229 25.2 9.21 Mito Chio/Mito Brana. C02198 GSHPx (PF00255) Glutathione peroxidase 6 197 21.9 8.55 Extr/Pia Extr Brana. C02198 GSHPx (PF00255) Glutathione peroxidase 6 197 19.2 8.05 Extr/Cyto Chio Brana. C01994 GSHPx (PF00255) Glutathione peroxidase 6 176 19.2 8.05 Extr/Cyto/Nucl Chio Brana.011234 GSHPx (PF00255) Glutathione peroxidase 6 176 18.9 5.00 Cyto Cyto Cyto Brana.101234 GSHPx (PF00255) Glutathione peroxidase 6 233 25.8 9.29 Mito/Chio/Extr Chio Chiamydomones cre03.g197750 GSHPx (PF00255) Glutathione peroxidase 6 176 19.7 8.86 Cyto Chio Cuccamis Cucca.094950 GSHPx (PF00255) Glutathione peroxidase 6 1		Bradi5g18000	GSHPx (PF00255)	Glutathione peroxidase	6	168	18.4	6.31	Cyto/Chlo	Nucl/Chlo			
Bras. C02198 GSHPx (PF00255) Glutathione peroxidase 6 197 21.9 8.55 Extr/Pas Extr Bras. E0003 GSHPx (PF00255) Glutathione peroxidase 6 176 19.2 9.05 Extr/Oyto Cyto	Brasica rapa L.	Brara.B02692	GSHPx (PF00255)	Glutathione peroxidase	6	229	25.2	9.21	Mito	Chlo/Mito			
Brare_E00003 GSHPx (PF00255) Glutathione peroxidase 6 170 19.2 9.05 Extr/Cyto Chio Brare_E01208 GSHPx (PF00255) Glutathione peroxidase 6 169 18.9 6.34 Cyto Cyto Brare_E01208 GSHPx (PF00255) Glutathione peroxidase 6 167 18.9 5.00 Cyto Cyto Brare_I01234 GSHPx (PF00255) Glutathione peroxidase 6 233 25.8 9.29 Mito/Chio/Extr Chio Chamydomonas Cre03.g197750 GSHPx (PF00255) Glutathione peroxidase 6 176 19.7 8.86 Cyto Chio PADang. Cucsa.084960 GSHPx (PF00255) Glutathione peroxidase 6 176 19.7 8.86 Cyto Chio Cucarnis Cucsa.084960 GSHPx (PF00255) Glutathione peroxidase 6 170 19.0 8.66 Cyto Chio Cucarnis Cucsa.184280 GSHPx (PF00255) Glutathione peroxidase 6 170 19.0 <td></td> <td>Brara.C02198</td> <td>GSHPx (PF00255)</td> <td>Glutathione peroxidase</td> <td>6</td> <td>197</td> <td>21.9</td> <td>8.55</td> <td>Extr/Plas</td> <td>Extr</td>		Brara.C02198	GSHPx (PF00255)	Glutathione peroxidase	6	197	21.9	8.55	Extr/Plas	Extr			
Braz E01208 GSHPX (PF00255) Glutathione peroxidase 6 169 18.9 6.34 Cyto Cyto Braz G01994 GSHPX (PF00255) Glutathione peroxidase 6 167 19.5 9.15 Extr/CytonNud Chio Braz L01234 GSHPX (PF00255) Glutathione peroxidase 6 233 25.8 9.29 Mito/Chio/Extr Chio Chlamydomonas Cre03.g197750 GSHPX (PF00255) Glutathione peroxidase 6 232 25.9 9.60 Mito/Chio/Extr Chio PALDarg, Cucsa.084960 GSHPX (PF00255) Glutathione peroxidase 6 176 19.7 8.86 Cyto Chio Cucarnis Cucsa.084960 GSHPX (PF00255) Glutathione peroxidase 6 170 19.0 8.66 Cyto Chio Cucarnis Cucsa.084960 GSHPX (PF00255) Glutathione peroxidase 6 170 19.0 8.66 Cyto Chio Cucarnis Cucsa.0303070 GSHPX (PF00255) Glutathione peroxidase 6		Brara.E00003	GSHPx (PF00255)	Glutathione peroxidase	6	170	19.2	9.05	Extr/Cyto	Chlo			
Brara_C01994 GSHPx (PF00255) Glutathione peroxidase 6 176 19.5 9.15 Extr/Cyto/Nucl Chio Brara_101234 GSHPx (PF00255) Glutathione peroxidase 6 167 18.9 5.00 Cyto Cyto Cyto Cyto Cyto Cyto Cyto Cyto Chio Brara_N0032 GSHPx (PF00255) Glutathione peroxidase 6 232 25.9 9.00 Mito/Chio/Extr Chio Chlomydomonas reinhardtii PA.Dang. Cre03.g197750 GSHPx (PF00255) Glutathione peroxidase 6 176 19.7 8.86 Cyto Chio Cucanis Cucas.084960 GSHPx (PF00255) Glutathione peroxidase 6 176 19.7 8.86 Cyto Chio Cucas.044960 GSHPx (PF00255) Glutathione peroxidase 6 170 19.0 8.66 Cyto/Extr Cyto Cucas.04900 GSHPx (PF00255) Glutathione peroxidase 6 241 26.4 9.5 Chio Chio Chio <		Brara.E01208	GSHPx (PF00255)	Glutathione peroxidase	6	169	18.9	6.34	Cyto	Cyto			
Brara.101234 GSHPx (PF00255) Glutathione peroxidase 6 167 18.9 5.00 Cyto Cyto Chamydomonas Gran.104448 GSHPx (PF00255) Glutathione peroxidase 6 233 25.8 9.29 Mito/Chio/Extr Chio Chamydomonas Gra0.3.g197750 GSHPx (PF00255) Glutathione peroxidase 6 232 25.9 9.60 Mito/Extr Chio Chamydomonas Cre03.g197750 GSHPx (PF00255) Glutathione peroxidase 6 176 19.7 8.66 Cyto Chio Cuccumis Cucsa.084960 GSHPx (PF00255) Glutathione peroxidase 6 176 19.7 8.66 Cyto Chio Cucsa.184280 GSHPx (PF00255) Glutathione peroxidase 6 170 19.0 8.66 Cyto/Extr Chio Cucsa.303070 GSHPx (PF00255) Glutathione peroxidase 6 211 26.8 9.28 Mito Chio/Accu grandis W. Hill EucgrA00257 GSHPx (PF00255) Glutathione peroxidase		Brara.G01994	GSHPx (PF00255)	Glutathione peroxidase	6	176	19.5	9.15	Extr/Cyto/Nucl	Chlo			
Brara.104448 Brara.K00392 GSHPx (PF00255) GSHPx (PF00255) Glutathione peroxidase 6 233 25.8 9.29 Mito/Chio/Extr Chio Chlamydomonas reinhardtii PA.Dang. Cre03.g197750 GSHPx (PF00255) Glutathione peroxidase 7 200 21.9 9.39 Mito Chio Cucumis sativus L. Cucsa.084960 GSHPx (PF00255) Glutathione peroxidase 6 176 19.7 8.86 Cyto Chio Cucumis sativus L. Cucsa.084960 GSHPx (PF00255) Glutathione peroxidase 6 170 19.7 8.86 Cyto Chio Cucsa.184280 GSHPx (PF00255) Glutathione peroxidase 6 170 19.0 8.66 Cyto/Extr Cyto Cucsa.303050 GSHPx (PF00255) Glutathione peroxidase 6 241 26.4 9.5 Chio Chio Eucalybus grandis W.Hill ex Malden Eucgr.00257 GSHPx (PF00255) Glutathione peroxidase 6 247 26.9 9.53 Chio Chio Eucalybus grandis W.Hill ex Malden Eu		Brara.I01234	GSHPx (PF00255)	Glutathione peroxidase	6	167	18.9	5.00	Cyto	Cyto			
Brara.K00392 GSHPx (PF00255) Glutathione peroxidase 6 232 25.9 9.60 Mito/Extr Chlo Chlamydomonas reinhardtli PA.Dang. Cre03.g197750 GSHPx (PF00255) Glutathione peroxidase 7 200 21.9 9.39 Mito Chlo Cucurnis sathvus L. Cucsa.084960 GSHPx (PF00255) Glutathione peroxidase 6 176 19.7 8.86 Cyto Chlo Cucurnis sathvus L. Cucsa.084960 GSHPx (PF00255) Glutathione peroxidase 6 176 19.7 8.86 Cyto Chlo Cucsa.184280 GSHPx (PF00255) Glutathione peroxidase 6 170 19.0 8.66 Cyto/Crtx Cyto Cucsa.21420 GSHPx (PF00255) Glutathione peroxidase 6 211 26.8 9.28 Mito Chlo Cucsa.303050 GSHPx (PF00255) Glutathione peroxidase 6 202 22.8 7.62 Extr/Chlo Chlo/Macu grandis W. Hill ex Maiden Eucgr.A00257 GSHPx (PF00255) Glutathione peroxidas		Brara.104448	GSHPx (PF00255)	Glutathione peroxidase	6	233	25.8	9.29	Mito/Chlo/Extr	Chlo			
Chlamydomonas reinhandtli PA.Dang. Cre03.g197750 Cucumis GSHPx (PF00255) Glutathione peroxidase 7 200 21.9 9.39 Mito Chlo Cucumis sativus L. Cucsa.084960 GSHPx (PF00255) Glutathione peroxidase 6 176 19.7 8.86 Cyto Chlo Cucumis sativus L. Cucsa.084960 GSHPx (PF00255) Glutathione peroxidase 6 176 19.7 8.86 Cyto Chlo Cucsa.184280 GSHPx (PF00255) Glutathione peroxidase 6 204 23.4 8.55 Plax/Extr Chlo Cucsa.303050 GSHPx (PF00255) Glutathione peroxidase 6 241 26.4 9.5 Chlo Chlo Cucsa.303070 GSHPx (PF00255) Glutathione peroxidase 6 202 22.8 7.62 Extr/Chlo Chlo/Acu grandls VI. Hill ex Maiden Eucgr.A00257 GSHPx (PF00255) Glutathione peroxidase 6 202 22.8 7.62 Extr/Chlo Chlo/Acu grandls VI. Hill ex Maiden Eucgr.A00257		Brara.K00392	GSHPx (PF00255)	Glutathione peroxidase	6	232	25.9	9.60	Mito/Extr	Chlo			
Cucumis sativus L. Cucsa.084960 Cucsa.094950 GSHPx (PF00255) GSHPx (PF00255) Glutathione peroxidase Glutathione peroxidase 6 176 19.7 8.86 Cyto Chilo Cucumis sativus L. Cucsa.094950 GSHPx (PF00255) Glutathione peroxidase 6 204 23.4 8.55 Plas/Extr Chilo Cucsa.184280 GSHPx (PF00255) Glutathione peroxidase 6 241 26.4 9.5 Chilo Chilo Cucsa.303050 GSHPx (PF00255) Glutathione peroxidase 6 241 26.8 9.28 Mito Chilo/Mito Cucsa.303070 GSHPx (PF00255) Glutathione peroxidase 6 202 22.8 7.62 Extr/Chilo Chilo/Macu grandis W. Hill Eucgr.02602 GSHPx (PF00255) Glutathione peroxidase 6 247 26.9 9.53 Chilo Chilo Chilo ex Maiden Eucgr.001856 GSHPx (PF00255) Glutathione peroxidase 6 170 19.4 5.16 Cyto Cyto Chilo eucgr.E00579 <td>Chlamydomonas reinhardtii P.A.Dang.</td> <td>Cre03.g197750</td> <td>GSHPx (PF00255)</td> <td>Glutathione peroxidase</td> <td>7</td> <td>200</td> <td>21.9</td> <td>9.39</td> <td>Mito</td> <td>Chlo</td>	Chlamydomonas reinhardtii P.A.Dang.	Cre03.g197750	GSHPx (PF00255)	Glutathione peroxidase	7	200	21.9	9.39	Mito	Chlo			
sativus L. Cuesa.094950 GSHPx (PF00255) Glutathione peroxidase 6 204 23.4 8.55 Plas/Extr Chio Cuesa.184280 GSHPx (PF00255) Glutathione peroxidase 6 170 19.0 8.66 Cyto/Extr Cyto Cuesa.303050 GSHPx (PF00255) Glutathione peroxidase 6 241 26.4 9.5 Chio Chio Eucalyptus grandis W. Hill ex Maiden Eucgr.A00257 GSHPx (PF00255) Glutathione peroxidase 6 247 26.9 9.53 Chio Chio/Vacu Eucalyptus grandis W. Hill ex Maiden Eucgr.C02602 GSHPx (PF00255) Glutathione peroxidase 6 247 26.9 9.53 Chio Chio/Vacu ex Maiden Eucgr.C02602 GSHPx (PF00255) Glutathione peroxidase 6 170 19.4 5.16 Cyto Cyto Eucgr.D01856 GSHPx (PF00255) Glutathione peroxidase 6 170 19.4 5.16 Cyto Chio Glycine max (L). Glyma.03G151500 GSHPx (PF00255)	Cucumis	Cucsa.084960	GSHPx (PF00255)	Glutathione peroxidase	6	176	19.7	8.86	Cyto	Chlo			
Cucsa.184280 GSHPx (PF00255) Glutathione peroxidase 6 170 19.0 8.66 Cyto/Extr Cyto Cucsa.271420 GSHPx (PF00255) Glutathione peroxidase 6 241 26.4 9.5 Chlo Chlo Chlo Cucsa.303050 GSHPx (PF00255) Glutathione peroxidase 6 241 26.8 9.28 Mito Chlo/Mito Eucalyptus grandis W. Hill ex Maiden Eucgr.A00257 GSHPx (PF00255) Glutathione peroxidase 6 202 22.8 7.62 Extr/Chlo Chlo/Vacu Eucalyptus grandis W. Hill ex Maiden Eucgr.C02602 GSHPx (PF00255) Glutathione peroxidase 6 202 22.8 7.62 Extr/Chlo Chlo/Vacu Eucgr.D01856 GSHPx (PF00255) Glutathione peroxidase 6 170 19.4 5.16 Cyto Cyto Eucgr.K03389 GSHPx (PF00255) Glutathione peroxidase 6 170 18.9 9.02 Cyto Chlo Chlo Merr. Glyma.03G151500 GSHPx (PF00255) Glu	sativus L.	Cucsa.094950	GSHPx (PF00255)	Glutathione peroxidase	6	204	23.4	8.55	Plas/Extr	Chlo			
Cucsa.271420 Cucsa.303050 Cucsa.303050 Cucsa.303070GSHPx (PF00255) GSHPx (PF00255)Glutathione peroxidase Glutathione peroxidase624126.49.5ChloChloEucalyptus grandis W. Hill ex MaidenEucgr.A00257 Eucgr.C02602 Eucgr.D01856 Eucgr.D01856 GSHPx (PF00255)Glutathione peroxidase Glutathione peroxidase620222.87.62Extr/ChloChlo/VacuEucgr.C02602 Eucgr.D01856 Eucgr.C0579 Eucgr.C0579 GSHPx (PF00255)Glutathione peroxidase Glutathione peroxidase620222.87.62Extr/ChloChlo/VacuGlycine max (L.) Merr.Glyma.03G151500 Glyma.03G013900 Glyma.11G024100 Glyma.11G022300GSHPx (PF00255) GSHPx (PF00255)Glutathione peroxidase Glutathione peroxidase617019.09.45Mito/CytoChloGossypium raimondii Ulbr.Gorai.001G038600 Gorai.004G087300GSHPx (PF00255) GSHPx (PF00255)Glutathione peroxidase Glutathione peroxidase617019.09.45Mito/CytoChloCossypium raimondii Ulbr.Gorai.001G038600 Gorai.004G087300GSHPx (PF00255) GSHPx (PF00255)Glutathione peroxidase Glutathione peroxidase Glutathione peroxidase617019.09.45Mito/CytoChloCossypium raimondii Ulbr.Gorai.001G038600 Gorai.004G087300GSHPx (PF00255) GSHPx (PF00255)Glutathione peroxidase Glutathione peroxidase Glutathione peroxidase616718.55.88CytoCytoGlogaspoin raimondii Ulbr.Gorai.001G038600 <b< td=""><td></td><td>Cucsa.184280</td><td>GSHPx (PF00255)</td><td>Glutathione peroxidase</td><td>6</td><td>170</td><td>19.0</td><td>8.66</td><td>Cyto/Extr</td><td>Cyto</td></b<>		Cucsa.184280	GSHPx (PF00255)	Glutathione peroxidase	6	170	19.0	8.66	Cyto/Extr	Cyto			
