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The Editorial on the Research Topic

Maintenance of Genome Integrity: DNA Damage Sensing, Signaling, Repair, and Replication

in Plants

Because of their sessile lifestyles, plants are continuously exposed to DNA-damaging agents present
in the environment. Although the basic mechanisms of genome maintenance are conserved
between animal and plant kingdom, plants also have evolved specific mechanisms to cope
with DNA damage. Indeed, studies in past decades have demonstrated the presence of elastic
mechanisms in plants. For example, when exposed to DNA damaging agents, plants respond
immediately to start repairing the damage, regulating cell proliferation, changing metabolic
pathways. Here we are proud to have twelve outstanding articles focus on the maintenance of
genome integrity: DNA damage sensing, signaling, repair and replication in plants.

The present e-book is opened by several comprehensive reviews dealing with genomic and extra-
genomic DNA maintenance, as well as the role of double strand break (DSB) signaling in plants.
In his minireview, Roy provides an upgraded view on the link connecting chromatin structure
stability and DNA damage response at the genetic and epigenetic levels, while Amiard et al. present
an overview on DSB repair pathways in Arabidopsis thaliana, with focus on the signaling of
DNA breaks and deprotected telomeres. Stability of genomic DNA, not only in nuclei, but also
in organelles is crucial for plant development. In contrast to nuclear genomes, the amount and
structural integrity of organellar genomes changes during plant development. It is very interesting
to consider why organellar genomes are less stable as the replication and repair machineries are
encoded by the nuclear genome, yet the cause of the instability is poorly understood. Oldenburg
and Bendich first explain the history of the studies into the size and structure of organellar DNA
(orgDNA). They then address the copy number and integrity of orgDNAduring plant development.
The review continues with an overview of the proteins which are involved in the processes of
orgDNA replication, repair, and recombination, and changes in the amount of these proteins
during leaf development. It has been observed that plastid DNA (ptDNA) maintenance in grasses
differs from that in dicots as it rapidly declines upon light exposure. From these observations,
the authors propose the idea that instead of repairing damaged DNA, grasses use a cost-saving
involving a loss of ptDNA.

DNA polymerases are crucial for maintenance of genome integrity in organisms. The family
X DNA polymerases work in DNA repairs such as base excision repair (BER) and/or DSB
repair. Plants are unique in having only one member of this family, polymerase lambda (Polλ).
Furukawa et al. showed that the Polλ knockout Arabidopsis (atpolλ-1) is only mildly sensitive to
DSB-inducing treatments, whereas the double-knockouts of AtPolλ and AtLig4 made the plants
hypersensitive to DSB compared to each single knockout. These results suggest that the AtPolλ
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has a role in DSB repair, probably in an AtLig4-independent
non-homologous end-joining (NHEJ) pathway. Proliferating cell
nuclear antigen (PCNA) is a key component of eukaryotic DNA
replication machinery. PCNA usually accompanies the DNA
polymerase to gather a specific set of proteins onto the replication
fork when replication is disturbed. Cyclin Ds are expressed in
G2 and degraded during G2/M transition. When the checkpoint
is activated, the degradation of cyclin D is inhibited to arrest
cells at G2. Strzalka et al. demonstrated that Arabidopsis PCNAs
directly interact with some members of the cyclin Ds in yeast and
plant cells, suggesting that PCNAs link the signal of disturbed
replication with cell cycle control. Ultraviolet (UV) light has been
used to analyze cellular DNA-damage responses. UV induces
cyclobutanate pyrimidine dimmers (CPDs) and other damage
to DNA, which triggers various cellular responses: DNA repair,
cell cycle delay or arrest, and cell death. Thus, UVB in sunlight
can confer severe stress to plants, but plants have photorepair
enzymes to correct the damage. Takahashi et al. investigated the
responses of plant cells irradiated with low or high dose of UVB.
UVB irradiated cells showed different reactions, depending on
the dose, suggesting that accumulation of CPDs caused by high
dose UVB induces formation of single or DSBs, which leads to
cell death.

In their research article, Qüesta et al. discuss on the roles
of the DDM1 and ROS1 genes in UVB-induced DNA repair by
using Arabidopsis mutants and a set of analytical measurements.
Disruption of these genes had an opposite impact of these two
genes, with the ddm1mutants accumulating more DNA damage,
while the ros1 mutants showed less amount of DNA damage.
Based on experimental work, they hypothesize that the DNA
demethylation in the ddm1 mutant can affect the accessibility of
DNA repair systems in this region, while the better performance
of ros1 mutants can arise as a result of increased levels of
photolyases. In their research on the MAPK signal transduction
in response to aluminum (Al) treatments, Panda and Achary
underline the biphasic mode of action of Al-induced DNA
damage inAllium cepa. They observed that at high concentrations
Al induces DNA damage, while at low concentration an adaptive
response is present, and hypothesize that the MAPK-DNA repair
network is responsible for both actions. The role played by
DNA/RNA helicases against the genotoxic effects of abiotic stress
is documented. XPB (xeroderma pigmentosum type B) helicases
promote nucleotide excision repair (NER) by unwinding double
strand DNA at the damaged sites. In the attempt to assess
the potential of plant XPB helicases as tools in counteracting
adverse environmental conditions, Raikwar et al. carried out
an in silico and functional characterization of the rice OsXPB2
gene promoter in response to abiotic stress and hormone-based
treatments. Based on its multi-stress responsiveness, the OsXPB2
promoter represents a promising tool for improving the response
of crops to genotoxic stress.

