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Fractal dimension (FD), estimated by box-counting, is a metric used to characterize plant

anatomical complexity or space-filling characteristic for a variety of purposes. The vast

majority of published studies fail to evaluate the assumption of statistical self-similarity,

which underpins the validity of the procedure. The box-counting procedure is also subject

to error arising from arbitrary grid placement, known as quantization error (QE), which is

strictly positive and varies as a function of scale, making it problematic for the procedure’s

slope estimation step. Previous studies either ignore QE or employ inefficient brute-force

grid translations to reduce it. The goals of this study were to characterize the effect

of QE due to translation and rotation on FD estimates, to provide an efficient method

of reducing QE, and to evaluate the assumption of statistical self-similarity of coarse

root datasets typical of those used in recent trait studies. Coarse root systems of 36

shrubs were digitized in 3D and subjected to box-counts. A pattern search algorithm

was used to minimize QE by optimizing grid placement and its efficiency was compared

to the brute force method. The degree of statistical self-similarity was evaluated using

linear regression residuals and local slope estimates. QE, due to both grid position and

orientation, was a significant source of error in FD estimates, but pattern search provided

an efficient means of minimizing it. Pattern search had higher initial computational cost

but converged on lower error values more efficiently than the commonly employed brute

force method. Our representations of coarse root system digitizations did not exhibit

details over a sufficient range of scales to be considered statistically self-similar and

informatively approximated as fractals, suggesting a lack of sufficient ramification of

the coarse root systems for reiteration to be thought of as a dominant force in their

development. FD estimates did not characterize the scaling of our digitizations well: the

scaling exponent was a function of scale. Our findings serve as a caution against applying

FD under the assumption of statistical self-similarity without rigorously evaluating it first.

Keywords: root architecture, fractal dimension, numerical optimization, self-similarity, plant root growth,
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1. INTRODUCTION

Fractal dimensions (FD) are metrics useful in characterizing
the geometry of sets too irregular to be described in more
classical ways that nevertheless exhibit sufficient fractal regularity
(Falconer, 2003). A FD will hold useful information on the
geometry of such sets, while Euclidean measures may not. For
example, a Koch curve (see Figures 1A–E for construction)
has infinite length, zero area, and a finite similarity (fractal)
dimension of log(4)/ log(3). Although a Koch curve is too
irregular to be well described by Euclidean measures, its self-
similarity allows for a simple description of its scaling properties
via this FD. An even less regular example is a randomKoch curve
(Figure 1F), which does not consist of scaled images of itself,
but rather of stochastic variations on these. The placement of its
details at any scale is random, and can be highly variable from one
implementation to the next, but the rate at which detail emerges
as its image is magnified is the same as for the original Koch
curve. It can thus still be described by the same FD on average and
we say that it exhibits “statistical self-similarity.” This example
illustrates that “fractal” and “self-similar” are not synonyms: self-
similarity, or statistical self-similarity, is just one mode of fractal
regularity.

Following their popularization (e.g., Mandelbrot, 1967, 1983),
the concepts of fractal geometry have been applied to diverse
natural phenomena. Objects considered “natural fractals” also
tend to defy description using classical geometry, to exhibit
meaningful detail over a large range of scales, and to lend
themselves to informative description using some FD, at least in
a statistical sense, over some finite range of scales (Mandelbrot,
1967; Falconer, 2003; Halley et al., 2004). In short, objects are
worth studying as fractals if they show detail at too many scales
to be well approximated by classical geometric sets but that detail
is sufficiently consistent to be approximated with fractal models.

1.1. FD Estimation for Root Systems
FD estimates have been obtained for various plant structures in
order to quantify their space-filling characteristic, complexity,
and branching intensity (Tatsumi et al., 1989; Lynch and
Vanbeem, 1993; Berntson, 1994; Berntson and Stoll, 1997; Eshel,
1998; Dzierzon et al., 2003; Da Silva et al., 2006). Estimated
FD has been related to canopy light interception (Dutilleul
et al., 2008, 2015) and root system soil exploration efficiency
(Walk et al., 2004). It has been used with a view to draw
inferences about resource acquisition of individuals (Eghball
et al., 1993; Nielsen et al., 1997, 1999; Masi and Maranville,
1998;Manschadi et al., 2008) and plant communities (Dannowski
and Block, 2005). Others have used it to characterize plant-
soil interactions, quantifying plant response to drought (Wang
et al., 2009), soil saturation (Pierce et al., 2013), mycorrhizal
colonization (Yang et al., 2014), or salinity (Subramanian et al.,
2015). Still others have used it with stated goals like linking
branching intensity to water use efficiency (Bari et al., 2004),
elucidating interspecific differences in life-history and growth
strategies (Oppelt et al., 2000), phenotyping (Grift et al., 2011),
assessing canopy complexity across successional stages (Aagaard
and Hartvigsen, 2014), measuring the effect of plant complexity
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FIGURE 1 | Construction of the Koch curve, following Falconer (2003).

Each interval (A) is divided evenly into three and the middle section is replaced

by the complementary two sides of an equilateral triangle (B). The process is

repeated for each newly created interval, yielding the second (C), third (D),

and nth iterations. The Koch curve is the limit approached as n → ∞. The limit

curve can be subdivided into four quarters, each an exact copy of the whole,

scaled down by a factor of three. The curve is thus self-similar with a similarity

dimension of log(4) / log(3). Even with n = 10 (E), zooming in on the pinnacle

of the curve by a factor of three yields an image visually indistinguishable from

the largest magnification five times over, meaning the curve is approximately

self-similar over a finite range of scales. Following the same construction, but

randomly choosing the side of the old interval on which each new pair of

intervals is placed, yields one of many “statistically self-similar” curves (F).

These cannot be divided into sets of identical copies; rather, their parts are

scaled random variations on the whole and they only conform to a fractal

dimension on average.

on invertebrate habitat heterogeneity (Dibble and Thomaz,
2009), assessing competition in an intercropping system (Izumi
and Iijima, 2002), or evaluating the effect of different invasive
plant removal techniques on subsequent colonization (Barto and
Cipollini, 2009; Ferreiro et al., 2013).

On reviewing plant FD estimation studies (Supplementary
Table 1) we found that several of the known methodological
issues with the box-counting procedure (Reeve, 1992; Berntson,
1994; Berntson and Stoll, 1997; Foroutan-pour et al., 1999;
Gonzato et al., 2000; Halley et al., 2004; Da Silva et al., 2006) are
often either ignored or addressed in an unsystematic way in the
plant science literature. These issues can be grouped around two
general headings: the statistical self-similarity of plant parts (in
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this study, coarse root systems) and the reduction of quantization
error. In the following two sections, we introduce each problem
cluster in turn, as context for the goals of this work, which are
stated in the last part of the introduction.