Cucsa.303050 Cucsa.303070GSHPx (PF00255) GSHPx (PF00255)Glutathione peroxidase Glutathione peroxidase624126.89.28MitoChlo/MitoEucalyptus grandis W. Hill ex MaidenEucgr.A00257 Eucgr.C02602GSHPx (PF00255) GSHPx (PF00255)Glutathione peroxidase Glutathione peroxidase620222.87.62Extr/ChloChlo/VacuEucgr.C02602 Eucgr.C02602GSHPx (PF00255) GSHPx (PF00255)Glutathione peroxidase Glutathione peroxidase624726.99.53ChloChloEucgr.C02602 Eucgr.C03389GSHPx (PF00255) GSHPx (PF00255)Glutathione peroxidase617019.45.16CytoCytoGlycine max (L.) Merr.Glyma.03G151500 Glyma.05G240100 Glyma.11G024100 GSHPx (PF00255)Glutathione peroxidase Glutathione peroxidase617019.09.45Mito/CytoChloGossypium raimondii Ulbr.Gorai.001G038600 Gorai.004G087300GSHPx (PF00255) GSHPx (PF00255)Glutathione peroxidase Glutathione peroxidase617019.09.45Mito/CytoChloGossypium raimondii Ulbr.Gorai.001G038600 Gorai.004G087300GSHPx (PF00255) GSHPx (PF00255)Glutathione peroxidase Glutathione peroxidase624226.69.30ChloChloGossypium raimondii Ulbr.Gorai.004G087300 Grai.004G087300GSHPx (PF00255)Glutathione peroxidase Glutathione peroxidase617119.19.24Nucl/Cyto/Extr<		Cucsa.271420	GSHPx (PF00255)	Glutathione peroxidase	6	241	26.4	9.5	Chlo	Chlo			
Cucsa.303070GSHPx (PF00255)Glutathione peroxidase617019.25.21CytoCytoEucgr.A00257GSHPx (PF00255)Glutathione peroxidase620222.87.62Extr/ChloChlo/Vacugrandis W. HillEucgr.C02602GSHPx (PF00255)Glutathione peroxidase624726.99.53ChloChloEucgr.D01856GSHPx (PF00255)Glutathione peroxidase617019.45.16CytoCytoEucgr.E00579GSHPx (PF00255)Glutathione peroxidase625027.39.16ChloChloEucgr.K03389GSHPx (PF00255)Glutathione peroxidase617019.09.45Mito/CytoChloGlycine max (L.)Glyma.03G151500GSHPx (PF00255)Glutathione peroxidase617019.09.45Mito/CytoChloMerr.Glyma.03G013100GSHPx (PF00255)Glutathione peroxidase616718.95.09CytoChloMerr.Glyma.03G013900GSHPx (PF00255)Glutathione peroxidase616718.55.88CytoCytoGlyma.11G024100GSHPx (PF00255)Glutathione peroxidase616718.55.88CytoCytoGossypiumGorai.004G083200GSHPx (PF00255)Glutathione peroxidase616718.55.88CytoChloGorai.004G087300GSHPx (PF00255)Glutathione peroxidase616718.55.88CytoChlo		Cucsa.303050	GSHPx (PF00255)	Glutathione peroxidase	6	241	26.8	9.28	Mito	Chlo/Mito			
Eucalyptus grandis W. Hill ex MaidenEucgr.A00257GSHPx (PF00255)Glutathione peroxidase620222.87.62Extr/ChloChlo/Vacugrandis W. Hill ex MaidenEucgr.C02602GSHPx (PF00255)Glutathione peroxidase624726.99.53ChloChloEucgr.D01856GSHPx (PF00255)Glutathione peroxidase617019.45.16CytoCytoEucgr.E00579GSHPx (PF00255)Glutathione peroxidase625027.39.16ChloChloEucgr.K03389GSHPx (PF00255)Glutathione peroxidase617018.99.02CytoChlo/NuclGlycine max (L.)Glyma.03G151500GSHPx (PF00255)Glutathione peroxidase617019.09.45Mito/CytoChloMerr.Glyma.05G240100GSHPx (PF00255)Glutathione peroxidase616718.95.09CytoChloGlyma.03G151500GSHPx (PF00255)Glutathione peroxidase616718.95.09CytoChloMerr.Glyma.03G240100GSHPx (PF00255)Glutathione peroxidase616718.55.88CytoCytoGlyma.11G024100GSHPx (PF00255)Glutathione peroxidase616718.55.88CytoCytoGorai.001G038600GSHPx (PF00255)Glutathione peroxidase623426.39.40Mito/ChloChloGorai.004G083200GSHPx (PF00255)Glutathione peroxidase6171		Cucsa.303070	GSHPx (PF00255)	Glutathione peroxidase	6	170	19.2	5.21	Cyto	Cyto			
grandis W. Hill ex MaidenEucgr.C02602GSHPx (PF00255)Glutathione peroxidase624726.99.53ChloChloEucgr.D01856GSHPx (PF00255)Glutathione peroxidase617019.45.16CytoCytoEucgr.E00579GSHPx (PF00255)Glutathione peroxidase625027.39.16ChloChloEucgr.K03389GSHPx (PF00255)Glutathione peroxidase617019.09.45Mito/CytoChloGlycine max (L.) Merr.Glyma.03G151500GSHPx (PF00255)Glutathione peroxidase617019.09.45Mito/CytoChloGlycine max (L.) Merr.Glyma.03G151500GSHPx (PF00255)Glutathione peroxidase617019.09.45Mito/CytoChloGlyma.05G240100GSHPx (PF00255)Glutathione peroxidase616718.95.09CytoChloGlyma.11G024100GSHPx (PF00255)Glutathione peroxidase616718.55.88CytoCytoGossypium raimondii Ulbr.Gorai.001G038600GSHPx (PF00255)Glutathione peroxidase624226.69.30ChloChloGorai.004G083200GSHPx (PF00255)Glutathione peroxidase617119.19.24Nucl/Cyto/ExtrNuclGorai.004G087300GSHPx (PF00255)Glutathione peroxidase623.65.51ExtrExtr	Eucalyptus	Eucgr.A00257	GSHPx (PF00255)	Glutathione peroxidase	6	202	22.8	7.62	Extr/Chlo	Chlo/Vacu			
ex MaidenEucgr.D01856GSHPx (PF00255)Glutathione peroxidase617019.45.16CytoCytoEucgr.E00579GSHPx (PF00255)Glutathione peroxidase625027.39.16ChloChloGlycine max (L.)Glyma.03G151500GSHPx (PF00255)Glutathione peroxidase617019.09.45Mito/CytoChloMerr.Glyma.05G240100GSHPx (PF00255)Glutathione peroxidase616718.95.09CytoChloGlyma.08G013900GSHPx (PF00255)Glutathione peroxidase616718.95.09CytoChloGlyma.11G024100GSHPx (PF00255)Glutathione peroxidase616718.55.88CytoCytoGossypiumGorai.001G038600GSHPx (PF00255)Glutathione peroxidase624226.69.30ChloChloGorai.004G087300GSHPx (PF00255)Glutathione peroxidase617119.19.24Nucl/Cyto/ExtrNuclGorai.004G087300GSHPx (PF00255)Glutathione peroxidase624226.69.30ChloChlo	grandis W. Hill	Eucgr.C02602	GSHPx (PF00255)	Glutathione peroxidase	6	247	26.9	9.53	Chlo	Chlo			
Eucgr.E00579 Eucgr.K03389GSHPx (PF00255)Glutathione peroxidase Glutathione peroxidase625027.39.16ChloChloChloGlycine max (L.) Merr.Glyma.03G151500 Glyma.05G240100 Glyma.05G240100 Glyma.08G013900 Glyma.11G024100 Glyma.17G223900GSHPx (PF00255) GSHPx (PF00255)Glutathione peroxidase Glutathione peroxidase617019.09.45Mito/CytoChloGlyma.03G151500 Merr.GSHPx (PF00255) Glyma.05G240100 Glyma.08G013900 Glyma.11G024100 Glyma.17G223900GSHPx (PF00255) GSHPx (PF00255)Glutathione peroxidase Glutathione peroxidase616718.95.09CytoChloGossypium raimondii Ulbr.Gorai.001G038600 Gorai.004G083200 Gorai.004G087300GSHPx (PF00255) GSHPx (PF00255)Glutathione peroxidase Glutathione peroxidase624226.69.30ChloChloCorai.004G087300GSHPx (PF00255) GSHPx (PF00255)Glutathione peroxidase Glutathione peroxidase617119.19.24Nucl/Cyto/ExtrNucl	ex Maiden	Eucgr.D01856	GSHPx (PF00255)	Glutathione peroxidase	6	170	19.4	5.16	Cyto	Cyto			
Eucgr.K03389GSHPx (PF00255)Glutathione peroxidase617018.99.02CytoChlo/NuclGlycine max (L.) Merr.Glyma.03G151500 Glyma.05G240100 Glyma.08G013900 Glyma.11G024100 GSHPx (PF00255)GSHPx (PF00255) Glutathione peroxidase617019.09.45Mito/CytoChloCorrect on the second of the secon		Eucgr.E00579	GSHPx (PF00255)	Glutathione peroxidase	6	250	27.3	9.16	Chlo	Chlo			
Glycine max (L.) Glyma.03G151500 GSHPx (PF00255) Glutathione peroxidase 6 170 19.0 9.45 Mito/Cyto Chlo Merr. Glyma.05G240100 GSHPx (PF00255) Glutathione peroxidase 6 199 22.7 7.54 Extr Extr Glyma.08G013900 GSHPx (PF00255) Glutathione peroxidase 6 167 18.9 5.09 Cyto Chlo Glyma.11G024100 GSHPx (PF00255) Glutathione peroxidase 6 167 18.5 5.88 Cyto Cyto Glyma.17G223900 GSHPx (PF00255) Glutathione peroxidase 6 234 26.3 9.40 Mito/Chlo Chlo Gossypium raimondii Ulbr. Gorai.001G038600 GSHPx (PF00255) Glutathione peroxidase 6 242 26.6 9.30 Chlo Chlo Gorai.004G083200 GSHPx (PF00255) Glutathione peroxidase 6 171 19.1 9.24 Nucl/Cyto/Extr Nucl Gorai.004G087300 GSHPx (PF00255) Glutathione peroxidase 6 208<		Eucgr.K03389	GSHPx (PF00255)	Glutathione peroxidase	6	170	18.9	9.02	Cyto	Chlo/Nucl			
Merr.Glyma.05G240100 Glyma.08G013900GSHPx (PF00255) GSHPx (PF00255)Glutathione peroxidase Glutathione peroxidase619922.77.54ExtrExtrExtrGlyma.08G013900 Glyma.11G024100GSHPx (PF00255) GSHPx (PF00255)Glutathione peroxidase616718.95.09CytoChloGlyma.17G223900GSHPx (PF00255)Glutathione peroxidase616718.55.88CytoCytoGorsi.001G038600GSHPx (PF00255)Glutathione peroxidase624226.69.30ChloChloGorai.004G083200 Gorai.004G087300GSHPx (PF00255)Glutathione peroxidase617119.19.24Nucl/Cyto/ExtrNucl	Glycine max (L.)	Glyma.03G151500	GSHPx (PF00255)	Glutathione peroxidase	6	170	19.0	9.45	Mito/Cyto	Chlo			
Glyma.08G013900 Glyma.11G024100 Glyma.17G223900GSHPx (PF00255) GSHPx (PF00255)Glutathione peroxidase Glutathione peroxidase616718.95.09CytoChloGossypium raimondii Ulbr.Gorai.001G038600 Gorai.004G087300GSHPx (PF00255)Glutathione peroxidase Glutathione peroxidase616718.55.88CytoCytoCytoGossypium raimondii Ulbr.Gorai.001G038600 Gorai.004G087300GSHPx (PF00255)Glutathione peroxidase Glutathione peroxidase624226.69.30ChloChloCorai.004G087300 GSHPx (PF00255)Glutathione peroxidase Glutathione peroxidase617119.19.24Nucl/Cyto/ExtrNucl	Merr.	Glyma.05G240100	GSHPx (PF00255)	Glutathione peroxidase	6	199	22.7	7.54	Extr	Extr			
Glyma.11G024100 Glyma.17G223900GSHPx (PF00255)Glutathione peroxidase Glutathione peroxidase616718.55.88CytoCytoGossypium raimondii Ulbr.Gorai.001G038600 Gorai.004G083200 Gorai.004G087300GSHPx (PF00255)Glutathione peroxidase624226.69.30ChloChloGossypium raimondii Ulbr.Gorai.004G083200 Gorai.004G087300GSHPx (PF00255)Glutathione peroxidase617119.19.24Nucl/Cyto/ExtrNucl		Glyma.08G013900	GSHPx (PF00255)	Glutathione peroxidase	6	167	18.9	5.09	Cyto	Chlo			
Glyma.17G223900GSHPx (PF00255)Glutathione peroxidase623426.39.40Mito/ChloChloGossypium raimondii Ulbr.Gorai.001G038600 Gorai.004G083200 Gorai.004G087300GSHPx (PF00255)Glutathione peroxidase624226.69.30ChloChloGorai.004G087300 GSHPx (PF00255)Glutathione peroxidase617119.19.24Nucl/Cyto/ExtrNucl		Glyma.11G024100	GSHPx (PF00255)	Glutathione peroxidase	6	167	18.5	5.88	Cyto	Cyto			
Gossypium Gorai.001G038600 GSHPx (PF00255) Glutathione peroxidase 6 242 26.6 9.30 Chlo Chlo raimondii Ulbr. Gorai.004G083200 GSHPx (PF00255) Glutathione peroxidase 6 171 19.1 9.24 Nucl/Cyto/Extr Nucl Gorai.004G087300 GSHPx (PF00255) Glutathione peroxidase 6 208 23.6 5.51 Extr Extr		Glyma.17G223900	GSHPx (PF00255)	Glutathione peroxidase	6	234	26.3	9.40	Mito/Chlo	Chlo			
raimondiii Ulbr. Gorai.004G083200 GSHPx (PF00255) Glutathione peroxidase 6 171 19.1 9.24 Nucl/Cyto/Extr Nucl Gorai.004G087300 GSHPx (PF00255) Glutathione peroxidase 6 208 23.6 5.51 Extr Extr	Gossypium	Gorai.001G038600	GSHPx (PF00255)	Glutathione peroxidase	6	242	26.6	9.30	Chlo	Chlo			
Gorai.004G087300 GSHPx (PF00255) Glutathione peroxidase 6 208 23.6 5.51 Extr Extr	<i>raimondii</i> Ulbr.	Gorai.004G083200	GSHPx (PF00255)	Glutathione peroxidase	6	171	19.1	9.24	Nucl/Cyto/Extr	Nucl			
		Gorai.004G087300	GSHPx (PF00255)	Glutathione peroxidase	6	208	23.6	5.51	Extr	Extr			