Huefner et al. investigated the short- and long-term impact
of high-LET (Linear Energy Transfer) HZE (high atomic weight,
high energy) particles vs. low-LET gamma rays on genome
stability, using Arabidopsis mutants defective in DNA repair
and cell-cycle checkpoint. This study highlights the increased
sensitivity of Arabidopsis plants to HZE radiation, revealing
the predominant role played by ATR (ATM and Rad3-related)

protein kinase compared to ATM (ataxia-telangiectasia mutated)
in the response to high-LET radiation. In the accompanying
article, Missirian et al. compared the transcriptional response
in Arabidopsis seedlings exposed to HZE radiation vs. DSB-
inducing agents as gamma rays, bleomycin and mitomycin C.
These treatments triggered an intense, short-term DSB-specific
repair response which was not detected in plants challenged
with conventional stresses. A distinctive feature of the HZE
transcriptional response was the early activation of key genes
involved in the catabolism of cellular components.

With genome editing being the cutting-edge topic of present
days, the article by Cantos et al. deals with the implementation
of such tool (zinc finger nucleases, ZFNs) for the identification of
appropriate regions for safe gene insertion. By harnessing their
ability to induce DSBs at the cutting site, ZFNs trigger the NHEJ
or homologous recombination (HR) DNA repair pathways at the
targeted site. This study used ZFNs with short DNA recognition
domains, able to target multiple sites within the rice genome, and
subsequently study the integration patterns of the GUS marker
gene, allowing the identification of “safe harbors,” intergenic
regions with potential high expression.

The present e-book provides an up-date overview of
the ongoing research dealing with different aspects of the
DNA damage response in plants, highlighting the complexity
of molecular networks involved in genome maintenance. A
better understanding of DNA damage accumulation/perception/
signaling/repair mechanisms in planta is expected to speed up
crop improvement through conventional breeding and gene-
transfer based techniques.

AUTHOR CONTRIBUTIONS

AB commented the following articles: Huefner et al., Missirian
et al., and Raikwar et al.; AM commented the following articles:
Roy, Amiard et al., Qüesta et al., Panda and Achary, and Cantos
et al.; KOY commented the following article: Oldenburg and
Bendich; ANS commented the following articles: Furukawa et al.,
Strzalka et al., and Takahashi et al. All authors and read and
revised the complete editorial.

FUNDING

This work was supported by research fellowship from the Japan
Society for the Promotion of Science to KY (13J40017) and
partially supported by Grant-in-Aid for Scientific Research to
AS (No. 25440147) from the Japan Society for the Promotion of
Science. Sponsorship from COST Action CM1201: “Biomimetic
Radical Chemistry” is gratefully acknowledged.

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2016 Balestrazzi, Achary, Macovei, Yoshiyama and Sakamoto. This

is an open-access article distributed under the terms of the Creative Commons

Attribution License (CC BY). The use, distribution or reproduction in other forums

is permitted, provided the original author(s) or licensor are credited and that the

original publication in this journal is cited, in accordance with accepted academic

practice. No use, distribution or reproduction is permitted which does not comply

with these terms.

Frontiers in Plant Science | www.frontiersin.org 2 February 2016 | Volume 7 | Article 64

http://dx.doi.org/10.3389/fpls.2015.00516
http://dx.doi.org/10.3389/fpls.2015.00254
http://dx.doi.org/10.3389/fpls.2013.00420
http://dx.doi.org/10.3389/fpls.2014.00256
http://dx.doi.org/10.3389/fpls.2015.01094
http://dx.doi.org/10.3389/fpls.2014.00206
http://dx.doi.org/10.3389/fpls.2014.00364
http://dx.doi.org/10.3389/fpls.2014.00302
http://dx.doi.org/10.3389/fpls.2014.00206
http://dx.doi.org/10.3389/fpls.2014.00364
http://dx.doi.org/10.3389/fpls.2015.01094
http://dx.doi.org/10.3389/fpls.2014.00487
http://dx.doi.org/10.3389/fpls.2013.00405
http://dx.doi.org/10.3389/fpls.2013.00420
http://dx.doi.org/10.3389/fpls.2014.00256
http://dx.doi.org/10.3389/fpls.2014.00302
http://dx.doi.org/10.3389/fpls.2015.00883
http://dx.doi.org/10.3389/fpls.2015.00357
http://dx.doi.org/10.3389/fpls.2015.00516
http://dx.doi.org/10.3389/fpls.2015.00254
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive

	Editorial: Maintenance of Genome Integrity: DNA Damage Sensing, Signaling, Repair, and Replication in Plants
	Author contributions
	Funding