1.2. Box-Count Dimension and Statistical
Self-Similarity of Root Systems
The FD used in all the studies we reviewed and most
commonly applied to natural fractals is box-counting dimension;
it quantifies the rate at which an object’s geometrical details
develop at increasingly fine scales (Falconer, 2003). In each step
of box-counting, an object is covered by a grid of boxes of side
length s and the number of boxes N intercepted by the object
is found (see Figures 2A,B). The box-count dimension D is
defined as

D = lim
s→0

− log
(

N(s)
)

log (s)
. (1)

For mathematical sets for which this limit does not exist, the box-
counting dimension is not well defined and only the lower and
upper box-count dimensions may be estimated (as the lower and
upper limits, respectively; Falconer, 2003).

Natural objects exhibit detail over a finite range of scales
s ∈ (sL, sU), with lower limit sL and upper limit sU . Thus,
for natural objects, as s → 0 in the region s < sL, the ratio
log (N)/ log (s) tends to converge on their (more commonly

understood) topological dimensionDT . That is, for a skeletonized
root system represented as a finite set of line segments, D → 1
as s → 0, since DT = 1 for line segments. This is not an
aberration: one is the correct box-count dimension of a root
system represented as a finite set of line segments. At the other
end of the range, since a single box covers the entire object in
the region s > sU , the ratio takes values of 1/s and it simply
converges to 0 as s → ∞. To apply the box-counting procedure
to such an object as a means of estimating its fractal dimension,
one must therefore locate the range s ∈ (sL, sU), over which
the object actually exhibits more detail as s diminishes, and look
at the slope of the log (N) vs. log (1/s) relationship there. The
idea is to use the class of statistically self-similar fractals as a
model for the object over this range of scales, which implies a
constant mean rate of emergence of detail across scales and thus
allows, by assumption, using the mean slope of the relationship
over this region as a stand-in for the limit value in Equation (1),
effectively extrapolating it down to 0. The procedure measures
the box-count dimension not for the finite set itself, but its fractal
approximation.

Let us call those natural objects for which some range
of scales s ∈ (s1, s2), where sL ≤ s1 < s2 ≤ sU ,
can be found, such that log

(

N(s)
)

∝ log (1/s) ∀s ∈

(s1, s2) to first approximation, “statistically self-similar” natural
fractals. Such terms are sometimes used for natural objects
(e.g., Mandelbrot, 1967; Berntson and Stoll, 1997), though not
necessarily with a single widely accepted definition (Falconer,

A B C D

E F G H

FIGURE 2 | Components of numerical methods used in this study. (A,B) show box-counting in 2D on an idealized skeletonized root in blue: at box size s = 1

the root intersects N (s) = 6 boxes (A), at s = 1/2, N (s) = 9 (B). (C,D) show the effect of placement on the box-count with s = 1: translation by dx and dy yields

N = 4; translation by dx and rotation by θ yields N = 3. Taking N = 3 as the minimum value, the box-count estimates Nǫ in (A,C) include quantization error ǫA = 3 and

ǫC = 1, respectively. (E) shows the box-count Nǫ as a function J (dx,dy) at θ = 0. It generalizes (C) to show the box-count values for all combinations of 0 < dx < 1

and 0 < dy < 1. Note that the function jumps by integer values and is thus not continuously differentiable, but exhibits the following symmetry:

J (dx + a,dy, θ ) = J (dx,dy + a, θ ) = J (dx,dy, θ ) for any integer a, since a translation of the grid in any direction by the grid-size s yields the same grid. The same

symmetry is obtained for rotation by multiples of π/2. (F–H) illustrate pattern search on the contour plot of an unknown function Z = f (x, y). Given a starting point

(x0, y0 ) to serve as the center for a five-point stencil and a step-size 1v, the function is evaluated in step one (F) at the center and four outlying points

(x0 ± 1v, y0 ± 1v). The lowest value of Z (indicated in red) is found at (x0, y0 − 1v), which thus becomes the stencil center for the next step. In step two (G), the

function is again evaluated at each of the five points of the new stencil. The minimum value (red) is found at the center this time, so the stencil is not moved for the

next step, but the step-size is reduced to 1v/2. In step three (H) the function is evaluated at the five points of the new stencil and a new minimum is identified. This

process continues until the step-size reaches a chosen lower bound.
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2003). Our definition here is consistent with previous usage and
identifies natural objects that can be well approximated as self-
similar mathematical fractals over a finite range of scales. For
such objects, a fractal box-counting dimension can be estimated
from the slope of the log (N) vs. log (1/s) relationship, which
is most commonly done by least-squares regression. Objects
that lack this property will not yield a single, constant slope
when subjected to box-counting. The less well this fractal model
approximates the object’s properties, i.e., the more the slope of
the relationship changes lawfully over the investigated range of
scales, the less information is contained in any single average
slope ultimately found. In other words, objects that do not fulfill
this definition are not suitable for idealization as statistically
self-similar mathematical fractals and box-count dimensions
obtained for them will not informatively describe their scaling
characteristics.

Studies that actually employ a rigorous test of statistical
self-similarity on root system datasets are scarce and may find it
absent (Berntson and Stoll, 1997). Most studies use least-squares
regression to estimate box-count dimension and a number of
authors use the associated R2 (coefficient of determination)
to evaluate the strength of the relationship or to support
claims about the self-similarity, statistical self-similarity, or
“fractal nature” of the plant parts investigated (Oppelt et al.,
2000; Lontoc-Roy et al., 2005; Han et al., 2008; Yang et al.,
2014). As Reeve (1992) pointed out, however, the independence
assumption underlying regression is violated in the box-counting
procedure and thus, when the slope of log (N) vs. log (1/s) is
estimated using regression, the error estimate is deflated,
giving an inflated R2 and a false sense of precision. The
use of R2 on box-count regressions is an insufficient
means of evaluating the statistical self-similarity of a root
system.

Many other studies do not attempt to evaluate the fractal
model for their root dataset at all. More recent studies sometimes
justify their use of box-count dimension, their assumption of
statistical self-similarity, or ascribing “fractal geometry” to root
systems by reference to the earlier ones (Barto and Cipollini,
2009; Grift et al., 2011; Pierce et al., 2013), which seems
to incorrectly suggest that statistical self-similarity has been
shown to hold for root system data generally. Moreover, earlier
studies often use R2 to validate their fractal model, or else
base their claims on purely theoretical grounds. Some suggest,
for example, that root systems’ complexity alone makes them
suitable to fractal description (Nielsen et al., 1997). Again,
the complexity of a root system by itself is an incomplete
justification for using a fractal model, since even a complex
object may be better described by classical than by fractal
geometrical models, depending on how its complexity is
organized.