TABLE 1 | List of H₂O₂-scavenging enzyme glutathione peroxidase (GPX) homologs from 18 plant species and their primary gene/protein features.

(Continued)

TABLE 1 | Continued

Species name	Phytozome	Gene/protein features of GPX sequences									
	gene ID	Protein domain family ^a	Domain family description	Exon no.	Protein length	MW (KDa)	Theor. pl	Localization CELLO ^b	Localization WoLF PSORT ^b		
	Gorai.004G211400	GSHPx (PF00255)	Glutathione peroxidase	6	166	18.4	6.73	Cyto	Chlo		
	Gorai.006G186100	GSHPx (PF00255)	Glutathione peroxidase	6	168	18.7	6.73	Cyto	Cyto		
	Gorai.008G246600	GSHPx (PF00255)	Glutathione peroxidase	6	168	19.1	4.59	Cyto	Chlo		
Zea mays L.	GRMZM2G012479	GSHPx (PF00255)	Glutathione peroxidase	6	230	24.9	9.55	Mito	Chlo		
	GRMZM2G144153	GSHPx (PF00255)	Glutathione peroxidase	6	168	18.4	6.58	Cyto	Chlo/Nucl		
	GRMZM2G329144	GSHPx (PF00255)	Glutathione peroxidase	6	170	19.2	7.58	Cyto	Chlo		
Vitis vinifera L.	GSVIVG01010737001	GSHPx (PF00255)	Glutathione peroxidase	6	167	18.6	5.53	Cyto	Cyto		
	GSVIVG01011101001	GSHPx (PF00255)	Glutathione peroxidase	6	170	19.0	9.22	Cyto	Mito		
	GSVIVG01019765001	GSHPx (PF00255)	Glutathione peroxidase	6	170	19.2	5.01	Cyto	Cyto		
	GSVIVG01019766001	GSHPx (PF00255)	Glutathione peroxidase	6	168	18.6	6.73	Cyto	Chlo/Extr		
	GSVIVG01035981001	GSHPx (PF00255)	Glutathione peroxidase	6	207	22.9	9.16	Chlo/Mito	Chlo		
Oryza sativa L.	LOC_Os02g44500	GSHPx (PF00255)	Glutathione peroxidase	6	238	25.8	9.42	Chlo	Chlo		
	LOC_Os03g24380	GSHPx (PF00255)	Glutathione peroxidase	6	169	19.2	8.80	Cyto	Cyto		
	LOC_Os04g46960	GSHPx (PF00255)	Glutathione peroxidase	6	168	18.4	8.33	Cyto	Chlo		
	LOC_Os06g08670	GSHPx (PF00255)	Glutathione peroxidase	6	234	25	9.51	Mito/Chlo	Chlo		
LOC_Os	LOC_Os11g18170	GSHPx (PF00255)	Glutathione peroxidase	6	212	22.9	7.62	Chlo/Extr	Chlo		
Medicago	Medtr1g014210	GSHPx (PF00255)	Glutathione peroxidase	6	236	26.4	9.32	Mito/Chlo	Chlo		
truncatula	Medtr7g094600	GSHPx (PF00255)	Glutathione peroxidase	6	170	19.2	9.18	Cyto/Mito	Nucl		
Gaertn.	Medtr8g098400	GSHPx (PF00255)	Glutathione peroxidase	6	172	19.3	4.82	Cyto	Chlo		
	Medtr8g098410	GSHPx (PF00255)	Glutathione peroxidase	6	233	25.8	9.27	Mito	Chlo		
	Medtr8g105630	GSHPx (PF00255)	Glutathione peroxidase	6	167	18.9	8.32	Plas	Chlo		
Physcomitrella	Phpat.004G103100	GSHPx (PF00255)	Glutathione peroxidase	6	247	26.7	9.24	Chlo/Extr	Chlo		
<i>patens</i> (Hedw.) Bruch & Schimp.	Phpat.017G045400	GSHPx (PF00255)	Glutathione peroxidase	1	170	19.1	8.30	Cyto	Cyto		
Phaseolus	Phvul.001G041100	GSHPx (PF00255)	Glutathione peroxidase	6	262	29.7	9.68	Mito	Chlo		
<i>vulgaris</i> L.	Phvul.001G149000	GSHPx (PF00255)	Glutathione peroxidase	6	168	18.8	9.31	Cyto/Nucl	Nucl		
	Phvul.002G157200	GSHPx (PF00255)	Glutathione peroxidase	6	170	19.0	4.97	Cyto	Chlo/Nucl		
	Phvul.002G288700	GSHPx (PF00255)	Glutathione peroxidase	6	230	25.6	8.76	Chlo/Mito	Chlo		
	Phvul.002G322400	GSHPx (PF00255)	Glutathione peroxidase	6	198	22.5	5.94	Extr	Extr		
Populus	Potri.001G105100	GSHPx (PF00255)	Glutathione peroxidase	5	170	19.3	4.78	Cyto	Cyto		
trichocarpa Torr.	Potri 003G126100	GSHPx (PE00255)	Glutathione peroxidase	6	238	26.2	9 2 9	Mito/Chlo	Chlo		
& A.Gray ex.	Potri 006G265400	GSHPx (PE00255)	Glutathione peroxidase	6	232	25.3	9.48	Chlo/Mito	Chlo		
HOOK.	Potri 007G126600	GSHPx (PE00255)	Glutathione peroxidase	6	203	22.8	6.83	Extr	Extr//acu		
	Potri.014G138800	GSHPx (PF00255)	Glutathione peroxidase	6	170	18.9	9.15	Cyto/Extr	Chlo/Cyto		
Prunus persica	ppa010584m g	GSHPx (PE00255)	Glutathione peroxidase	6	244	26.7	9.33	Chlo	Chlo		
<i>(L.)</i> Batsch	ppa010771m g	GSHPx (PE00255)	Glutathione perovidase	e e	237	25.0	a 20	Mito	Chlo		
	ppa010771111.g	GSHPy (PE00255)	Glutathione peroxidase	6	201	20.8 22.7	9.20 8.07	Extr/Cuto	Extr		
	ppa011002111.y	GSHPy (PE00255)	Glutathione peroxidase	6	170	101	8 07	Cuto	Nucl/Cyto		
	ppa012416m.g	GSHPx (PF00255)	Glutathione peroxidase	6	170	19.4	4.86	Cyto	Chlo		
Sorahum bicolor	Sobic 0016365800	GSHPx (PF00255)	Glutathione perovidase	6	171	19.3	8 70	Cyto	Chlo		
(L.) Moench	Sobic 006G173900	GSHPy (PE00255)	Glutathione perovidage	6	168	18 /	6.58	Cyto	Chlo/Nucl		
	20010-0000173900	UUI IFX (FFUU200)	Giulali ilone peroxidase	U	100	10.4	0.00	OyiO	UTIO/ NUCI		

(Continued)

TABLE 1 | Continued

Species name	Phytozome gene ID	Gene/protein features of GPX sequences									
		Protein domain family ^a	Domain family description	Exon no.	Protein length	MW (KDa)	Theor. pl	Localization CELLO ^b	Localization WoLF PSORT ^b		
	Sobic.010G067100	GSHPx (PF00255)	Glutathione peroxidase	6	232	24.9	9.50	Mito/Chlo	Chlo		
	Sobic.K022000	GSHPx (PF00255)	Glutathione peroxidase	6	205	22.6	5.68	Cyto/Extr	Mito/Chlo		
Solanum	Solyc06g073460.2	GSHPx (PF00255)	Glutathione peroxidase	6	167	18.9	6.37	Cyto	Chlo		
lycopersicum L.	Solyc08g006720.2	GSHPx (PF00255)	Glutathione peroxidase	6	238	26.2	9.18	Chlo	Chlo		
	Solyc08g080940.2	GSHPx (PF00255)	Glutathione peroxidase	6	239	26.7	9.16	Mito	Chlo		
	Solyc09g064850.2	GSHPx (PF00255)	Glutathione peroxidase	6	170	19.0	9.33	Mito/Extr	Chlo		
	Solyc12g056240.1	GSHPx (PF00255)	Glutathione peroxidase	6	170	19.3	4.97	Cyto	Cyto		

^aProtein domain families were searched in Pfam database.

^bCyto, Cytosolic; Chlo, Chloroplastic; Mito, Mitochondrial; Vacu, Vacuolar; Nucl, Nuclear; Extr, Extracellular; Plas, Plasma membrane.

More than one localization specified in a single column also shows the significance of other entries in order.

and 232 residues, respectively, with mitochondrial localizations; the first 1-12 amino acids in GPX3 and 1-54 residues in GPX6 covered the transit peptide (Lin et al., 1999; Mayer et al., 1999). Arabidopsis GPX5 was 173 residues with probable ER or Plasma membrane localization, without transit peptide (Erfle et al., 2000). Arabidopsis GPX8 comprised of 167 amino acids with cytosolic or nuclear localization, without transit peptide (Theologis et al., 2000). In the present study, alignment analysis revealed that in chloroplastic/mitochondrial-related GPXs, the transit peptide sequences formed the first 50-90 amino acid residues from the N-terminal site while in extra cellular/plasma membrane-related GPXs, residues of the first 20-50 amino acid from N-terminal region contained the putative transit peptide. However, cytosolic sequences lacked of any putative transit residues (Supplementary Figure S1). Thus, analyzed GPX sequences were roughly categorized in three main groups based on their sequence length; the chloroplastic/mitochondrial related GPXs comprised the longer sequences (i), extra cellular/plasma membrane related GPXs formed the medium-sized sequences (ii), and cytosolic related GPXs included the shorter sequences (iii). In addition, the regions corresponding to the transit peptide sites in analyzed sequences did not demonstrate any particular patterns. The less-conserved transit peptide residues could be related with the functional diversities of GPXs at various targets. However, despite the variations in sequence length and transit peptide residues, transcripts of GPX homologs mainly contained the six exons. Therefore, it is reasonable to claim that analyzed GPX sequences could have highly-conserved protein sequences, preserved during the formation of various GPXs. The alignment analysis of 87 GPX protein homologs also confirmed this claim, demonstrating the presence of more conserved residues in the main sites of the active enzyme (Supplementary Figure S2). Moreover, to discern the conserved motif patterns in GPX sequences, the most conserved five motif sequences were searched in sets of 87 GPX homologs using MEME tool (Table 2). Motif 1 and 3 were the 50 amino acid residues, while the motif 2 was 41, motif 4 was 15, and motif 5 was 6 residues in length. Motif 1 and 3 were related with the GSHPx (PF00255) protein family and present in almost all GPX homologs. The presence of long conserved residues and their relation with the GSHPx family could indicate the highly conserved structures of GPX sequences at these sites between/among species.

Furthermore, alignment analysis also demonstrated that Asn (N), Gly (G), Arg (R), Pro (P), Thr (T), Tyr (Y), Lys (K), Ala-Ser (AS), Cys-Gly (CG), Phe-Pro (FP), Glu-Pro (EP), Leu-Lys (LK), Lys-Phe (KF), Asn-Gly (NG), Asn-Gln-Phe (NQF), and Trp-Asn-Phe (WNF) residues were strictly conserved in all aligned sequences, indicating their potential functions in enzyme activity and/or stability (Supplementary Figure S3). To infer a functional relationship between these conserved residues and GPX sequences, we searched for the known catalytic residues of model organism Arabidopsis GPXs in the UniProtKB/Swiss-Prot database of NCBI (www.ncbi.nlm.nih.gov/protein). The following residues were designated in the database as potential catalytic residues for Arabidopsis GPX1-8: GPX1 (Cys-111, Gln-146, Trp-200), GPX2 (Cys-41, Gln-76, Trp-130), GPX3 (Cys-80, Gln-115, Trp-169), GPX4 (Cys-44, Gln-79, Trp-133), GPX5 (Cys-46, Gln-81, Trp-135), GPX6 (Cys-105, Gln-140, Trp-194), GPX7 (Cys-108, Gln-143, Trp-197), and GPX8 (Cys-41, Glu-76, Trp-130). Interestingly, residues that correspond to these catalytic sites in other analyzed sequences were found to be strictly conserved (Supplementary Figure S3). This shows that active sites of the enzyme are considerably conserved between species.

Phylogenetic Analysis of GPXs

The evolutionary relationships between identified GPX sequences were analyzed by MEGA 6 using the Maximum Likelihood (ML) method with 1000 bootstraps. The constructed phylogeny included all 87 GPX homologs to discover the phylogenetic distribution of sequences (**Figure 1**). The tree was divided into six major groups based on the tree topology, and each group was indicated with a different color segment. The red segment included cytosolic, extra cellular, and plasma membrane

Motif	Width	Identified site no.	Sequence	Protein domain family ^a
1	50	87 of 87	KYKDQGFEILAFPCNQFGGQEPGTNEEIQQFACTRFKAEYPIFDKVDVNG	GSHPx (PF00255)
2	41	87 of 87	FGDRIKWNFTKFLVDKEGHVVDRYAPTTSPLQIEKDIQKLL	Not found
3	50	86 of 87	KSIHDFTVKDIRGNDVDLSIYKGKVLLIVNVASQCGMTNSNYTELNHLYE	GSHPx (PF00255)
4	15	87 of 87	NAAPLYKFLKSSKWG	Not found
5	6	63 of 87	MAASHS	Not found

TABLE 2 | Most conserved five motifs of glutathione peroxidase (GPX) homologs in 18 plant species.

^aProtein domain families have been searched in Pfam database.

related GPXs, the green segment contained mitochondrial and chloroplast related GPXs, the blue segment only had cytosolic GPXs, the cyan segment included cytosolic and chloroplast/mitochondrial related GPXs, the yellow segment contained cytosolic/nuclear related GPXs, and the noncolored segment had lower plant Chlamydomonas GPX with a chloroplastic/mitochondrial relation. Annotation of each segment based on the consensus of two subcellular localization servers, CELLO and WoLF PSORT, as well as tree topology for ambiguous sequences. Mainly cytosolic, nuclear, extra cellular and plasma membrane related GPXs were clustered together, while chloroplast/mitochondrial related GPXs also cluster together. Therefore, the presence or absence of transit peptide residues was the main contributing entity in the phylogenetic distribution of GPX sequences. In addition, the presence of sequences with different subcellular localizations in the same group inferred the possibility of gene duplication events in the formation of various GPX sequences. Duplications in plant genomes could be either as small-scale such as tandem and segmental duplications, or as large-scale such as whole-genome duplications (Ramsey and Schemske, 1998). The segmental duplications are observed in different chromosomes whereas tandem duplications occur in the same chromosome (Liu et al., 2011). Several segmental duplications were identified between GPX pairs (Table 3). The presence of segmental duplications, particularly between sequences with various subcellular localizations may partly explain the possibility of gene duplication events in GPX formations.

Expression Profile Analysis of GPXs

The potential expression profile of GPX genes was analyzed at 105 anatomical parts and 10 developmental stage levels using model organism A. thaliana GPXs from Genevestigator platform (Figure 2). Eight Arabidopsis genes, namely GPX1 (AT2G25080), GPX2 (AT2G31570), GPX3 (AT2G43350), GPX4 (AT2G48150), GPX5 (AT3G63080), GPX6 (AT4G11600), GPX7 (AT4G31870), and GPX8 (AT1G63460) were retrieved from the "Affymetrix Arabidopsis ATH1 Genome Array" platform using the Genevestigator interface, and conditions and genes with similar profiles were comparatively analyzed using the Hierarchical clustering tool with the Euclidean distance method. At an anatomical part level (Figure 2A), analyzed GPX1-8 genes were expressed in almost all 105 anatomical tissues in Arabidopsis plants. However, various root and leaf protoplast cells, seed-related tissues, and active growth zones demonstrated significantly higher GPX activity. This indicates that stress factors and/or active metabolism could lead to the up-regulation of various GPX genes in different tissues. Many studies have also showed that balance between production and scavenging of H₂O₂ could be disturbed by various biotic/abiotic stress factors or perturbations such as drought, salinity, pathogen attack, oxidative state of the cells (Apel and Hirt, 2004; Anjum et al., 2014, 2015; Sofo et al., 2015). Besides, a number of studies were also available demonstrating the functional roles of GPXs in plant stress resistance/tolerance. For example, a GPX gene in Pennisetum glaucum enhanced the drought and salinity stress tolerance (Islam et al., 2015). Citrus GPX3 was reported to be

TABLE 3 The segmental duplication events in some glutathione	
peroxidase (GPX) pairs.	