Others rely on the idea that sufficient repetitive branching
will give the resulting systems a level of self-similarity (Eshel,
1998; Dannowski and Block, 2005), which is justified in
principle. Repetition of the same steps in the generative process
is important to the emergence of strict or statistical self-
similarity in both mathematical (as illustrated in Figure 1)
and natural (Brodkey, 1966) fractals and reiterative growth is

commonly cited as a source of complexity in plant architecture
(Barthélémy and Caraglio, 2007; Costes et al., 2013). If we
can find self-similarity in some part of plant anatomy, this
may suggest that its developmental process is dominated by
reiteration over a great range of scales, an idea exploited by so-
called fractal root system models (van Noordwijk et al., 1994;
Ozier-Lafontaine et al., 1999). On the other hand, the relative
importance of reiteration in the root system developmental
process, or its level of ramification, may not be sufficient
to substantiate a naïve expectation of statistically self-similar
scaling.

Moreover, the relation between stochastic reiterative growth
and statistical self-similarity is not entirely straightforward. If
plant roots develop mainly by stochastic reiterative growth
over a sufficient range of scales, yielding structures akin to
statistically self-similar mathematical fractals, then the resulting
log (N) vs. log (1/s) plots obtained from box-counting should
strictly follow a linear model. That is to say, the box-count
data will be generated as log (N) = D log (1/s) + ǫ, where
the error ǫ ∼ N(0, σ ). Construction of a set in this manner
is a sufficient, but not necessary, condition for observing
this scaling pattern, implying that we can refute stochastic
reiterative growth should the model be a poor fit, but we
cannot confirm it just by fitting the model to the data
successfully.

Even if it can be shown that an object was not generated by
reiteration (e.g., through an analysis of residuals as in Berntson
and Stoll, 1997, and this study), it is still possible that its
log (N) vs. log (1/s) plot will be linear to a first approximation
over some range, a condition described as “apparent fractality”
(Hamburger et al., 1996; Halley et al., 2004). Pragmatically
speaking, a set exhibiting apparent fractality is sufficiently
statistically self-similar that treating it as a fractal may be
informative even if the mechanisms that generated it are
not “fractal” in any meaningful sense. Indeed, a root system
need not be developed strictly by stochastic reiteration, like
the random Koch curve, for it to scale roughly as though
it was. Since a single value may be representative of the
slope of a non-linear curve over some range, we may still
estimate its box-count dimension in such a case, as shown
by Mandelbrot (1967) for geographical frontiers. But the
further a root system deviates from statistical self-similarity,
the less representative any one box-count dimension value
will be of its complexity pattern until, at some point, using
Euclidean measures (such as total root length, length density,
or branching frequency) to characterize its form and complexity
will become preferable. Evaluating the hypothesis of statistical
self-similarity on root systems is thus a worthwhile step in any
study wishing to use box-count FD estimates to describe root
systems.

1.3. Quantization Error
Another issue that is known (Foroutan-pour et al., 1999; Gonzato
et al., 2000; Da Silva et al., 2006) but not comprehensively
addressed in the literature on natural fractals, is that of
quantization error (QE). QE comes from miscounting the boxes
of a certain size necessary to cover an object. This possibility
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arises because measuring an object at a given scale in FD
estimation entails finding the minimum number of boxes of
a given size needed to cover it. By contrast, the box-counting
procedure finds the number of boxes intercepted by an object
using an arbitrary grid, yielding a value Nǫ = N + ǫ, where N is
the true count and ǫ is quantization error. The error (illustrated
in Figures 2C,D) is due to the position and orientation
(collectively the placement) of the arbitrary grid; its distribution
is discrete and supported on a finite interval of non-negative
integers. As such, quantization error violates the assumptions
of linear regression, although it also affects local slope estimates
(Da Silva et al., 2006). Estimation of fractal dimension from
pixelated images leads to special cases of quantization error
(Gonzato et al., 2000; Halley et al., 2004; Lontoc-Roy et al., 2005),
depending on the nature of the digitization process. Failing to
account for quantization error can have a significant effect on the
accuracy of the FD estimation as a whole (Da Silva et al., 2006,
as well as our results). Nevertheless, quantization error has often
been ignored in the estimation of root system FD (Supplementary
Table 1).

More recent studies have attempted to reduce QE (Foroutan-
pour et al., 1999; Lontoc-Roy et al., 2005, 2006; Da Silva et al.,
2006; Han et al., 2008; Dutilleul et al., 2015; Subramanian et al.,
2015) or at least used software capable of addressing it (Pierce
et al., 2013). Such studies translate the grid either systematically
(Foroutan-pour et al., 1999; Szustalewicz, 2007) or randomly
(Gonzato et al., 2000; Karperien, 2007–2012) to sample the grid
domain a certain number of times at each box size and choose the
minimum box-count achieved. The approach is sure to reduce
QE in principle, but the large computational expense involved
means that relatively few possible grids are usually attempted
in practice (Lontoc-Roy et al., 2005, 2006; Han et al., 2008;
Dutilleul et al., 2015; Subramanian et al., 2015). This state-of-
the-art “brute force” approach might thus be ineffective with too
few grids and too computationally inefficient to be implemented
on a sufficient scale to deal with the error reliably. Also, grid
translation alone may be an insufficient means of reducing QE,
as the literature contains evidence both for (Gonzato et al., 2000)
and against (Da Silva et al., 2006) the independent importance of
grid rotation.

1.4. Study Aims
Within this framework, this work will use a dataset of 36 digitized
coarse root systems, aiming to

1. establish the significance of QE due to grid translation and
rotation in root system FD estimation,

2. demonstrate an efficient method of reducing QE, and
3. use the low-error box-count estimates obtained to evaluate

the hypothesis that the digitizations in our dataset are
sufficiently statistically self-similar for a box-counting FD
estimate to provide a first approximation of their scaling
properties.

While our focus is on root systems, the methods we
present can equally well be applied to box-counting on other
objects.

2. MATERIALS AND METHODS

2.1. Data Collection and Format
Root architectural datasets came from plants that were excavated
and digitized in the field. Individuals from six shrub species
that are common in eastern North American deciduous forests
were identified in natural areas of central New Jersey, USA.
The species were Berberis thunbergii D.C. (Japanese barberry),
Lonicera maackii (Rupr.) Maxim. (Amur honeysuckle), Rubus
phoenicolasius Maxim. (wineberry), Viburnum dentatum L.
(arrowwood viburnum), Lindera benzoin L. (spicebush), and
Rubus allegheniensis Porter (common blackberry). These species
were selected primarily because they represented a range of
adaptation to soil nutrient conditions. Six individuals of each
species were selected, yielding a total of 36 plants; their heights
ranged from 0.6 to 2.8 m. After soil was removed with an
AirKnife, root systems were secured in place and digitized in
3D using a Fastrack magnetic positioning system (Polhemus,
Colchester, VT, USA) and PiafDigit software (UMR-PIAF, INRA,
Clermont, France). Digitization methods followed Danjon et al.
(1999). Briefly, we recorded the spatial coordinates of points
at the ends of approximately linear segments; this was done
for all roots whose basal diameters were greater than 2 mm.
Diameters weremeasuredmanually at each recorded set of spatial
coordinates, with non-circular cross sections approximated
by the geometric mean of the widest axis length and that
perpendicular to it. Topological information was recorded
simultaneously with geometric data (Godin et al., 1999); the
resulting dataset was a multi-scale tree graph (MTG), which
are frequently used for describing root architecture in 3D
(Dupuy et al., 2007; Danjon et al., 2013; Valdés-Rodríguez et al.,
2013).

2.2. Box-Count Setup
A piecewise linear interpolant of the connected data points in
the MTG was used to represent each skeletonized root system
(Figure 3). These sets were subjected to box-counting as follows.
Maximum, minimum and intermediate 3D box sizes (s =

1, 2, 4, 8, and 16 cm) were chosen as successive powers of 2
covering the region where the plot of log (N)/ log (s) would
usually be considered linear (Foroutan-pour et al., 1999; Halley
et al., 2004). The box-counting algorithm found grid boxes
intercepted by each line segment and recorded the number of
boxes intercepted by the whole plant.

2.3. Grid Transformations
Reducing quantization error despite using arbitrary grids entails
imposing multiple grids by translation or rotation and choosing
the lowest resulting box-count (Figures 2C,D). Our study
uses a systematic brute-force sampling of the grid domain
(Section 2.3.2) as a computational cost baseline. We contrast
this common approach with an alternative one, in which the
search for the grid that yields the lowest box-count is defined
as an optimization problem and can therefore be guided by
an algorithm with a better convergence rate (Section 2.3.1).
The box-count is treated as an objective function, defined
over grid placement variables (Figures 2C–E). Optimization
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FIGURE 3 | Example of the coarse root system representations used

for box-counting. The data are piecewise linear interpolants constructed

from the positional and topological data of a MTG of a Berberis thunbergii

plant in (A) top- and (B) side-view. Grid origin set at root collar.

algorithms can be used to efficiently find local function minima
(Ruszczynski, 2006). The computational expense of reducing
quantization error may thus be greatly reduced by using an
optimization algorithm as compared to the brute force method,
not least because the problem turns out to be well-bounded and
thus a global optimum can be sought within a fairly confined
space.

2.3.1. Pattern Search

Beginning with any arbitrary grid of box size s, we define an
objective function J that returns the box-count for a grid of the
same box size, but with the grid origin translated by dx, dy, and
dz, and the plant rotated around each axis by θx, θy, and θz ,
respectively. In the following explanations, we will often denote
the vector of choice variables

v =

















dx
dy
dz
θx
θy
θz

















(2)

and its components vi, i = 1..6. Due to their effect on grid
placement, we will refer to vi, i = 1..3 as the vector’s translational
components and vi, i = 4..6 as its rotational components.

The box-count exhibits discrete translational symmetry along
each axis at intervals of s (i.e., for any integer a, translation of
a grid of box size s along any axis by a distance as yields the
original grid) and discrete rotational symmetry around each axis
at intervals of π

2 . We thus solved the constrained optimization
problem

minimize
dx,dy,dz,θx,θy,θz

Nǫ = J

















dx
dy
dz
θx
θy
θz

















s.t.

0 ≤ dx ≤ 1
0 ≤ dy ≤ 1
0 ≤ dz ≤ 1
0 ≤ θx ≤ 1
0 ≤ θy ≤ 1
0 ≤ θz ≤ 1

(3)

having normalized all the translation components of the choice
variable vector by s and the rotation components by π

2 .
As the objective function is not continuously differentiable,

classical gradient-estimation methods cannot be used. Instead,
we employed pattern search (PS, Audet and Dennis, 2003, see
Figures 2F–H for illustration) as implemented in MATLAB’s
native patternsearch() function. This iterative method
begins by evaluating the objective function at a chosen starting
point, i.e., a chosen set of values for the entries in the choice
variable vector. At each iteration, PS evaluates the objective
function at points that are a given interval 1v away in both
directions along each of the choice variable vector dimensions
vi, i = 1..6. If this poll is successful, i.e., if J (vi ± 1v) < J (vi) for
at least one i, then the next iteration begins from the point where
the minimum value for J was found; otherwise, the interval 1v
is reduced. The search continues until a convergence criterion is
met (e.g., until 1v < τ , where τ is a chosen tolerance value, but
the MATLAB function employs multiple convergence criteria).
For best results using MATLAB’s patternsearch(), the
rotation components of the choice vector had to be rescaled to
match the translation components, since a single 1v is applied in
all dimensions at each step.

In order to search for a global, rather than local optimum grid,
the domain can be covered with multiple starting points, and
the PS method is then run beginning at each one. Increasingly
dense sets of starting points should result in the discovery of
increasingly lower local minima. Any number of algorithms for
choosing sets of starting points may be followed. We used an
algorithm that preliminary trials showed yielded a reasonable
tradeoff between minimizing the box-count and increasing
computational cost. In this algorithm, separate rules governed the
choice of translational and rotational components. The number
of points along translational dimensions of the choice vector
remained constant: all eight combinations of the values vi = 0
and vi =

1
2 s, i = 1..3 (before normalization) for the translational

components were always used. The overall density of starting
points was increased by combining these with an increasing
number of values for the rotational components at subsequent
steps of the algorithm. We used k evenly spaced points on the
rotational interval [0, π

2 ) in each rotational dimension at the kth
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step, for a total of k3 rotations and 8k3 starting points. At the
first step of the algorithm, all rotational components take the
value (before normalization) vi = π

4 , i = 4..6 and there is a
total of 8 points. At the second step, all combinations of values
vi = π

6 and vi = π
3 , i = 4..6 are used for the rotational

components and there is a total of 64 points, and so on.
With increasingly dense sets of starting points, search path

redundancy is increasingly likely at higher steps of this algorithm,
resulting in an unproductive increase in computational cost. In
order to eliminate this effect, the algorithm was supplied with a
stopping function, which terminated execution after any iteration
that reached a point in the choice variable domain that had
previously been encountered at the same1v value—the “history”
function. PS was executed both with and without this function
and the computational costs of the two versions were compared.

2.3.2. Brute Force

As a reference for the cost-efficiency of PS, the brute force
(BF) method was also implemented. Box-counts were executed
at individual points within the choice variable domain. The
same vector of choice variables for transforming the grid [see
Equation (2)] was used as in the PS method, but, instead of an
optimization approach, the algorithm simply chose increasingly
dense sets of points systematically in a series of steps.

Separate algorithms were used to subdivide the translational
and rotational subdomains, based on preliminary results that
showed slightly different means of subdivision to be most
effective at achieving lower box-counts in each subdomain.

At step 0, only the point (0, 0, 0) of the translational
subdomain (vi, i = 1..3) was used. At subsequent steps, each
subinterval in every dimension of the subdomain was bisected by
new points, so that at step 1 all combinations of vi = 0 and vi =
1
2 s, i = 1..3 were used, at step 2 all combinations of vi =

0, 1
4 s,

1
2 s, and

3
4 s, i = 1..3 were used, and so on. Thus, at the

kth step of translation, box-counts were conducted at 8k grid
positions that were distributed evenly through the subdomain.
The rotational subdomain (vi, i = 4..6) was subdivided as in the
algorithm for finding starting points for the PSmethod, described
above.