	Segmental duplication pairs						
Species name							
Arabidopsis thaliana (L.) Heynh.	AT2G25080-AT4G31870						
	AT2G48150-AT3G63080						
Brachypodium distachyon (L.) P.Beauv.	Bradi5g18000-Bradi3g51010						
Brasica rapa L.	Brara.E00003-Brara.G01994						
	Brara.104448-Brara.K00392						
Gossypium raimondii Ulbr.	Gorai.004G087300-Gorai.006G186100						
	Gorai.004G211400-Gorai.008G246600						
Vitis vinifera L.	GSVIVG01019765001-GSVIVG01019766001						
Oryza sativa L.	LOC_Os04g46960-LOC_Os02g44500						
<i>Physcomitrella patens</i> (Hedw.) Bruch & Schimp.	Phpat.017G045400-Phpat.004G103100						
Prunus persica (L.) Batsch	ppa012416m.g-ppa010771m.g						

essential in detoxification of ROS-induced cellular stresses as well as in Alternaria alternata pathogenesis (Yang et al., 2016). Silencing of mitochondrial GPX1 in O. sativa demonstrated the impaired photosynthesis in response to salinity (Lima-Melo et al., 2016). Glutathione transferases and peroxidases were reported as key components in Arabidopsis salt stress-acclimation (Horváth et al., 2015). GPX1 and GPX3 in legume root nodules played a protective function against salt stress, oxidative stress, and membrane damage (Matamoros et al., 2015). Therefore, GPXs, which are the antioxidant enzymatic components of the cells, are consequently induced to suppress/eliminate the toxic levels of H₂O₂. The increased GPX activities in analyzed Arabidopsis tissues could thereby be derived from the increased H2O2 or H₂O₂-related products. In addition, clustering analysis of GPX genes showed that GPX2, 3, 5, 6, and 8 demonstrate relatively similar expression profiles compared to those of GPX1, 4, and 7. At the developmental level (Figure 2B), the expression profiles of Arabidopsis GPX1-8 genes were analyzed at 10 developmental stages, including senescence, mature siliques, flowers and siliques, developed flower, young rosette, germinated seed, seedling, bolting, young flower, and developed rosette. GPX1-8 were relatively expressed in all developmental stages. However, the expression of GPXs in the senescence stage demonstrated slightly different patterns, particularly the mitochondrial GPX6 gene had the highest expression profile compared to other developmental stages. This may have been caused by senescence-related cellular deteriorations, leading to the substantial metabolic or physiological changes that significantly affect the overall metabolic energy consumption. Therefore, it seems that the expression profiles of GPXs are highly associated with the metabolic state of the cells.

3D Structure Analysis of GPXs

3D models of putative GPXs were constructed by using Phyre² server for eight identified *Arabidopsis GPX1-8* gene sequences (**Figure 3**). These sequences were: AT2G25080.1 (*GPX1*), AT2G31570.1 (*GPX2*), AT2G43350.1 (*GPX3*), AT2G48150.1 (*GPX4*), AT3G63080.1 (*GPX5*), AT4G11600.1

(GPX6), AT4G31870.1 (GPX7), and AT1G63460.1 (GPX8). In modeling, three templates such as 2F8A:A (GPX1, GPX3, GPX6, and GPX7), 2V1M:A (GPX2 and GPX5), and 2P5Q:A (GPX4 and GPX8) were used to maximize the alignment coverage, percentage identity and confidence for submitted sequences. Predicted models demonstrated the >98% of residues in allowed region in Ramachandran plot analysis, indicating that constructed models were fairly in good quality. To find out the structural divergence/similarity in generated models, the structures were superposed to calculate the percentage of structural overlap and RMSD values (Table 4). GPX1-GPX3, GPX4-GPX8, and GPX6-GPX7 pairs demonstrated the highly conserved structural overlap (100%) with 0.14, 0.00, and 0.03 RMSD values, respectively. The each designated pair also belonged to either chloroplastic/mitochondrial or cytosolic form, indicating their functional similarities with minor specifications. In addition, GPX1-GPX6 and 7, GPX2-GPX5, and GPX3-GPX6 and 7 pairs showed very high structural similarity with ≥ 94 structural overlaps. Despite the highly conserved structures of Arabidopsis GPX members, some minor variations were also present. It seems that these divergences in GPXs may not change the protein-3D structure, however, they could attribute the new functional roles to catalytic activities.

Interaction Partner Analysis of GPXs

The interactome network was constructed for 10 putative interactors of *Arabidopsis* cytosolic GPX2, using Cytoscape with STRING data (**Figure 4**). APX1 (L-ascorbate peroxidase), GSH2 (glutathione synthetase), GSTF6 (glutathione S-transferase F6), GSTT1 (glutathione S-transferase THETA 1), PER1 (1-Cys peroxiredoxin PER1), AT1G65820 (glutathione S-transferase), GSTF12 (glutathione S-transferase phi 12), GSTF2 (glutathione S-transferase F8), and

GSTU19 (glutathione S-transferase U19) proteins were predicted as the main interaction partners of Arabidopsis cytosolic GPX2. APX1 is a type of H₂O₂-scavenging enzyme and a central component in the reactive oxygen gene network (Storozhenko et al., 1998; Fourcroy et al., 2004). GSH2 involves in the second step of the glutathione synthesis pathway from L-cysteine and L-glutamate (Wang and Oliver, 1996). GSTF6 functions in camalexin biosynthesis, is involved in the conjugation of reduced glutathione to various exogenous/endogenous hydrophobic electrophiles, and has a detoxification role for certain herbicides (Su et al., 2011). GSTT1, GSTF8, and GSTU19 are reported to have glutathione S-transferase or peroxidase activity. They further conjugate the reduced glutathione to various exogenous/endogenous hydrophobic electrophiles and play a detoxification role for certain herbicides (Wagner et al., 2002). PER1 is an antioxidant protein involved in the inhibition of germination under stress (Haslekås et al., 1998). AT1G65820 is a glutathione S-transferase. GSTF12 is involved in the transport of anthocyanins and proanthocyanidins into the vacuole (Kitamura et al., 2004). GSTF2 plays a role in binding and transport of small bioactive products and defenserelated compounds under stress (Smith et al., 2003). The analysis indicated that cytosolic GPX2 enzyme is closely related with various pathways involving in antioxidant and secondary metabolite metabolisms, thereby supporting the functional role of GPXs in H₂O₂-scavenging and plant defense.

Analysis of APXs

Retrieval of APX Genes/Proteins

Eight potential *Arabidopsis* APX protein sequences such as APX1-6, APXT, and APXS, obtained from the UniProtKB / Swiss-Prot database of NCBI, were used as queries in Phytozome database to retrieve the very close homologs of APX sequences in

TABLE 4 | Structural overlap (%)/RMSD values in superposed Arabidopsis glutathione peroxidases (GPXs).

	GPX1	GPX2	GPX3	GPX4	GPX5	GPX6	GPX7	GPX8
GPX1	_	88.68/1.03	100.00/0.14	91.19/1.10	89.94/0.91	94.34/0.24	94.34/0.24	91.19/1.10
GPX2	88.05/0.89	-	88.68/0.93	93.75/0.66	99.38/0.15	91.82/0.92	91.82/0.92	94.38/0.71
GPX3	100.00/0.14	89.94/1.10	-	90.57/0.90	90.57/0.95	94.34/0.28	94.34/0.28	90.57/0.90
GPX4	89.94/1.07	93.75/0.67	91.19/0.96	-	95.65/0.67	94.97/0.97	94.97/0.97	100.00/0.00
GPX5	90.57/0.89	99.38/0.15	90.57/0.91	95.65/0.66	-	94.34/0.91	94.34/0.91	95.65/0.67
GPX6	94.34/0.24	92.45/1.04	94.34/0.28	95.60/1.07	94.97/1.04	-	100.00/0.03	95.60/1.06
GPX7	94.34/0.24	92.45/1.05	94.34/0.28	95.60/1.06	94.97/1.04	100.00/0.03	-	95.60/1.06
GPX8	91.19/0.99	95.00/0.75	91.19/0.98	100.00/0.00	95.65/0.67	94.97/0.97	94.97/0.97	-

Red-color highlighted pairs show the highly conserved structural overlaps.

18 plant species. In the selection of APX homologs from blastp hits, a very strict criterion (only the highest hit sequence) was applied to avoid redundant sequences and alternative splices of the same gene. A total of 120 APX sequences were identified from the protein datasets of 18 plant species. These were 8 genes for *A. thaliana*, 7 genes for *B. distachyon*, 8 genes for *B. rapa*, 4 genes for *C. reinhardtii*, 5 genes for *C. sativus*, 7 genes for *E. grandis*, 7 genes for *G. max*, 8 genes for *G. raimondii*, 7 genes for *M. truncatula*, 6 genes for *O. sativa*, 6 genes for *P. vulgaris*, 5 genes for *P. patens*, 7 genes for *P. trichocarpa*, 6 genes for *P. persica*, 7 genes for *S. lycopersicum*, 8 genes for *S. bicolor*, 6 genes for *V. vinifera*, and 8 genes for *Z. mays* (**Table 5**). Then, genomic, transcript, CDS, and protein sequences of 120 identified APX sequences were retrieved for further analyses.

Sequence Analysis of APX Genes/Proteins

A total of 120 APX homologs were identified in protein datasets of 18 plant species using *Arabidopsis* APX1-6, APXT, and APXS sequences by homology search. Identified APX sequences contained the peroxidase (PF00141) protein family domain. They encoded a protein of 197–478 amino acids residues (average length 323.9) and 23.7–52.1 kDa molecular weight with 5.03-9.23 pI value. The sequence variations in analyzed APXs demonstrated a correlation with their putative localizations,

Species name	Phytozome gene ID	Gene/protein features of GPX sequences											
		Protein domain family ^a	Domain family description	Exon no.	Protein length	MW (KDa)	Theor. pl	Localization CELLO ^b	Localization WoLF PSORT ^b				
Arabidopsis	AT1G07890	Peroxidase (PF00141)	Peroxidase	8	250	27.5	5.72	Cyto	Cyto				
thaliana (L.) Heynh.	AT1G77490	Peroxidase (PF00141)	Peroxidase	12	426	46.0	6.81	Chlo	Chlo				
	AT3G09640	Peroxidase (PF00141)	Peroxidase	9	251	28.0	5.87	Cyto	Cyto				
	AT4G08390	Peroxidase (PF00141)	Peroxidase	10	372	40.4	8.31	Chlo	Chlo				
	AT4G09010	Peroxidase (PF00141)	Peroxidase	10	349	37.9	8.59	Chlo/Mito	Chlo				
	AT4G32320	Peroxidase (PF00141)	Peroxidase	10	329	36.2	8.99	Chlo	Chlo				
	AT4G35000	Peroxidase (PF00141)	Peroxidase	9	287	31.5	6.47	Cyto	Cyto				
	AT4G35970	Peroxidase (PF00141)	Peroxidase	9	279	30.8	8.80	Cyto/Nucl	Cyto				
Brachypodium	Bradi1g16510	Peroxidase (PF00141)	Peroxidase	9	256	27.7	5.28	Cyto	Cyto				
distachyon (L.)	Bradi1g65820	Peroxidase (PF00141)	Peroxidase	9	250	27.4	5.71	Cyto	Cyto				
P.Beauv.	Bradi3g40330	Peroxidase (PF00141)	Peroxidase	11	329	35.4	6.36	Chlo	Chlo				
	Bradi3g42340	Peroxidase (PF00141)	Peroxidase	9	289	31.5	7.70	Cyto/Chlo	Cyto				
	Bradi3g45700	Peroxidase (PF00141)	Peroxidase	12	439	47.3	5.61	Chlo	Chlo				
	Bradi5g10490	Peroxidase (PF00141)	Peroxidase	11	345	37.4	8.77	Chlo/Mito	Chlo				
	Bradi5g20670	Peroxidase (PF00141)	Peroxidase	10	333	36.1	8.71	Mito	Chlo				
Brasica rapa L.	Brara.A00250	Peroxidase (PF00141)	Peroxidase	8	280	31.0	7.69	Cyto	Cyto				
	Brara.A03521	Peroxidase (PF00141)	Peroxidase	9	251	28.1	6.41	Cyto	Cyto				
	Brara.C02583	Peroxidase (PF00141)	Peroxidase	9	348	37.9	8.59	Chlo/Mito	Chlo				
	Brara.G03518	Peroxidase (PF00141)	Peroxidase	10	439	47.5	7.70	Chlo	Chlo				
	Brara.102406	Peroxidase (PF00141)	Peroxidase	10	354	38.8	7.12	Chlo/Mito	Chlo				
	Brara.105334	Peroxidase (PF00141)	Peroxidase	7	250	27.5	5.61	Cyto	Cyto				
	Brara.K00318	Peroxidase (PF00141)	Peroxidase	9	287	31.7	6.67	Cyto	Cyto				
	Brara.K00699	Peroxidase (PF00141)	Peroxidase	10	327	36.1	8.72	Chlo	Chlo				
Chlamydomonas	Cre02.g087700	Peroxidase (PF00141)	Peroxidase	10	327	35.6	8.67	Mito/Chlo	Chlo/Mito				
PA Dang	Cre05.g233900	Peroxidase (PF00141)	Peroxidase	8	347	36.4	9.23	Chlo	Chlo/Mito				
r.,	Cre06.g285150	Peroxidase (PF00141)	Peroxidase	7	337	35.1	8.95	Chlo/Mito	Chlo/Mito				
	Cre09.g401886	Peroxidase (PF00141)	Peroxidase	10	372	39.4	8.63	Chlo	Chlo				
Cucumis sativus L.	Cucsa.060660	Peroxidase (PF00141)	Peroxidase	11	413	44.8	7.09	Chlo	Chlo				
	Cucsa.162470	Peroxidase (PF00141)	Peroxidase	8	249	27.3	7.74	Chlo/Cyto	Nucl				
	Cucsa.213340	Peroxidase (PF00141)	Peroxidase	9	249	27.3	5.43	Cyto	Cyto				
	Cucsa.311620	Peroxidase (PF00141)	Peroxidase	11	368	40.2	7.67	Chlo	Chlo				
	Cucsa.370590	Peroxidase (PF00141)	Peroxidase	9	286	31.4	6.41	Cyto	Cyto				
Eucalyptus grandis	Eucgr.A01180	Peroxidase (PF00141)	Peroxidase	9	249	27.4	6.07	Cyto	Cyto				
	Eucgr.B02456	Peroxidase (PF00141)	Peroxidase	9	249	27.2	5.29	Cyto	Cyto				
	Eucgr.C01740	Peroxidase (PF00141)	Peroxidase	9	369	39.6	8.44	Chlo	Chlo				
	Eucgr.F00373	Peroxidase (PF00141)	Peroxidase	11	356	38.3	6.50	Chlo	Chlo				
	Eucgr.F04344	Peroxidase (PF00141)	Peroxidase	12	446	48.2	8.71	Chlo	Chlo				
	Eucgr.F04344	Peroxidase (PF00141)	Peroxidase	11	397	42.8	8.60	Chlo	Chlo				
	Eucgr.I01408	Peroxidase (PF00141)	Peroxidase	9	287	31.5	6.67	Cyto/Chlo	Cyto				
Glycine max (L.)	Glyma.04G248300	Peroxidase (PF00141)	Peroxidase	11	386	41.9	7.06	Chlo	Chlo				
werr.	Glyma.06G068200	Peroxidase (PF00141)	Peroxidase	10	319	34.2	7.56	Chlo	Chlo				
	Glyma.06G114400	Peroxidase (PF00141)	Peroxidase	12	432	47.0	7.13	Chlo	Chlo				

TABLE 5 | List of H₂O₂-scavenging enzyme ascorbate peroxidase (APX) homologs from 18 plant species and their primary gene/protein features.