To assess how grid position and orientation affect box-count
results separately, while taking into account our computational
power constraints, the sets of points obtained for the two
subdomains were combined such that, for the first four steps of
rotation (with 1, 8, 27, and 64 separate orientations, respectively),
the first six steps of translation were implemented, and minimum
box-counts were recorded for each combination.

2.4. Implementation and Analysis
Estimated QE

(

ǫ̂
)

was found for each box-count as the difference
ǫ̂ = Nǫ −min (Nǫ), where Nǫ is the box-count found for a plant
at a given grid size by a given iteration of a method and min (Nǫ)

is the minmum count achieved for a plant at a given grid size, i.e.,
for all configurations of both the BF and the PS methods. Each of
the methods was considered cumulative, such that both cost and
minimum box-count at a given step reflected the results from all
previous steps as well, while avoiding double-counting the costs
of duplicate calculations in the BF method.

FD estimates were found in two separate ways. In order to
match the most commonly used method, we found the box-
count dimension by linear regression on the log (N) vs. log (1/s)
data. We also used Reeve’s (1992) method of differences,
finding local slope estimates for the log

(

N(s)
)

∝ log (s)
relationship using the finite difference numerical
approximation

Vi =
log (Ni+1) − log (Ni)

log (si+1) − log (si)
(4)

at grid sizes si , i = 1, 2, 3, 4 and finding their mean, V̄ .
For each iteration of each method, we evaluated the effect

of QE on FD calculations by noting the minimum achievable
relative error in the FD estimate, as compared to the value found
with the best available box-counts.

Statistical self-similarity was assessed on the coarse root
systems using best-available box-counts. Following from the
estimation by regression, one-sided median tests (Gibbons and
Chakraborti, 2003) were used on regression residuals pooled
for each scale to test the hypothesis that they come from a
distribution with median 0. Also, a quadratic model was fit to the
pooled residuals, as well as the residuals of each plant separately,
and the significance of the second-order termwas evaluated using
a t-test.

For the local estimator, we tested the null hypothesis that
the local slope estimates of each plant have a single common
mean (the plant’s true box-count dimension) and variance that
can be estimated from the data, i.e., H0 : Vi,j ∼ N (Dj, σj) for
i = 1..4 local estimates and j = 1..36 plants, which follows
in Reeve’s (1992) method of differences from the assumption
that log

(

N(s)
)

∝ log (s). We used the Games-Howell test for
one-way ANOVA (Games and Howell, 1976) on local slope
data pooled for all 36 plants to do pairwise comparisons of
the means of local slopes in four groups by scale. The Games-
Howell test has lower power than classic ANOVA, but is designed
specifically for groups with non-homogeneous variances and
was used because the variance was observed to increase
with scale.

The ANOVA test relies strongly on the central limit theorem.
We thus decided to supplement it with a test that takes seriously
the null hypothesis that observations are taken from distributions
with plant-specific means and variances, and assumes that they
cannot be treated as approximately identically distributed at
each scale. Under this assumption, we calculated the residuals
Vi,j − V̄j for each plant, and divided them by the estimated
variance to find normalized residuals, which follow the standard
normal distribution. We then performed one-sample z-tests on
the normalized residuals to evaluate whether they actually come
from a distribution with a mean of 0. This test relies on the
assumption that the variance of local slope observations is well
characterized for each plant.

We devised a final test that makes no extra assumptions on
the residuals at all and can be used to evaluate the prevalence of
statistical self-similarity within a set of objects whose local box-
count slopes are measured at the same scales. Given the null
hypothesis, the residuals are symmetrically distributed about 0,
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making the sign of each residual a Bernoulli variable with p = 0.5.
The number of residuals in a set of n will have the same sign,
then, is a random variable T ∼ Bin (n, p). The likelihoods of our
observations of t same signs in sets of residuals for all 36 plants at
a given scale can thus be found as P (T ∼ Bin (36, 0.5) ≥ t). This
analysis can be taken one step further, to evaluate the greatest
number of signs of residuals that can be considered to come
from the binomial distribution (at a given significance level α)
given the observation t. This entails finding the largest number
m, such that P (T ∼ Bin (m, p) = n − t) ≥ α. For example, 36
negative signs in a set of 36 yields a value of 4 at a significance
level of α = 0.05, since P (T ∼ Bin (4, 0.5) = 0) = 0.0625 and
P (T ∼ Bin (5, 0.5) = 0) = 0.0312.

All programming was done in MATLAB, © Mathworks
(2014), and the functions were run as parallel jobs on Yale
University’s Grace cluster of 80 IBM NeXtScale nx360 M4
servers, each with 20 E5-2650 cores and 128 GB RAM.
Computational cost (CPU time) scaled linearly with the number
of box-counts executed for both the PS and BF methods.
Initial trials found negligibly different rates of CPU time
increase with box-count executions between the two methods
and box-counting was taken to dominate the cost of both.
Because it is conserved across platforms, the number of
executed counts is thus used throughout as a measure of
computational cost.

3. RESULTS

3.1. Quantization Error Levels
Although greater absolute levels of quantization error ǫ̂ are
observed at finer grid scales, the relative error, which is
the absolute error in proportion to the minimum box-count
value ǫ̂

minNǫ
, is greater at coarser scales. This pattern can be

seen in Table 1, which summarizes the statistics of estimated
quantization error at all grid sizes for a representative plant
(shown in Figure 3). The effect of QE on box-counts is thus
greater in log-space at coarser grids, which is clear from a
comparison of the distribution of the log of the box-counts Nǫ

to the log of the minimum box-counts min (Nǫ) in the table.
Since the log of coarser scale box-counts increases more than
finer scale ones, the expected effect of QE on the slope of the
relationship is to decrease it, implying a negative bias in the box-
count dimension estimate. In the case of the example plant, the
slope decrease is from 1.42 for the minimum box-counts to 1.31
for the mean observed counts, which represents 7.4% error.

The separate effects of grid translation and rotation were
of similar magnitude. Figure 4 shows the relative error under
the first 64 translations and the first 64 rotations from
the origin (independent of each other) of this same plant.
While, locally, translation or rotation may have a greater
or lesser effect at a given grid size for a given plant,
we found no discernible general patterns that held across
our dataset.