(Continued)

TABLE 5 | Continued

Species name	Phytozome	Gene/protein features of GPX sequences									
	gene ID	Protein domain family ^a	Domain family description	Exon no.	Protein length	MW (KDa)	Theor. pl	Localization CELLO ^b	Localization WoLF PSORT ^b		
	Glyma.11G078400	Peroxidase (PF00141)	Peroxidase	9	280	31.1	9.08	Cyto/Mito	Cyto		
	Glyma.12G032300	Peroxidase (PF00141)	Peroxidase	9	287	31.7	6.27	Cyto	Cyto		
	Glyma.12G073100	Peroxidase (PF00141)	Peroxidase	9	250	27.1	5.65	Cyto	Cyto		
	Glyma.14G177200	Peroxidase (PF00141)	Peroxidase	10	347	37.9	6.76	Extr/Mito/Chlo	Chlo		
Gossypium	Gorai.002G196800	Peroxidase (PF00141)	Peroxidase	9	288	31.7	5.64	Cyto	Cyto		
<i>raimondii</i> Ulbr.	Gorai.005G254100	Peroxidase (PF00141)	Peroxidase	9	288	31.9	6.67	Cyto	Cyto		
	Gorai.009G104500	Peroxidase (PF00141)	Peroxidase	9	250	27.5	5.73	Cyto	Cyto		
	Gorai.009G246900	Peroxidase (PF00141)	Peroxidase	11	385	41.7	8.89	Chlo	Chlo		
	Gorai.009G420500	Peroxidase (PF00141)	Peroxidase	9	251	27.8	6.01	Cyto	Cyto		
	Gorai.010G038200	Peroxidase (PF00141)	Peroxidase	11	355	38.8	7.53	Chlo	Chlo		
	Gorai.010G051400	Peroxidase (PF00141)	Peroxidase	12	422	46.0	6.77	Chlo	Chlo		
	Gorai.010G115200	Peroxidase (PF00141)	Peroxidase	10	334	36.2	8.17	Chlo	Chlo		
Zea mays L.	GRMZM2G004211	Peroxidase (PF00141)	Peroxidase	9	290	32.0	7.72	Cyto/Mito	Cyto		
	GRMZM2G006791	Peroxidase (PF00141)	Peroxidase	12	451	48.9	5.60	Chlo	Chlo		
	GRMZM2G047968	Peroxidase (PF00141)	Peroxidase	7	223	23.7	9.01	Chlo/Cyto	Mito/Chlo		
	GRMZM2G054300	Peroxidase (PF00141)	Peroxidase	9	250	27.3	5.56	Cyto	Cyto		
	GRMZM2G120517	Peroxidase (PF00141)	Peroxidase	11	339	37.0	8.86	Mito	Chlo		
	GRMZM2G137839	Peroxidase (PF00141)	Peroxidase	9	250	27.3	5.64	Cyto	Cyto		
	GRMZM2G156227	Peroxidase (PF00141)	Peroxidase	10	351	38.3	8.62	Mito	Chlo		
	GRMZM2G460406	Peroxidase (PF00141)	Peroxidase	8	289	31.6	7.73	Cyto/Chlo	Cyto		
Vitis vinifera L.	GSVIVG01008846001	Peroxidase (PF00141)	Peroxidase	11	372	40	7.10	Chlo	Chlo		
	GSVIVG01009079001	Peroxidase (PF00141)	Peroxidase	10	344	37.4	6.65	Extr/Chlo	Chlo		
	GSVIVG01024035001	Peroxidase (PF00141)	Peroxidase	9	289	31.7	7.72	Chlo/Cyto	Cyto		
	GSVIVG01025104001	Peroxidase (PF00141)	Peroxidase	9	250	27.5	5.71	Cyto	Cyto		
	GSVIVG01025551001	Peroxidase (PF00141)	Peroxidase	9	253	27.9	5.43	Cyto	Cyto		
	GSVIVG01035858001	Peroxidase (PF00141)	Peroxidase	10	330	35.9	6.47	Chlo/Cyto	Chlo		
Oryza sativa L.	LOC_Os02g34810	Peroxidase (PF00141)	Peroxidase	12	478	51.1	5.36	Chlo	Chlo		
	LOC_Os04g35520	Peroxidase (PF00141)	Peroxidase	11	359	38.3	8.76	Chlo	Chlo		
	LOC_Os04g51300	Peroxidase (PF00141)	Peroxidase	11	353	38.1	8.67	Mito/Chlo	Chlo		
	LOC_Os07g49400	Peroxidase (PF00141)	Peroxidase	9	251	27.1	5.18	Cyto	Cyto		
	LOC_Os08g41090	Peroxidase (PF00141)	Peroxidase	10	331	35.5	6.95	Chlo	Chlo		
	LOC_Os08g43560	Peroxidase (PF00141)	Peroxidase	9	291	31.7	7.74	Chlo/Cyto/Mito	Cyto		
Medicago	Medtr3g088160	Peroxidase (PF00141)	Peroxidase	11	436	47.4	9.02	Chlo	Chlo		
<i>truncatula</i> Gaertn.	Medtr3g088160	Peroxidase (PF00141)	Peroxidase	10	387	42.0	8.73	Chlo	Chlo		
	Medtr3g107060	Peroxidase (PF00141)	Peroxidase	10	320	34.7	8.08	Chlo	Mito/Chlo		
	Medtr4g061140	Peroxidase (PF00141)	Peroxidase	9	250	27.1	5.52	Cyto	Cyto		
	Medtr4g073410	Peroxidase (PF00141)	Peroxidase	9	287	31.7	6.26	Cyto	Chlo/Cyto		
	Medtr5g022510	Peroxidase (PF00141)	Peroxidase	9	281	31.4	8.74	Cyto	Cyto		
	Medtr5g064610	Peroxidase (PF00141)	Peroxidase	10	353	38.9	8.18	Mito/Nucl	Chlo		
Physcomitrella	Phpat.001G070500	Peroxidase (PF00141)	Peroxidase	11	358	38.4	7.56	Chlo	Chlo		
patens (Hedw.)	Phpat.001G104200	Peroxidase (PF00141)	Peroxidase	9	300	32.6	7.01	Chlo	Cyto		
Bruch & Schimp.	Phpat.001G162800	Peroxidase (PF00141)	Peroxidase	2	440	48.2	8.11	Chlo	Chlo		
	Phpat.017G025400	Peroxidase (PF00141)	Peroxidase	11	357	38.4	6.15	Chlo	Chlo		
	Phpat.020G011100	Peroxidase (PF00141)	Peroxidase	9	250	27.6	5.66	Cyto	Cyto		

(Continued)

Species name	Phytozome	Gene/protein features of GPX sequences									
	gene ID	Protein domain family ^a	Domain family description	Exon no.	Protein length	MW (KDa)	Theor. pl	Localization CELLO ^b	Localization WoLF PSORT ^b		
Phaseolus	Phvul.008G176700	Peroxidase (PF00141)	Peroxidase	10	347	37.6	6.05	Chlo/Extr	Chlo		
<i>vulgaris</i> L.	Phvul.009G093000	Peroxidase (PF00141)	Peroxidase	10	317	34.2	8.38	Chlo	Chlo		
	Phvul.009G126500	Peroxidase (PF00141)	Peroxidase	12	436	47.8	8.67	Chlo	Chlo		
	Phvul.009G126500	Peroxidase (PF00141)	Peroxidase	11	387	42.4	8.51	Chlo	Chlo		
	Phvul.011G035000	Peroxidase (PF00141)	Peroxidase	9	287	31.6	7.10	Cyto	Cyto		
	Phvul.011G071300	Peroxidase (PF00141)	Peroxidase	9	250	27	5.54	Cyto	Cyto		
Populus	Potri.004G174500	Peroxidase (PF00141)	Peroxidase	9	286	31.5	6.67	Cyto	Cyto		
trichocarpa Torr. &	Potri.005G161900	Peroxidase (PF00141)	Peroxidase	10	347	37.8	7.59	Chlo/Mito	Chlo		
A.Gray ex. Hook.	Potri.005G179200	Peroxidase (PF00141)	Peroxidase	10	345	37.8	5.98	Cyto	Chlo/Mito		
	Potri.006G132200	Peroxidase (PF00141)	Peroxidase	9	249	27.4	5.27	Cyto	Cyto		
	Potri.006G254500	Peroxidase (PF00141)	Peroxidase	10	337	36.7	8.44	Chlo	Chlo		
	Potri.009G015400	Peroxidase (PF00141)	Peroxidase	9	249	27.3	5.53	Cyto	Cyto		
	Potri.009G134100	Peroxidase (PF00141)	Peroxidase	9	286	31.4	7.06	Cyto	Cyto		
Prunus persica (L.)	ppa006270m	Peroxidase (PF00141)	Peroxidase	11	420	45.4	8.48	Chlo	Chlo		
Batsch	ppa008008m	Peroxidase (PF00141)	Peroxidase	10	349	38.4	6.09	Mito/Chlo/Extr	Chlo		
	ppa009582m	Peroxidase (PF00141)	Peroxidase	9	286	31.4	6.21	Cyto	Cyto		
	ppa010413m	Peroxidase (PF00141)	Peroxidase	9	250	27.3	5.76	Cyto	Cyto		
	ppa010426m	Peroxidase (PF00141)	Peroxidase	9	250	27.6	5.37	Cyto	Cyto		
	ppa015878m	Peroxidase (PF00141)	Peroxidase	10	319	34.3	6.24	Chlo	Chlo		
Sorghum bicolor	Sobic.001G410200	Peroxidase (PF00141)	Peroxidase	9	250	27.2	5.55	Cyto	Cyto		
(L.) Moench	Sobic.002G431100	Peroxidase (PF00141)	Peroxidase	9	250	27.1	5.18	Cyto	Cyto		
	Sobic.004G175500	Peroxidase (PF00141)	Peroxidase	13	473	51.1	5.03	Chlo	Chlo		
	Sobic.006G021100	Peroxidase (PF00141)	Peroxidase	9	476	52.1	8.97	Nucl	Chlo		
	Sobic.006G084400	Peroxidase (PF00141)	Peroxidase	11	344	37.2	8.60	Mito/Chlo	Chlo		
	Sobic.006G204000	Peroxidase (PF00141)	Peroxidase	11	395	42.9	8.74	Mito/Chlo	Chlo		
	Sobic.007G177000	Peroxidase (PF00141)	Peroxidase	8	289	31.5	7.73	Cyto	Cyto		
	Sobic.007G205600	Peroxidase (PF00141)	Peroxidase	10	333	36.2	7.58	Chlo	Chlo		
Solanum	Solyc01g111510	Peroxidase (PF00141)	Peroxidase	8	287	31.6	7.10	Cyto	Cyto		
lycopersicum L.	Solyc04g074640	Peroxidase (PF00141)	Peroxidase	10	345	37.6	7.60	Chlo/Mito	Chlo		
	Solyc06g005150	Peroxidase (PF00141)	Peroxidase	9	250	27.3	5.86	Cyto	Cyto		
	Solyc06g060260	Peroxidase (PF00141)	Peroxidase	10	345	37.8	8.48	Chlo	Chlo		
	Solyc08g059760	Peroxidase (PF00141)	Peroxidase	10	326	35.4	5.65	Chlo	Chlo		
	Solyc09g007270	Peroxidase (PF00141)	Peroxidase	9	250	27.6	5.63	Cyto	Cyto		
	Solyc11g018550	Peroxidase (PF00141)	Peroxidase	12	421	46.0	8.20	Chlo	Chlo		

TABLE 5 | Continued

^aProtein domain families were searched in Pfam database.

^bCyto, Cytosolic; Chlo, Chloroplastic; Mito, Mitochondrial; Nucl, Nuclear; Extr, Extracellular.

More than one localization specified in a single column also shows the significance of other entries in order.

thereby indicated the presence of transit residues (**Table 5**). Molecular cloning studies from *A. thaliana* have demonstrated that APX1, APX2, and APX6 are polypeptides of 250, 251, and 329 amino acids, respectively, with cytosolic localizations but without transit peptide (Davletova et al., 2005; Jones et al., 2009; Aryal et al., 2011). APX3 and APX5 consisted of 287 and 279 amino acids, respectively, with peroxisomal localizations; however, sites of transit peptide residues are not precisely

specified (Panchuk et al., 2002; Narendra et al., 2006; Bienvenut et al., 2012). APX4 is a 349 amino acids protein with chloroplastic localization, including 1–82 residues as transit peptide from the N-terminal site (Kieselbach et al., 2000; Panchuk et al., 2005; Aryal et al., 2011). APXT is a 426 amino acids chloroplastic protein, including 1–78 residues of transit peptide (Theologis et al., 2000; Panchuk et al., 2005). APXS consists of 372 amino acids with chloroplastic and/or mitochondrial localizations, but the exact site of the transit peptide is not specified (Jespersen et al., 1997; Mayer et al., 1999; Chew et al., 2003). In the present study, multiple-alignment of APX sequences revealed that chloroplastic/mitochondrial-related APXs contained the transit peptide residues in approximately 1–90 amino acids from the N-terminal site while cytosolic APXs did not have any putative transit peptide (Supplementary Figure S4). Thus, the analyzed APX sequences were gathered in two main groups based on subcellular localizations, such as chloroplastic/mitochondrial APXs (i) and cytosolic APXs (ii).

In addition, the regions corresponding to the transit peptide sites in analyzed sequences did not demonstrate any particular pattern. This could indicate that less conservancy in transit peptides may be associated with the functional diversities of APXs at various targets. Besides, APX transcripts mainly consisted of 8-12 exons, supporting the relatively less conserved structure of APXs compared to GPXs. However, alignment analysis also demonstrated the presence of a considerable degree of conserved residues in the main sites of enzyme (Supplementary Figure S5). Moreover, to analyze the availability of any conserved motif pattern/s in APX sequences, the most conserved five motif sequences of APX homologs were searched using MEME tool (Table 6). Motif 1 was 29 residues long, motif 2 and 4 were 21 residues, motif 3 was 32 residues, and motif 5 was 25 residues in length. However, only motifs 2 and 3 had a relation with the peroxidase (PF00141) protein family, and in this case were present in most of the sequences. This could indicate the highly conserved structures of APX sequences at those sites with peroxidase activity.

Furthermore, alignment analysis also demonstrated that Asp (D) and Gly-Gly (GG) residues are strictly conserved in all aligned sequences, indicating their potential functions in enzyme activity and/or stability (Supplementary Figure S6). To infer a functional relationship between these conserved residues and APX sequences, we searched for the known binding residues of model organism Arabidopsis APXs in the UniProtKB database (http://www.uniprot.org/uniprot/). The following residues were reported as potential active and metal binding residues for Arabidopsis GPX1-6, APXT, and APXS: APX1 (Arg-38, His-42, His-163, Thr-164, Thr-180, Asn-182, Ile-185, Asp-187), APX2 (Arg-39, His-43, His-163, Thr-164, Thr-180, Asn-182, Ile-185, Asp-187), APX3 (Arg-36, His-40, His-160, Thr-161, Thr-177, Asp-184), APX5 (Arg-35, His-39, His-158, Thr-159, Thr-175, Asp-182), APX6 (Arg-119, His-123, His-224), APXT (Arg-108, His-112, His-241, Thr-242, Thr-274, Asp-281), and

TABLE 6 | Most conserved five motifs of ascorbate peroxidase (APX) homologs in 18 plant species

APXS (Arg-129, His-133, His-262, Thr-263, Thr-295, Asp-302). These active and metal binding residues did not correspond to any of the strictly conserved residues in analyzed APX sequences but they were found to be conserved at considerable rates. However, when taken into consideration that some of the strictly conserved residues in analyzed GPX sequences correspond to the catalytic sites of the enzymes, we can make an inference that these strictly conserved residues in APX sequences may also be associated with the peroxidase activity of the enzyme.

Phylogenetic Analysis of APXs

To analyze the evolutionary relationship between identified APX homologs, the phylogenetic tree was constructed by MEGA 6 using the Maximum Likelihood (ML) method with 1000 bootstraps (Figure 5). The constructed tree was divided into five major groups based on the tree topology, and each group was indicated with a different color segment. Blue, red, and green segments included the chloroplast/mitochondria-related APXs with relatively longer, medium and short sequences, respectively, whereas cyan and yellow segments mainly contained longer and shorter cytosolic APX sequences, respectively. Annotation of each segment was based on the consensus of two subcellular localization servers, CELLO and WoLF PSORT, as well as tree topology for ambiguous sequences. Overall, it was observed that cytosolic-related APXs clustered together, while alternatively chloroplast/mitochondrial-related APXs were together. In addition, in clustering of sequences at sub-branches was primarily based on the sequence length and monocot/dicot separation. However, there were considerable variations between sequences, even those belonging to the same subcellular localization. It is thought that these sequence variations could be attributed to the various functional diversities of APXs and/or be associated with different subcellular localizations. Moreover, some sequences were also available with different subcellular localizations in the same clade, indicating the possibility of gene duplication events in formation of some APX genes. The gene duplication events were searched based on the previously designated protocol (Gu et al., 2002). In doing so, several segmental and tandem duplications were identified between some APX pairs (Table 7). The identified segmental or tandem duplications in APX genes were observed between either chloroplastic and chloroplastic, or cytosolic and cytosolic forms. This could indicate the possibility of gene duplication events in the formation of close APX homologs.

INDEE 0 III												
Motif	Width	Identified site no.	Sequence	Protein domain family ^a								
1	1 29	120 of 120	CHPIMLRLAWHDAGTYDKNTKTWGPNGSI	Not found								
2	21	101 of 120	MGLNDQDIVALSGGHTLGRCH	Peroxidase (PF00141)								
3	32	119 of 120	IITYADLYQLAGVVAVEVCGGPTIPMHCGRND	Peroxidase (PF00141)								
4	21	118 of 120	DPEFRPWVEKYAEDQDAFFRD	Not found								
5	25	84 of 120	ERSGFEQPWTVNWLKFDNSYFKEIL	Not found								

^aProtein domain families have been searched in Pfam database.

Expression Profile Analysis of APXs

The gene expression profiles of *APXs* were analyzed at 105 anatomical parts and 10 developmental stage levels using model organism *A. thaliana APXs* from Genevestigator platform (**Figure 6**). Eight *Arabidopsis* genes, namely APX1 (AT1G07890), APX2 (AT3G09640), APX3 (AT4G35000), APX4 (AT4G09010), APX5 (AT4G35970), APX6 (AT4G32320), TAPX (AT1G77490), and SAPX (AT4G08390), were retrieved from the "Affymetrix Arabidopsis ATH1 Genome Array" platform using the Genevestigator interface. Thereafter, conditions and genes with similar profiles were comparatively analyzed using Hierarchical clustering tool with Euclidean distance method.

At the anatomical level (Figure 6A), *APX* genes were expressed in almost all analyzed tissues of *Arabidopsis* with various folds. It was clear that the expression levels of genes were closely related with the expressed tissue type/s. For example, both cytosolic *APX1* and chloroplastic/mitochondrial *SAPX* had significantly higher expression in actively growing zones, as well as many root and root protoplast-related structures. *APX3, APX4, APX6,* and *TAPX* were expressed in various shoot, bud, leaf, flower and seed related tissues at considerable rates. All these indicated that stress factors, actively growing tissues as well as normal physiological and metabolic changes could induce the expression of *APX* genes in tissue-dependent way. All these

TABLE 7 The segmental and tandem duplications in some ascorbate	
peroxidase (APX) pairs.	

Duplication type	Species name	Duplicated pairs			
Segmental duplication Pairs	Brachypodium distachyon (L.) P.Beauv.	Bradi5g10490-Bradi3g45700			
	<i>Eucalyptus grandis</i> W. Hill ex Maiden	Eucgr.A01180-Eucgr.B02456			
	Glycine max (L.) Merr.	Glyma.06G114400-Glyma.04G248300			
		Glyma.11G078400-Glyma.12G032300			
	Gossypium raimondii Ulbr.	Gorai.002G196800-Gorai.005G254100			
		Gorai.009G246900-Gorai.010G051400			
	Vitis vinifera L.	GSVIVG01025104001-			
		GSVIVG01025551001			
	Oryza sativa L.	LOC_Os04g35520-LOC_Os02g34810			
	<i>Populus trichocarpa</i> Torr. & A.Gray ex. Hook.	Potri.004G174500-Potri.009G134100			
		Potri.006G132200-Potri.009G015400			
	<i>Prunus persica</i> (L.) Batsch	ppa010431m.g-ppa010426m.g			
	<i>Sorghum bicolor</i> (L.) Moench	Sobic.001G410200-Sobic.002G431100			
		Sobic.006G084400-Sobic.004G175500			
		Sobic.007G177000-Sobic.006G021100,			
	Solanum lycopersicum L.	Solyc06g005150.2-Solyc09g007270.2			
		Solyc06g060260.2-Solyc11g018550.2			
Tandem duplication Pairs	Brachypodium distachyon (L.) P.Beauv.	Bradi1g16510-Bradi1g65820			
	Gossypium raimondii Ulbr.	Gorai.009G104500-Gorai.009G420500			
	Zea mays L.	GRMZM2G006791-GRMZM2G120517			
		GRMZM2G054300-GRMZM2G137839			

metabolic activities or their related consequences could exert the stresses to the cells. Many studies have further demonstrated that abiotic/abiotic stress factors such as heavy metal, drought, water, heat, cellular H₂O₂ level, oxidative state of the cell could increase the expression of APX genes to either suppress or eliminate the stressors (Ishikawa and Shigeoka, 2008; Koussevitzky et al., 2008; Yang et al., 2008; Petrov and Van Breusegem, 2012). For example, overexpression of Solanum melongena APX6 in transgenic O. sativa seedlings demonstrated high flood tolerance, reduced oxidative injury and fast plant growth rates (Chiang et al., 2015a). APX regulation by nitric oxide (NO) as a redox indicator in oxidative stress or as part of hormone induced signaling pathway in lateral root development were demonstrated (Correa-Aragunde et al., 2015). S-nitrosylation of Arabidopsis APX1 at Cys32 increased the H₂O₂ scavenging activity of enzyme, resulting in improved oxidative stress tolerance (Yang et al., 2015). Overexpression of APX and Cu/Zn SOD increased the drought resistance and recovery capacity from drought stress

in Ipomoea batatas (Lu et al., 2015). Overexpressed Brassica campestris APX gene in transgenic Arabidopsis enhanced the heat tolerance via elimination of H₂O₂ (Chiang et al., 2015b). Therefore, increased APX activity in cells is an indicator of the presence of stress factors. At the developmental level (Figure 6B), the expression profile of Arabidopsis APXs was analyzed at 10 developmental stages: senescence, mature siliques, flowers and siliques, developed flower, young rosette, germinated seed, seedling, bolting, young flower, and developed rosette. In all developmental stages, APXs were relatively expressed. However, the expression pattern in senescence was slightly different from other developmental stages, notably cytosolic APX6 showed the highest expression. Interestingly, the Arabidopsis GPX6 gene also demonstrated the highest expression fold at senescence stage, inferring the possibility of functional similarities of these two enzymes. Overall, the expression profile and fold of APXs in various tissues and stages show that cells are constantly put under stress even with normal physiological and metabolic changes, requiring plants to eliminate these stressors.

3D Structure Analysis of APXs

3D models of eight identified Arabidopsis APX sequences were constructed by using Phyre2 server (Figure 7). The modeled sequences were AT1G07890.1 (APX1), AT3G09640.1 (APX2), AT4G35000.1 (APX3), AT4G09010.1 (APX4), AT4G35970.1 (APX5), AT4G32320.1 (APX6), AT1G77490.1 (APXT), and AT4G08390.1 (APXS). In modeling, six templates such as 1APX:A (APX1), 1OAF:A (APX2, APX3 and APX5), 3RRW:B (APX4), 1BGP:A (APX6), 1ITK:B (APXT), and 1IYN:A (APXS) were used to maximize the alignment coverage, percentage identity, and confidence for the submitted sequences. Predicted models showed the \geq 96% of residues were within the allowed region in Ramachandran plot, indicating that structures were acceptably high in quality. To analyze the divergence or similarity in generated models, the structures were superposed in order to calculate the percentage of structural overlap and RMSD values (Table 8). The superposition of APX sequences demonstrated that APX2-APX3, APX2-APX5, and APX3-APX5 pairs have highly conserved structural overlap (100%) with 0.00, 0.38, and 0.38 RMSD values, respectively. These conserved pairs primarily shared the cytosolic and/or peroxisomal localizations, inferring the possibility of a functional relationship between them. In addition, the APX1-APX2, 3, and 5 pairs had very high structural similarity with \geq 99 structural overlaps. Therefore, it could be deduced that APX members topologically demonstrated highly conserved structures, despite their functional diversities in different cellular compartments.

Interaction Partner Analysis of APXs

The interactome network was constructed for 10 putative interactors of *Arabidopsis* cytosolic APX1 using Cytoscape with STRING data (**Figure 8**). MDHAR (monodehydroascorbate reductase), GPX2 (glutathione peroxidase 2), DHAR1 (dehydroascorbate reductase), MDAR1 (monodehydroascorbate reductase 1), RHL41 (zinc finger protein ZAT12), ATPQ (ATP synthase subunit d), FBP (fructose-1,6-bisphosphatase), ATMDAR2 [monodehydroascorbate reductase (NADH)],

FIGURE 6 | Expression profile of *Arabidopsis* ascorbate peroxidase *APX1-6, TAPX* and *SAPX* genes at 105 anatomical parts (A) and 10 developmental stage levels (B). Genes and conditions with similar profiles were comparatively analyzed using hierarchical clustering tool with Euclidean distance method at Genevestigator platform.

TABLE 8 | Structural overlap (%)/RMSD values in superposed Arabidopsis ascorbate peroxidases (APXs).

	APX1	APX2	APX3	APX4	APX5	APX6	APXS	APXT
APX1	_	99.19/0.43	99.59/0.41	75.10/1.75	99.58/0.51	81.53/1.52	95.18/0.95	89.16/1.49
APX2	99.19/0.41	-	100.00/0.00	75.0071.78	100.00/0.38	81.45/1.58	95.16/0.86	87.90/1.35
APX3	99.59/0.41	100.00/0.00	-	75.31/1.85	100.00/0.38	82.30/1.56	97.12/0.86	88.48/1.38
APX4	75.10/1.75	75.40/1.73	73.66/1.91	-	73.22/1.92	72.29/1.88	75.79/1.72	66.27/1.83
APX5	99.58/0.48	100.00/0.38	100.00/0.38	74.48/1.85	-	81.17/1.67	97.49/0.90	89.12/1.31
APX6	82.73/1.57	82.26/1.70	83.13/1.68	69.88/1.82	84.10/1.70	-	81.12/1.50	73.90/1.66
APXS	95.18/1.00	95.97/0.97	97.12/1.00	75.00/1.73	97.49/1.05	82.73/1.55	-	83.52/1.38
APXT	87.55/1.47	89.52/1.36	89.71/1.32	67.46/1.87	90.79/1.32	74.70/1.80	82.42/1.34	-

Red-color highlighted pairs show the highly conserved structural overlaps.

CYTC-1 (cytochrome c-1), and CYTC-2 (cytochrome c-2) proteins were predicted as the main interaction partners of *Arabidopsis* cytosolic APX1. MDHAR, MDAR1 and ATMDAR2 catalyze the conversion of monodehydroascorbate to ascorbate (Chew et al., 2003). GPX2 is a type of H_2O_2 -scavenging enzyme and a crucial component in reactive oxygen network (Tanaka et al., 2005). DHAR1 has dual functions: soluble protein, it demonstrates GSH-dependent thiol transferase and dehydroascorbate (DHA) reductase activities, and is involved in redox homeostasis. As a peripheral membrane protein, it functions as voltage-gated ion channel (Dixon et al., 2002; Sasaki-Sekimoto et al., 2005). RHL41 affects in modulation of light acclimation, and cold and oxidative stress responses (Rizhsky et al., 2004; Davletova et al., 2005). ATPQ functions in ATP production (Carraro et al., 2014). FBP is reported to

be a key component in photosynthetic sucrose synthesis (Cho et al., 2012). CYTC-1 and CYTC-2 are electron carrier proteins related with mitochondrial electron transport chain (Welchen and Gonzalez, 2005). In light of putative interaction partner analysis, it was apparent that *Arabidopsis* cytosolic APX1 is either directly or indirectly associated with redox homeostasis, stress adaptation and photosynthesis/respiration-related pathways. This could also help in better understanding the functional role of APX1 in various plant defense mechanisms.

Comparison of APX and GPX Sequences

A strict homology search of *Arabidopsis* GPX1-8 sequences in proteome datasets of 18 specified plant species has given a total of 87 putative GPX sequences; however, homology search of *Arabidopsis* APX1-6, APXT, and APXS in proteome

datasets of these species identified a total of 120 putative APXs (Tables 1, 5). Sequences of GPX homologs contained the GPX (PF00255) protein family domain while APX homologs included the peroxidase (PF00141) domain. GPX genes encoded a protein of 166-262 residues with 18.4-29.7 kDa molecular weight and 4.59–9.60 pI value, while APXs encoded a polypeptide of 197–478 residues with 23.7-52.1 kDa molecular weight and 5.03-9.23 pI value. GPX transcripts mainly contained six exons; whereas, APX usually had 8-12 exons, implicating the relatively less conserved structure of APXs compared to GPXs. Sequence variations in GPX and APX homologs primarily derived from the "transit peptide" residues between organelle and non-organelle related sequences. Besides, regions corresponding to transit peptide sites in APX/GPX sequences did not demonstrate any particular pattern, indicating the less conserved structure of transit peptides thereby the functional diversities of APXs/GPXs at various targets. In addition, multiple-alignment analyses demonstrated the presence of a considerable degree of conserved residues in main sites of both enzymes. In GPX phylogeny, cytosolic-, nuclear-, extra cellular,- and plasma membrane-related GPXs were relatedly clustered while chloroplast/mitochondrial-related GPXs grouped together. APX phylogeny also showed similar clustering pattern, in which cytosolic-related APXs were relatedly clustered while chloroplast/mitochondrial-related APXs were together. This indicates that presence/absence of "transit peptide" residues was the main determinant in phylogenetic distribution of APX/GPX sequences. Moreover, presence of sequences with

different subcellular localizations in the same phylogenetic group inferred the possibility of gene duplication events in formation of some APX/GPX sequences. Several segmental duplications were identified in some GPX pairs, while several segmental and tandem duplications were available in some APX pairs. Expression profiles of GPX and APX genes in model organism Arabidopsis indicated that stress factors, actively growing tissues, even normal physiological, and metabolic changes could induce the expression of APX/GPX genes. Interactome analyses of Arabidopsis cytosolic APX1 and GPX2 also implicated that both enzymes are closely related with antioxidant and redox homeostasis, secondary metabolite metabolisms and stress adaptation thereby supporting the functional roles of APXs/GPXs in H₂O₂-scavenging and plant defense. Despite of some minor variations, APX and GPX members, they topologically demonstrated highly conserved structure.