3.2. Method Convergence
Quantization error strongly affected the results of FD estimation.
Levels of the error decreased with increased computational power
using either method, leading to lower errors in the FD estimates
themselves. Figure 5 shows the rates of convergence of both
BF and PS methods to the best-available FD estimates. For the
BF method, the results for three series of steps of translation
at a given step of rotation (as per the algorithm explained in
Section 2.3.2) are shown; these are the series of 8k translations for
k = 0..5 successively, at 1, 8, and 64 rotations, respectively. Data
were pooled for all 36 plants. In order to examine the expected
value and confidence intervals, we exploited the fact that these
results form nested datasets. For each nested configuration, we
randomly selected up to 4096 box-counts from the full dataset
for 64 rotations and 32,768 (or 85) translations and took the
mean and confidence intervals of the resulting sample set. This
approach effectively enabled us to sample the translations of
multiple grid origins and rotations from multiple initial grid
orientations for each step of the BF method. No such sampling
is possible for the PS method, so the distributions in these cases
come exclusively from pooling data over all plants.

As Figure 5 shows, for a single grid with no attempt at rotation
or translation (first point in the brute force series with a single
orientation), the mean value of the relative error in the FD
estimate due to quantization is 8.28% of the best available FD
estimate. The error distribution has a long tail, however, and the
relative error at the high end of the 95% confidence interval is
15.1%. In the BF method, translation alone reduced the mean
normalized error by 56.8% over the range of computational
cost explored. Series of the BF method with greater numbers of
orientations started at greater initial cost and similar or higher
mean error, but converged to lower mean levels of error over
the same range. Comparing the series with no rotation to that
with 64 orientations at the highest cost achieved by translation
alone (5.9E6 box-count evaluations), mean error was 3.59% for
the former and 1.39% for the latter. The 64-orientation series
also retained faster convergence at higher costs: 32% reduction

TABLE 1 | Summary of quantization error statistics for n = 32,768 brute force grid translations of the Berberis thunbergii plant shown in Figure 3.

Grid size [cm] 1 2 4 8 16

ǫ̂ 1 120.35± 53.12 84.51± 180.3 47.28± 73.60 31.85± 19.33 19.90± 9.16

ǫ̂
minNǫ

(%) 1 5.10± 1.0E-3 7.68± 0.01 10.04± 0.03 19.79± 0.07 43.26± 0.43

log (Nǫ ) 1 7.82± 8.6E-5 7.08± 1.3E-4 6.25± 2.7E-4 5.26± 5.2E-4 4.19± 2.1E-3

log (min (Nǫ )) 7.76 7.00 6.15 5.08 3.83

1Observed mean (± variance) for a single representative orientation.

Frontiers in Plant Science | www.frontiersin.org 8 February 2016 | Volume 7 | Article 149

http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive


Bouda et al. Box-Counting Dimension

FIGURE 4 | Relative quantization error for the representative Berberis thunbergii plant shown in Figure 3. Box-counts from the first 64 rotations (top) and

the first 64 translations (bottom) are shown independently at each box size.

FIGURE 5 | Convergence plot for the brute force and pattern search

methods. Computational cost is quantified as the number of box-counts

executed. Box-counts were pooled over all grid sizes and over all plants to

reflect the total cost for the dataset. Error estimates reflect the lowest

box-counts achievable for a given number of orientations and translations.

Point markers represent the mean estimated relative error levels over all (n = 36)

plants. Error bars indicate 95% confidence intervals, see text for details.

of mean error between algorithm steps compared to 7% for the
single orientation. Greater numbers of orientations also reduced
the extent of the 95% confidence interval at comparable costs. At

that same cost level, translation alone reduced the upper limit of
the interval to 6.5%, while the series with 64 orientations reduced
it to 3.36%.

PS had a greater initial cost, simply because the PS algorithm
executes the box-count more than once from each starting point.
With the lowest number of starting points, both the mean error
and the upper limit of the 95% confidence interval are higher
for PS than for BF results at comparable cost. There is, however,
also a greater convergence rate for both the average value and
the top boundary of the 95% confidence interval. The mean
relative error in FD estimation using PS dropped over 95% from
3.14% to 0.13% over a cost interval from 5.9E5 to 9.4E6 box-
counts. The last increase of the number of starting points yielded
a drop in the resulting mean relative error of 61%, indicating
continuing convergence at higher intensities of search for the
global optimum. The upper limit of the confidence interval
dropped to 1.9% over the whole range of cost, while its lower end
reached 0, reflecting the fact that the PS estimates were the best
available estimates for an increasing number of plants.

3.3. History Function Time Savings
The history function significantly reduced the computational cost
of PS. Numbers of box-count evaluations were aggregated for
all (n = 36) plants at each number of PS starting points and
for each box size. The difference between the number of box-
count evaluations in PS with and without the history function are
shown in Figure 6 as a percentage of the number of evaluations
in the naïve method. Both the number of start points and
grid resolution affect the spatial density of starting points and,
thus, the likelihood of path redundancy. Accordingly, savings
increased with both factors. For the largest box size and fewest
starting points, the history function saved 71.1% of the naïve
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FIGURE 6 | Box-count evaluations eliminated by including the history

function, as a function of the starting point density (npts/s
3). The

density of starting points, and thus the time savings due to elimination of

redundancy, increase separately with increasing number of starting points and

decreasing box size.

method’s box-count evaluations. The highest observed savings
attained 93.6%. The convergence rate of PS (per unit cost) is thus
strongly dependent on the use of this history function.

3.4. FD Estimates
The box-count dimension values we foundwith the best-available
box-counts are summarized inTable 2. There was little difference
between the values of the mean slope estimator due to Reeve
(1992) and the more widely used regression estimator. The main
advantage of the mean slope estimator, of course, lies not in
its ability to obtain more “accurate” values, but in its ability
to correctly characterize the error in each individual estimate.
We found no significant differences in box-counting dimension
among species using one-way ANOVA [F(5, 30) = 2.1, p =

0.093].

3.5. Statistical Self-Similarity Assessment
The degree of statistical self-similarity was first assessed by
rigorously examining the quality of the regressions that yielded
the most commonly-used estimator. Figure 7A shows the log-
space linear regression to the best available box-count data for the
Berberis thunbergii plant shown in Figure 3, from which its FD
was estimated. While the line fits the data very well (R2 > 0.99),
which might lead one to prematurely conclude that statistical
self-similarity is present, a bowed pattern can be observed in the
residuals between the data and the linear model. Figure 7B shows
the distributions over all plants (n = 36) of such residuals and
indicates clearly that in no case are they distributed normally with
a mean of 0. Such a hypothesis was rejected by one-sided median

tests for each grid size individually (p < 0.001). Instead, they
exhibit a clearly non-linear pattern, both visually and statistically.
The second-order coefficient of a quadratic polynomial fit to
the residuals is significantly different from 0 (p < 0.001). All
but three of the plants also exhibit this quadratic pattern on an
individual basis (p < 0.04). The remaining three all appear as
outliers in Figure 7B at the 4 cm box size. Two are high outliers
and their residuals exhibit a V-shape, as opposed to a parabolic
shape. This is just as problematic for the regression. The last is a
low outlier and exhibits a W pattern over all five grids. It alone
allows for the possibility of statistical self-similarity.

The distributions of local slopes over four different ranges
of scales for the 36 plants are shown in Figure 7C. The clear
visual trend toward higher slopes at coarser grid resolutions is
in keeping with the pattern of regression residuals. The trend
is also confirmed by one-way ANOVA with Games-Howell q-
tests, which found significantly different means (p < 0.01) for
all pairwise comparisons of the four scale ranges. The z-test
for a standard normal distribution using normalized residuals
also rejected the hypothesis of a zero mean for all scale ranges
(p < 0.01) except the third (4–8 cm), effectively showing the
local slope values for each plant do not have a common mean.
The residuals of the mean local slope estimates at the four scales
had 36, 35, 4, and 0 negative signs, in order from finest to coarsest
scale. These or more extreme observations have a likelihood of
p < 0.001 under the null hypothesis, which can thus be rejected.
The greatest number of residuals at each scale that may conform
to the null hypothesis at a 5% significance level are 4, 8, 15, and
4, respectively. All tests thus support the view that statistical self-
similarity is not prevalent in the present dataset. Despite the high
R2 values found, the assumption of statistical self-similarity is
not supported for the vast majority of the MTG digitizations in
this study, even within the limited range of scales over which
box-counting may appropriately be applied to them.

Figure 7D shows the distribution of the differences between
the maximum and minimum local slopes, relative to their mean
FD estimate, over all root system representations. That is, the
histogram shows the number of plants whose rate of scaling
changes by a given proportion of its mean FD over the measured
range of scales. For only four of the plants is this difference less
than 7.9% of the mean FD estimate. The difference exceeds 25%
of mean FD for three quarters of the studied plants. Not only is
the majority of MTG digitizations examined here not self-similar,
they do not even admit of a first approximation FD estimate that
would be valid over the relevant range.

4. DISCUSSION

4.1. Quantization Error
Quantization error had a clear and significant effect on FD
estimates. In this study, both box-counts and log-space slope
estimates showed significant estimated error when quantization
was not taken into account. Because QE is strictly positive, and
because it tended to produce more significant relative error
(and thus log-space error) in the box-counts at coarser scales,
it most commonly led to a negative bias in slope estimates
regardless of the estimator. This stands in contrast to the effect
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TABLE 2 | Summary of box-count dimension statistics.

Species Mean slope est.1 95% C.I. bounds Regression est.1 95% C.I. bounds

Viburnum dentatum 1.318 ± 4.13% 1.24–1.40 1.311 ± 4.07% 1.23–1.39

Rubus allegheniensis 1.211 ± 8.69% 1.10–1.39 1.207 ± 8.47% 1.10–1.38

Lindera benzoin 1.230 ± 6.43% 1.09–1.31 1.223 ± 6.32% 1.09–1.31

Berberis thunbergii 1.329 ± 4.78% 1.23–1.42 1.326 ± 4.80% 1.23–1.41

Lonicera maackii 1.253 ± 4.71% 1.16–1.32 1.248 ± 4.36% 1.16–1.31

Rubus phoenicolasius 1.289 ± 8.14% 1.15–1.41 1.262 ± 7.86% 1.15–1.40

All 1.269 ± 6.79% 1.09–1.42 1.264 ± 6.63% 1.09–1.41

1Mean ± coefficient of variation.

FIGURE 7 | (A) Log-space linear regression (R2 > 0.99) to box-count data for the representative Berberis thunbergii plant shown in Figure 3; (B) distributions of

residuals for all n = 36 plants at each box size; (C) local values of slope Vi from Equation (4); (D) distribution of differences between maximum and minimum local

slope estimates, relative to a plant’s mean FD estimate (n = 36). All box plots show the median, 25th and 75th percentiles, whiskers extending to 1.5 times the

inter-quartile range, and outliers.

of QE in pixelated images, found by Gonzato et al. (2000) to
be predominantly positive bias. The difference was likely due to
the smooth nature of the underlying object in our study, namely
the linear interpolant. Regardless of its direction, the effect is
significant in both cases. In our study, it took box-counts at 512
or more placements (for each grid size, for each plant) to reduce
the top of the 95% confidence interval to below the coefficient of
variation (CV) of FD over all the plants.

Da Silva et al. (2006) proposed mitigating the influence of
quantization error by narrowing the range of box sizes used in FD
estimation, eliminating the finest grids. This approach has little
or no computational cost and should be used whenever possible.
Unfortunately, when attempted with our dataset (even on the
coarsest grids), the approach of Da Silva et al. (2006) did not yield
a sufficient decrease in quantization error with our data (error in
FD estimates below their CV was deemed acceptable). Moreover,
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the approach would have significantly narrowed the range of grid
sizes available for the estimation. The range of grid sizes was
already quite small, as the coarse root system digitizations did
not span more than two orders of magnitude, and any further
reduction in the range of measurement scales would be highly
undesirable (Halley et al., 2004).

Like Gonzato et al. (2000), we found that grid orientation
plays a significant role in determining the magnitude of QE.
This is significant because most of the studies in our review
that attempted to reduce QE only explored grid translations.
Our finding is contrary to the observations of Da Silva et al.
(2006), who found, using BF, that grid orientation did not
lead to significant QE. In our work, however, BF exhibited
apparent convergence at higher levels of error when using fewer
orientiations. At lower investment of computational resources,
adding more grid orientations did little to improve FD estimates.
At higher levels of computational cost, additional orientations
clearly improved the sampling of the QE space, given that
they led to significantly lower confidence intervals and higher
rates of convergence. Both apparent convergence and insufficient
computational resources may have played a role in the results of
Da Silva et al. (2006). On the other hand, that study compared
box-count dimension values to FD estimates obtained by Boudon
et al. (2006) for the same plants using the two-surface method
(Zeide and Pfeifer, 1991), which (assuming the comparison is
valid) supports the validity of its conclusions. Furthermore,
the two studies investigated fundamentally different objects
in different representations, and our results may thus not be
comparable.

4.2. Pattern Search vs. Brute Force
BF provides box-counts with low confidence at low cost, but its
inefficient way of sampling the domain makes it an infeasible
means of achieving satisfactory high-confidence FD estimates.
The convergence rate of PS is much greater than that of the BF
method. It has higher upfront costs, but converges on lower box-
count values with lower total costs. It was the only way to get the
95% confidence interval of relative FD error below one third of
the CV for FD and the most efficient means of reducing the mean
error level to an order of magnitude less than the CV. It offered
the greatest chance of efficiently eliminating quantization error
altogether, which is a prerequisite of unbiased FD estimation.
A crucial component of the PS method that allows for this
higher rate of convergence is avoiding search path redundancy by
incorporating a history function in the global optimum search.
We found that different ways of scaling the choice variable
vector also yielded different levels of computational efficiency.
We did not investigate the effects of different polling or searching
methods within PS on the convergence rate; these may be found
to improve algorithm efficiency further still.