CONCLUSIONS

The presence or absence of transit peptide residues are the main contributing factors in subcellular localization and phylogenetic distribution of APX/GPXs. The APX/GPX expression is highly associated with the metabolic state of the cells. In addition, there are grounds for belief that these two enzymes work together in various pathways such as antioxidant and secondary metabolite metabolisms, redox homeostasis, stress adaptation, and photosynthesis/respiration. This also supports the functional role of these enzymes in H_2O_2 -scavenging, thereby implicating their importance in the plant defense. However, further molecular and physiological studies are required to elucidate the various functional roles of APX/GPX isoforms.

AUTHOR CONTRIBUTIONS

IK and EF contributed to the study conception and design. KK performed experiments and collected data. Data analysis and interpretation were performed by RV. IK, EF, KK, and RV prepared, and NA performed critical reading and revision of the manuscript. IO and EF supervised and MO coordinated this work. All the authors read and approved the final version.

REFERENCES

- Anjum, N. A., Gill, S. S., Gill, R., Hasanuzzaman, M., Duarte, A. C., Pereira, E., et al. (2014). Metal/metalloid stress tolerance in plants: role of ascorbate, its redox couple, and associated enzymes. *Protoplasma* 251, 1265–1283. doi: 10.1007/s00709-014-0636-x
- Anjum, N. A., Sofo, A., Scopa, A., Roychoudhury, A., Gill, S. S., Iqbal, M., et al. (2015). Lipids and proteins - major targets of oxidative modifications in abiotic stressed plants. *Environ. Sci. Pollut. Res.* 22, 4099–4121. doi: 10.1007/s11356-014-3917-1
- Apel, K., and Hirt, H. (2004). Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol. 55, 373–399. doi: 10.1146/annurev.arplant.55.031903.141701
- Aryal, U. K., Krochko, J. E., and Ross, A. R. (2011). Identification of phosphoproteins in *Arabidopsis thaliana* leaves using polyethylene glycol fractionation, immobilized metal-ion affinity chromatography, twodimensional gel electrophoresis and mass spectrometry. *J. Proteome Res.* 11, 425–437. doi: 10.1021/pr200917t
- Bailey, T. L., Boden, M., Buske, F. A., Frith, M., Grant, C. E., Clementi, L., et al. (2009). MEME SUITE: tools for motif discovery and searching. *Nucleic Acids Res.* 37, 202–208. doi: 10.1093/nar/gkp335
- Bela, K., Horváth, E., Gallé, Á., Szabados, L., Tari, I., and Csiszár, J. (2015). Plant glutathione peroxidases: emerging role of the antioxidant enzymes in plant development and stress responses. J. Plant Physiol. 176, 192–201. doi: 10.1016/j.jplph.2014.12.014
- Bienert, G. P., Møller, A. L., Kristiansen, K. A., Schulz, A., Møller, I. M., Schjoerring, J. K., et al. (2007). Specific aquaporins facilitate the diffusion of hydrogen peroxide across membranes. *J. Biol. Chem.* 282, 1183–1192. doi: 10.1074/jbc.M603761200
- Bienvenut, W. V., Sumpton, D., Martinez, A., Lilla, S., Espagne, C., Meinnel, T., et al. (2012). Comparative large scale characterization of plant versus mammal proteins reveals similar and idiosyncratic N-α-acetylation features. *Mol. Cell Proteomics* 11, M111.015131. doi: 10.1074/mcp.m111.015131
- Carraro, M., Giorgio, V., Šileikytë, J., Sartori, G., Forte, M., Lippe, G., et al. (2014). Channel formation by yeast F-ATP synthase and the role of dimerization in the mitochondrial permeability transition. J. Biol. Chem. 289, 15980–15985. doi: 10.1074/jbc.C114.559633
- Caverzan, A., Passaia, G., Rosa, S. B., Ribeiro, C. W., Lazzarotto, F., and Margis-Pinheiro, M. (2012). Plant responses to stresses: role of ascorbate peroxidase in the antioxidant protection. *Genet. Mol. Biol.* 35, 1011–1019. doi: 10.1590/S1415-47572012000600016
- Chew, O., Whelan, J., and Millar, A. H. (2003). Molecular definition of the ascorbate-glutathione cycle in *Arabidopsis* mitochondria reveals dual targeting of antioxidant defenses in plants. *J. Biol. Chem.* 278, 46869–46877. doi: 10.1074/jbc.M307525200
- Chiang, C. M., Chen, L. F. O., Shih, S. W., and Lin, K. H. (2015a). Expression of eggplant ascorbate peroxidase increases the tolerance of transgenic rice

ACKNOWLEDGMENTS

NA gratefully acknowledges the partial financial supports received from FCT (Government of Portugal) through contract (SFRH/BPD/84671/2012), the Aveiro University Research Institute/CESAM (UID/AMB/50017/2013), "COMPETE" through Project n.° FCOMP-01-0124-FEDER-02800 (FCT PTDC/AGR-PRO/4091/2012), and to FCT/MEC through national funds, and the co-funding by the FEDER, within the PT2020 Partnership Agreement and Compete 2020.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: http://journal.frontiersin.org/article/10.3389/fpls.2016. 00301

plants to flooding stress. J. Plant Biochem. Biotechnol. 24, 257–267. doi: 10.1007/s13562-014-0265-7

- Chiang, C. M., Chien, H. L., Chen, L. F. O., Hsiung, T. C., Chiang, M. C., Chen, S. P., et al. (2015b). Overexpression of the genes coding ascorbate peroxidase from *Brassica campestris* enhances heat tolerance in transgenic *Arabidopsis thaliana*. *Biol. Plant* 59, 305–315. doi: 10.1007/s10535-015-0489-y
- Cho, M. H., Jang, A., Bhoo, S. H., Jeon, J. S., and Hahn, T. R. (2012). Manipulation of triose phosphate/phosphate translocator and cytosolic fructose-1, 6bisphosphatase, the key components in photosynthetic sucrose synthesis, enhances the source capacity of transgenic *Arabidopsis* plants. *Photosynth. Res.* 111, 261–268. doi: 10.1007/s11120-012-9720-2
- Correa-Aragunde, N., Foresi, N., and Lamattina, L. (2015). Nitric oxide is an ubiquitous signal for maintaining redox balance in plant cells: regulation of ascorbate peroxidase as a case study. J. Exp. Bot. 66, 2913–2921. doi: 10.1093/jxb/erv073
- Criqui, M. C., Jamet, E., Parmentier, Y., Marbach, J., Durr, A., and Fleck, J. (1992). Isolation and characterization of a plant cDNA showing homology to animal glutathione peroxidases. *Plant Mol. Biol.* 18, 623–627. doi: 10.1007/BF00040684
- Davletova, S., Rizhsky, L., Liang, H., Shengqiang, Z., Oliver, D. J., Coutu, J., et al. (2005). Cytosolic ascorbate peroxidase 1 is a central component of the reactive oxygen gene network of *Arabidopsis*. *Plant Cell* 17, 268–281. doi: 10.1105/tpc.104.026971
- Diao, Y., Xu, H., Li, G., Yu, A., Yu, X., Hu, W., et al. (2014). Cloning a glutathione peroxidase gene from *Nelumbo nucifera* and enhanced salt tolerance by overexpressing in rice. *Mol. Biol. Rep.* 41, 4919–4927. doi: 10.1007/s11033-014-3358-4
- Dietz, K. J. (2011). Peroxiredoxins in plants and cyanobacteria. Antiox. Redox Signal. 15, 1129–1159. doi: 10.1089/ars.2010.3657
- Dixon, D. P., Davis, B. G., and Edwards, R. (2002). Functional divergence in the glutathione transferase superfamily in plants identification of two classes with putative functions in redox homeostasis in *Arabidopsis thaliana*. J. Biol. Chem. 277, 30859–30869. doi: 10.1074/jbc.M202919200
- Dynowski, M., Schaaf, G., Loque, D., Moran, O., and Ludewig, U. (2008). Plant plasma membrane water channels conduct the signalling molecule H₂O₂. *Biochem. J.* 414, 53–61. doi: 10.1042/BJ20080287
- Erfle, H., Ventzki, R., Voss, H., Rechmann, S., Benes, V., Stegemann, J., et al. (2000). Sequence and analysis of chromosome 3 of the plant *Arabidopsis thaliana*. *Nature* 408, 820–822. doi: 10.1038/35048706
- Ferreira Neto, J. R. C., Pandolfi, V., Guimaraes, F. C. M., Benko-Iseppon, A. M., Romero, C., De Oliveira Silva, R. L., et al. (2013). Early transcriptional response of soybean contrasting accessions to root dehydration. *PLoS ONE* 8:e83466. doi: 10.1371/journal.pone.0083466
- Finn, R. D., Coggill, P., Eberhardt, R. Y., Eddy, S. R., Mistry, J., Mitchell, A. L., et al. (2016). The Pfam protein families database: towards a more sustainable future. *Nucleic Acids Res.* 44, D279–D285. doi: 10.1093/nar/gkv1344
- Fourcroy, P., Vansuyt, G., Kushnir, S., Inzé, D., and Briat, J. F. (2004). Iron-regulated expression of a cytosolic ascorbate peroxidase encoded by

the APX1 gene in Arabidopsis seedlings. Plant Physiol. 134, 605-613. doi: 10.1104/pp.103.029876

- Franceschini, A., Szklarczyk, D., Frankild, S., Kuhn, M., Simonovic, M., Roth, A., et al. (2013). STRING v9. 1: protein-protein interaction networks, with increased coverage and integration. *Nucleic Acids Res.* 41, 808–815. doi: 10.1093/nar/gks1094
- Fu, J. Y. (2014). Cloning of a new glutathione peroxidase gene from tea plant (*Camellia sinensis*) and expression analysis under biotic and abiotic stresses. *Bot. Stud.* 55:7. doi: 10.1186/1999-3110-55-7
- Gao, F., Chen, J., Ma, T., Li, H., Wang, N., Li, Z., et al. (2014). The glutathione peroxidase gene family in *Thellungiella salsuginea*: genome-wide identification, classification, and gene and protein expression analysis under stress conditions. *Int. J. Mol. Sci.* 15, 3319–3335. doi: 10.3390/ijms15023319
- Gasteiger, E., Hoogland, C., Gattiker, A., Duvaud, S., Wilkins, M. R., Appel, R. D., et al. (2005). "Protein identification and analysis tools on the ExPASy server," in *The Proteomics Protocols Handbook*, ed J. M. Walker (Totowa, NJ: Humana), 571–607.
- Goodstein, D. M., Shu, S., Howson, R., Neupane, R., Hayes, R. D., Fazo, J., et al. (2012). Phytozome: a comparative platform for green plant genomics. *Nucleic Acids Res.* 40, D1178–D1186. doi: 10.1093/nar/gkr944
- Gu, Z., Cavalcanti, A., Chen, F. C., Bouman, P., and Li, W. H. (2002). Extent of gene duplication in the genomes of Drosophila, nematode, and yeast. *Mol. Biol. Evol.* 19, 256–262. doi: 10.1093/oxfordjournals.molbev.a004079
- Haslekås, C., Stacy, R. A., Nygaard, V., Culiáñez-Macià, F. A., and Aalen, R. B. (1998). The expression of a peroxiredoxin antioxidant gene, AtPer1, in *Arabidopsis thaliana* is seed-specific and related to dormancy. *Plant Mol. Biol.* 36, 833–845.
- Herbette, S., de Labrouhe, D. T., Drevet, J. R., and Roeckel-Drevet, P. (2011). Transgenic tomatoes showing higher glutathione peroxydase antioxidant activity are more resistant to an abiotic stress but more susceptible to biotic stresses. *Plant Sci.* 180, 548–553. doi: 10.1016/j.plantsci.2010.12.002
- Horton, P., Park, K. J., Obayashi, T., Fujita, N., Harada, H., Adams-Collier, C. J., et al. (2007). WoLF PSORT: protein localization predictor. *Nucleic Acids Res.* 35, W585–W587. doi: 10.1093/nar/gkm259
- Horváth, E., Brunner, S., Bela, K., Papdi, C., Szabados, L., Tari, I., et al. (2015). Exogenous salicylic acid-triggered changes in the glutathione transferases and peroxidases are key factors in the successful salt stress acclimation of *Arabidopsis thaliana. Funct. Plant Biol.* 42, 1129–1140. doi: 10.1071/FP15119
- Hossain, M. A., Bhattacharjee, S., Armin, S. M., Qian, P., Xin, W., Li, H. Y., et al. (2015). Hydrogen peroxide priming modulates abiotic oxidative stress tolerance: insights from ROS detoxification and scavenging. *Front. Plant. Sci.* 6:420. doi: 10.3389/fpls.2015.00420
- Hruz, T., Laule, O., Szabo, G., Wessendorp, F., Bleuler, S., Oertle, L., et al. (2008). Genevestigator v3: a reference expression database for the meta-analysis of transcriptomes. Adv. Bioinformatics 2008:420747. doi: 10.1155/2008/420747
- Hu, B., Jin, J., Guo, A. Y., Zhang, H., Luo, J., and Gao, G. (2014). GSDS 2.0: an upgraded gene feature visualization server. *Bioinformatics* 31, 1296–1297. doi: 10.1093/bioinformatics/btu817
- Ishikawa, T., and Shigeoka, S. (2008). Recent advances in ascorbate biosynthesis and the physiological significance of ascorbate peroxidase in photosynthesizing organisms. *Biosci. Biotechnol. Biochem.* 72, 1143–1154. doi: 10.1271/bbb.80062
- Ishikawa, T., Yoshimura, K., Sakai, K., Tamoi, M., Takeda, T., Shigeoka, S., et al. (1998). Molecular characterization and physiological role of a glyoxysomebound ascorbate peroxidase from spinach. *Plant Cell Physiol.* 39, 23–34. doi: 10.1093/oxfordjournals.pcp.a029285
- Islam, T., Manna, M., and Reddy, M. K. (2015). Glutathione Peroxidase of *Pennisetum glaucum* (PgGPx) is a functional Cd 2+ dependent peroxiredoxin that enhances tolerance against salinity and drought stress. *PLoS ONE* 10:e0143344. doi: 10.1371/journal.pone.0143344
- Jespersen, H., Kjaersgård, I. V., Ostergaard, L., and Welinder, K. G. (1997). From sequence analysis of three novel ascorbate peroxidases from *Arabidopsis thaliana* to structure, function and evolution of seven types of ascorbate peroxidase. *Biochem. J.* 326, 305–310. doi: 10.1042/bj3260305
- Jones, A. M., MacLean, D., Studholme, D. J., Serna-Sanz, A., Andreasson, E., Rathjen, J. P., et al. (2009). Phosphoproteomic analysis of nucleienriched fractions from *Arabidopsis thaliana*. J. Proteomics. 72, 439–451. doi: 10.1016/j.jprot.2009.02.004

- Kelley, L. A., and Sternberg, M. J. (2009). Protein structure prediction on the Web: a case study using the Phyre server. *Nat. Protoc.* 4, 363–371. doi: 10.1038/nprot.2009.2
- Kieselbach, T., Bystedt, M., Hynds, P., Robinson, C., and Schröder, W. P. (2000). A peroxidase homologue and novel plastocyanin located by proteomics to the *Arabidopsis* chloroplast thylakoid lumen. *FEBS Lett.* 480, 271–276. doi: 10.1016/S0014-5793(00)01890-1
- Kitamura, S., Shikazono, N., and Tanaka, A. (2004). TRANSPARENT TESTA 19 is involved in the accumulation of both anthocyanins and proanthocyanidins in *Arabidopsis. Plant J.* 37, 104–114. doi: 10.1046/j.1365-313X.2003.01943.x
- Koua, D., Cerutti, L., Falquet, L., Sigrist, C. J., Theiler, G., Hulo, N., et al. (2009). PeroxiBase: a database with new tools for peroxidase family classification. *Nucleic Acids Res.* 37, D261–D266. doi: 10.1093/nar/gkn680
- Koussevitzky, S., Suzuki, N., Huntington, S., Armijo, L., Sha, W., Cortes, D., et al. (2008). Ascorbate peroxidase 1 plays a key role in the response of *Arabidopsis thaliana* to stress combination. *J. Biol. Chem.* 283, 34197–34203. doi: 10.1074/jbc.m806337200
- Lazzarotto, F., Teixeira, F. K., Rosa, S. B., Dunand, C., Fernandes, C. L., de Vasconcelos Fontenele, A., et al. (2011). Ascorbate peroxidase-related (APx-R) is a new heme-containing protein functionally associated with ascorbate peroxidase but evolutionarily divergent. *New Phytol.* 191, 234–250. doi: 10.1111/j.1469-8137.2011.03659.x
- Lima-Melo, Y., Carvalho, F. E., Martins, M. O., Passaia, G., Sousa, R. H., Neto, M. C. L., et al. (2016). Mitochondrial GPX1 silencing triggers differential photosynthesis impairment in response to salinity in rice plants. *J. Integr. Plant. Biol.* doi: 10.1111/jipb.12464. [Epub ahead of print].
- Lin, X., Kaul, S., Rounsley, S., Shea, T. P., Benito, M. I., Town, C. D., et al. (1999). Sequence and analysis of chromosome 2 of the plant *Arabidopsis thaliana*. *Nature* 402, 761–768. doi: 10.1038/45471
- Liu, Y., Jiang, H. Y., Chen, W., Qian, Y., Ma, Q., Cheng, B., et al. (2011). Genomewide analysis of the auxin response factor (ARF) gene family in maize (*Zea* mays). Plant Growth Regul. 63, 225–234. doi: 10.1007/s10725-010-9519-0
- Lovell, S. C., Davis, I. W., Arendall, W. B. III., de Bakker, P. I., Word, J. M., Prisant, M. G., et al. (2003). Structure validation by $C\alpha$ geometry: φ , ψ and $C\beta$ deviation. *Proteins* 50, 437–450. doi: 10.1002/prot.10286
- Lu, Y. Y., Deng, X. P., and Kwak, S. S. (2015). Over expression of CuZn superoxide dismutase (CuZn SOD) and ascorbate peroxidase (APX) in transgenic sweet potato enhances tolerance and recovery from drought stress. *Afr. J. Biotechnol.* 9, 8378–8391. doi: 10.5897/AJB10.926
- Matamoros, M. A., Saiz, A., Peñuelas, M., Bustos-Sanmamed, P., Mulet, J. M., Barja, M. V., et al. (2015). Function of glutathione peroxidases in legume root nodules. J. Exp. Bot. 66, 2979–2990. doi: 10.1093/jxb/erv066
- Mayer, K., Schüller, C., Wambutt, R., Murphy, G., Volckaert, G., Pohl, T., et al. (1999). Sequence and analysis of chromosome 4 of the plant *Arabidopsis thaliana*. *Nature* 402, 769–777. doi: 10.1038/47134
- Milla, M. A. R., Maurer, A., Rodriguez Huete, A., and Gustafson, J. P. (2003). Glutathione peroxidase genes in *Arabidopsis* are ubiquitous and regulated by abiotic stresses through diverse signaling pathways. *Plant J.* 36, 602–615. doi: 10.1046/j.1365-313X.2003.01901.x
- Mittler, R., Vanderauwera, S., Gollery, M., and Van Breusegem, F. (2004). Reactive oxygen gene network of plants. *Trend Plant Sci.* 9, 490–498. doi: 10.1016/j.tplants.2004.08.009
- Mullineaux, P., and Karpinski, S. (2002). Signal transduction in response to excess light: getting out of the chloroplast. *Curr. Opin. Plant Biol.* 5, 43–48. doi: 10.1016/S1369-5266(01)00226-6
- Mullineaux, P. M., Karpinski, S., Jiménez, A., Cleary, S. P., Robinson, C., and Creissen, G. P. (1998). Identification of cDNAs encoding plastid-targeted glutathione peroxidase. *Plant J.* 13, 375–379. doi: 10.1046/j.1365-313X.1998.00052.x
- Najami, N., Janda, T., Barriah, W., Kayam, G., Tal, M., Guy, M., et al. (2008). Ascorbate peroxidase gene family in tomato: its identification and characterization. *Mol. Genet. Genomics* 279, 171–182. doi: 10.1007/s00438-007-0305-2
- Narendra, S., Venkataramani, S., Shen, G., Wang, J., Pasapula, V., Lin, Y., et al. (2006). The Arabidopsis ascorbate peroxidase 3 is a peroxisomal membranebound antioxidant enzyme and is dispensable for Arabidopsis growth and development. J. Exp. Bot. 57, 3033–3042. doi: 10.1093/jxb/erl060

- Navrot, N., Collin, V., Gualberto, J., Gelhaye, E., Hirasawa, M., Rey, P., et al. (2006). Plant glutathione peroxidases are functional peroxiredoxins distributed in several subcellular compartments and regulated during biotic and abiotic stresses. *Plant Physiol.* 142, 1364–1379. doi: 10.1104/pp.106.089458
- Negi, Y. K. (2011). Comparative in silico analysis of ascorbate peroxidase protein sequences from different plant species. J. Bioengg. Biomed. Sci. 1, 103. doi: 10.4172/2155-9538.1000103
- Nguyen, M. N., Tan, K. P., and Madhusudhan, M. S. (2011). CLICK topologyindependent comparison of biomolecular 3D structures. *Nucleic Acids Res.* 39, W24–W28. doi: 10.1093/nar/gkr393
- Panchuk, I. I., Volkov, R. A., and Schöffl, F. (2002). Heat stress-and heat shock transcription factor-dependent expression and activity of ascorbate peroxidase in *Arabidopsis*. *Plant Physiol*. 129, 838–853. doi: 10.1104/pp.001362
- Panchuk, I. I., Zentgraf, U., and Volkov, R. A. (2005). Expression of the Apx gene family during leaf senescence of *Arabidopsis thaliana*. *Planta* 222, 926–932. doi: 10.1007/s00425-005-0028-8
- Passaia, G., Fonini, L. S., Caverzan, A., Jardim-Messeder, D., Christoff, A. P., and Gaeta, M. L., et al. (2013). The mitochondrial glutathione peroxidase GPX3 is essential for H₂O₂ homeostasis and root and shoot development in rice. *Plant Sci.* 208, 93–101. doi: 10.1016/j.plantsci.2013.03.017
- Petrov, V. D., and Van Breusegem, F. (2012). Hydrogen peroxide a central hub for information flow in plant cells. *AoB Plants* 2012:pls014. doi: 10.1093/aobpla/pls014
- Ramsey, J., and Schemske, D. W. (1998). Pathways, mechanisms, and rates of polyploid formation in flowering plants. *Annu. Rev. Ecol. Evol. Syst.* 29, 467–501. doi: 10.1146/annurev.ecolsys.29.1.467
- Rizhsky, L., Davletova, S., Liang, H., and Mittler, R. (2004). The zinc finger protein Zat12 is required for cytosolic ascorbate peroxidase 1 expression during oxidative stress in *Arabidopsis. J. Biol. Chem.* 279, 11736–11743. doi: 10.1074/jbc.M313350200
- Romiti, M. (2006). Entrez Nucleotide and Entrez Protein FAQs. Entrez Sequences Help. Bethesda, MD: National Center for Biotechnology Information (US). Updated 2010 May 12. Available online at: http://www.ncbi.nlm.nih.gov/ books/NBK49541/
- Rouhier, N., and Jacquot, J.-P. (2005). The plant multigenic family of thiol peroxidases. *Free Radical Biol. Med.* 38, 1413–1421. doi: 10.1016/j.freeradbiomed.2004.07.037
- Sasaki-Sekimoto, Y., Taki, N., Obayashi, T., Aono, M., Matsumoto, F., Sakurai, N., et al. (2005). Coordinated activation of metabolic pathways for antioxidants and defence compounds by jasmonates and their roles in stress tolerance in *Arabidopsis. Plant J.* 44, 653–668. doi: 10.1111/j.1365-313X.2005.02560.x
- Sharma, P., and Dubey, R. S. (2005). Modulation of nitrate reductase activity in rice seedlings under aluminium toxicity and water stress: role of osmolytes as enzyme protectant. *J. Plant Physiol.* 162, 854–864. doi: 10.1016/j.jplph.2004.09.011
- Smith, A. P., Nourizadeh, S. D., Peer, W. A., Xu, J., Bandyopadhyay, A., Murphy, A. S., et al. (2003). *Arabidopsis* AtGSTF2 is regulated by ethylene and auxin, and encodes a glutathione S-transferase that interacts with flavonoids. *Plant J.* 36, 433-442. doi: 10.1046/j.1365-313X.2003.01890.x
- Smoot, M. E., Ono, K., Ruscheinski, J., Wang, P. L., and Ideker, T. (2011). Cytoscape 2.8: new features for data integration and network visualization. *Bioinformatics* 27, 431–432 doi: 10.1093/bioinformatics/btq675
- Sofo, A., Scopa, A., Nuzzaci, M., and Vitti, A. (2015). Ascorbate peroxidase and catalase activities and their genetic regulation in plants subjected to drought and salinity stresses. *Intl. J. Mol. Sci.* 16, 13561–13578. doi: 10.3390/ijms160613561
- Storozhenko, S., De Pauw, P., Van Montagu, M., Inzé, D., and Kushnir, S. (1998). The heat-shock element is a functional component of the *Arabidopsis* APX1 gene promoter. *Plant Physiol.* 118, 1005–1014. doi: 10.1104/pp.118.3.1005
- Su, T., Xu, J., Li, Y., Lei, L., Zhao, L., Yang, H., et al. (2011). Glutathione-indole-3acetonitrile is required for camalexin biosynthesis in *Arabidopsis thaliana*. *Plant Cell* 23, 364–380. doi: 10.1105/tpc.110.079145
- Sugimoto, M., Oono, Y., Gusev, O., Matsumoto, T., Yazawa, T., Levinskikh, M. A., et al. (2014). Genome-wide expression analysis of reactive oxygen species gene network in Mizuna plants grown in long-term spaceflight. *BMC Plant Biol*. 14:4. doi: 10.1186/1471-2229-14-4
- Suzuki, N., and Mittler, R. (2006). Reactive oxygen species and temperature stresses: a delicate balance between signaling and destruction. *Physiol. Plant* 126, 45–51. doi: 10.1111/j.0031-9317.2005.00582.x

- Tamura, K., Stecher, G., Peterson, D., Filipski, A., and Kumar, S. (2013). MEGA6: molecular evolutionary genetics analysis version 6.0. *Mol. Biol. Evol.* 30, 2725–2729. doi: 10.1093/molbev/mst197
- Tanaka, T., Izawa, S., and Inoue, Y. (2005). GPX2, encoding a phospholipid hydroperoxide glutathione peroxidase homologue, codes for an atypical 2-Cys peroxiredoxin in *Saccharomyces cerevisiae*. J. Biol. Chem. 280, 42078–42087. doi: 10.1074/jbc.M508622200
- Teixeira, F. K., Menezes-Benavente, L., Galvão, V. C., Margis, R., and Margis-Pinheiro, M. (2006). Rice ascorbate peroxidase gene family encodes functionally diverse isoforms localized in different subcellular compartments. *Planta* 224, 300–314. doi: 10.1007/s00425-005-0214-8
- Teixeira, F. K., Menezes-Benavente, L., Margis, R., and Margis-Pinheiro, M. (2004). Analysis of the molecular evolutionary history of the ascorbate peroxidase gene family: inferences from the rice genome. J. Mol. Evol. 59, 761–770. doi: 10.1007/s00239-004-2666-z
- Theologis, A., Ecker, J. R., Palm, C. J., Federspiel, N. A., Kaul, S., White, O., et al. (2000). Sequence and analysis of chromosome 1 of the plant *Arabidopsis thaliana*. *Nature* 408, 816–820. doi: 10.1038/35048500
- Thompson, J. D., Higgins, D. G., and Gibson, T. J. (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. *Nucleic Acids Res.* 22, 4673–4680. doi: 10.1093/nar/22.22.4673
- Uzilday, B., Turkan, I., Ozgur, R., and Sekmen, A. H. (2014). Strategies of ROS regulation and antioxidant defense during transition from C3 to C4 photosynthesis in the genus Flaveria under PEG-induced osmotic stress. *J. Plant Physiol.* 171, 65–75. doi: 10.1016/j.jplph.2013.06.016
- Wagner, U., Edwards, R., Dixon, D. P., and Mauch, F. (2002). Probing the diversity of the *Arabidopsis* glutathione S-transferase gene family. *Plant Mol. Biol.* 49, 515–532. doi: 10.1023/A:1015557300450
- Wang, C. L., and Oliver, D. J. (1996). Cloning of the cDNA and genomic clones for glutathione synthetase *fromArabidopsis thaliana* and complementation of agsh2 mutant in fission yeast. *Plant Mol. Biol.* 31, 1093–1104. doi: 10.1007/BF00040827
- Welchen, E., and Gonzalez, D. H. (2005). Differential expression of the Arabidopsis cytochrome c genes Cytc-1 and Cytc-2. Evidence for the involvement of TCP-domain protein-binding elements in anther-and meristem-specific expression of the Cytc-1 gene. Plant Physiol. 139, 88–100. doi: 10.1104/pp.105. 065920
- Welinder, K. G. (1992). Superfamily of plant, fungal and bacterial peroxidases. Curr. Opin. Struct. Biol. 2, 388–393. doi: 10.1016/0959-440X(92)90230-5
- Yabuta, Y., Yoshimura, K., Takeda, T., and Shigeoka, S. (2000). Molecular characterization of tobacco mitochondrial L-galactono-γ-lactone dehydrogenase and its expression in *Escherichia coli*. *Plant Cell Physiol*. 41, 666–675. doi: 10.1093/pcp/41.6.666
- Yang, H., Mu, J., Chen, L., Feng, J., Hu, J., Li, L., et al. (2015). S-Nitrosylation positively regulates ascorbate peroxidase activity during plant stress responses. *Plant Physiol.* 167, 1604–1615. doi: 10.1104/pp.114.255216
- Yang, S. L., Yu, P. L., and Chung, K. R. (2016). The glutathione peroxidasemediated reactive oxygen species resistance, fungicide sensitivity and cell wall construction in the citrus fungal pathogen *Alternaria alternata. Environ. Microbiol.* doi: 10.1111/1462-2920.13125. [Epub ahead of print].
- Yang, Y., Han, C., Liu, Q., Lin, B., and Wang, J. (2008). Effect of drought and low light on growth and enzymatic antioxidant system of Picea asperata seedlings. *Acta Physiol. Plant.* 30, 433–440. doi: 10.1007/s11738-008-0140-z
- Yu, C. S., Chen, Y. C., Lu, C. H., and Hwang, J. K. (2006). Prediction of protein subcellular localization. *Proteins* 64, 643–651. doi: 10.1002/prot. 21018

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2016 Ozyigit, Filiz, Vatansever, Kurtoglu, Koc, Öztürk and Anjum. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.