Pattern search is not applicable only to root systems, but
to any object whose FD is to be estimated by box-counting.
It is especially relevant for objects that do not span a great
range of scales and for which the scale cut-off solution of
Da Silva et al. (2006) may thus be impractical. This may
be true of many root systems and other plant structural or
anatomical features. As increasingly powerful computers become

increasingly widespread, the initial cost hurdle of PS will become
less significant and this tool will become more easily accessible to
researchers.

4.3. Statistical Self-Similarity of the Coarse
Root System Digitizations
The fact that regression residuals were not distributed
symmetrically about 0, but had a bowed pattern that was
fit by second-order polynomials with statistically significant
quadratic terms, underlines the danger of relying on R2 alone to
evaluate the fractal model. Slope estimates differed significantly
by scale and we were able to show that the local slope estimates
for the great majority of plants do not have a common mean
across scales. This is an explicit assumption of the Reeve
(1992) method of differences, whose mean slope estimator is an
approximation of the common mean of local slope estimates.
The fact that the local slope values in our dataset do not share
a common mean across scales allows us to reject the idea
that the box-count data follow a linear model strictly—there
is no true mean rate of emergence of detail at increasingly
fine scales.

Under the pragmatic view of statistical self-similarity, we
might still estimate a box-count dimension in the absence of
a true mean, so long as the estimated apparent mean provides
a reasonable approximation for the scaling properties of the
digitizations over some range. In our dataset, however, the
range of local slope estimates spanned over 25% of the FD
estimator for three quarters of the plants, and the variation of
the local slope estimates across scales far exceeded variation
in box-count dimension estimates between plants within a
species, which was, in turn, about the same as between
species. The FD estimates thus seem neither representative
nor informative.

One solution to a lack of general representativeness of the
FD estimate in the literature has been to narrow the range of
regression, yielding a box-count dimension more representative
locally, i.e., at a particular scale (Lontoc-Roy et al., 2006; Dutilleul
et al., 2015). This may, however, run afoul of the convention for a
minimum scale range when trying to quantify a scaling coefficient
(Hamburger et al., 1996; Halley et al., 2004). In other words,
narrowing the range may be a legitimate pragmatic solution, but
only if we take care not to essentially fit a tangent to the curve with
little representativeness, except at a point. In the case of our data,
using a single value of box-count FD would misrepresent how
detail emerges upon magnification of the coarse root systems;
instead of a true or apparent mean rate of scaling of detail, a
significant and lawful variation was clearly observed, with greater
slopes at coarser scales.

Rather than the box-count dimension of a fractal model, what
our regression residuals and local slope estimates reveal is a
consistent tendency of the slope to approach 1 as s → 0. In
other words, over the entire range of investigation, the ratio
log (N)/ log (1/s) converges on the topological dimension of the
finite sets. This cannot be rectified by moving the range upward,
since we soon encounter the well-known upper limit of the range
(Foroutan-pour et al., 1999; Halley et al., 2004), where the box
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size approaches one quarter of the object size for some of the
plants. The range of scales at which our digitizations exhibit detail
thus has no sub-range where a slope of the log (N) vs. log (1/s)
relationship could be found that is not already converging on
1. Given that convergence of the slope to 1 is already present at
the coarsest usable scales, it is clear that the digitizations exhibit
detail at too few scales to be well approximated by a fractal model.
This allows us to conclusively reject a linear approximation to
our log (N) vs. log (1/s) data over the entire applicable range of s,
meaning that our root system digitizations do not conform to our
definition of statistical self-similarity (Section 1.2). This includes
a rejection of apparent fractality for our digitizations and thus
shows the limits of pragmatism when evaluating the statistical
self-similarity of an object.

It must be kept in mind that the MTGs in our dataset
include only the coarse portions of the root systems (diameter >

2mm). This data limitation is inherent in our measurement
method, as the loss of fine roots and some finer-scale details is
expected during digitization, and is common for such datasets.
Our analysis thus cannot be used to support conclusions about
the root system as a whole. Detail at scales of the coarse root
systems is, however, well represented and we can conclude that
the coarse root systems of the plants in our dataset do not exhibit
statistical self-similarity, due to a lack of detail over a sufficient
range of scales. The implication for the importance of stochastic
reiterative growth in their development is that while the systems
may be partly the result of reiteration, they are not sufficiently
ramified for their overall form to be well approximated
by a fractal model. We cannot exclude the possibility that
if fine roots were part of the digitized representations,
statistical self-similarity would be better supported (at least
due to apparent fractality); however, it is not a foregone
conclusion either.

A means of escaping the limitation inherent our data would
be using simulated root systems. While such an approach
might not reveal much about the statistical self-similarity of
any particular real root systems, it would provide a means of
testing the hypothesized link between repetitive branching and
statistical self-similarity. Depending on the outcome of such
a study, a model that includes a combination of a repetitive
branching algorithm and the influence of environmental
conditions might be used to evaluate the influence of each
in the generation of root systems that exhibit a given degree
and mode of deviation from statistical self-similarity. Given
the imperfect correspondence between some of the related
fractal concepts, however, such a study would have to proceed
with caution.

Our statistical self-similarity analysis mainly serves as a
methodological caution against freely assuming statistical self-
similarity. As we have shown, statistical self-similarity can be a
rigorously defined concept, formulated as a testable hypothesis
to be rejected, but cannot be confirmed by regressions with a
high R2. A lack of detail over a sufficient range of scales is a
particularly difficult obstacle to statistical self-similarity, because
it precludes the emergence of even apparent fractality in an
object. This should raise doubts in the minds of researchers
who aim to estimate FD for any relatively undeveloped root

structure, whether it is only the coarse root portion (e.g., Oppelt
et al., 2000), relatively young roots (Lontoc-Roy et al., 2006),
or any root system representation whose box-count data show
the same bowed pattern as ours (Eshel, 1998; Dzierzon et al.,
2003). Put differently, a high R2 in box-count regressions does
not guarantee even apparent fractality. The representativeness
of a FD estimate should be evaluated over a sufficient range
of scales and if the estimate is not found to be informative,
Euclidean alternatives (such as root length density or branching
frequency) should be considered for use in any subsequent
analysis, as they may better capture the complex geometry of the
object.

Finally, we note that some studies, finding no (statistical) self-
similarity in the root systems examined, concluded that they
exhibit bi- (Dutilleul et al., 2015) or multi-fractal (Berntson and
Stoll, 1997; Ketipearachchi and Tatsumi, 2000) properties instead.
A multifractal is a measure of an object that exhibits power-
law scaling, but whose different portions follow different scaling
parameters. The proposition that a root system has multifractal
measures cannot be tested with the simple box-counting
procedure used here and lies outside of the scope of the present
study. Even if root systems are not statistically self-similar,
however, they are not automatically multifractal. That is a second
positive empirical assertion, which ought to be tested separately.
The coarse root systems in our dataset are not best described as
multifractals, but simply as objects lacking detail over a sufficient
range of scales, whose scaling parameters therefore vary as a
function of scale.
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