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Poplar has emerged as a model plant for better understanding cellular and molecular

changes accompanying tree growth, development, and response to environment.

Long-term application of different forms of nitrogen (such as NO−-N and NH+-N) may3 4

cause morphological changes of poplar roots; however, the molecular level changes

are still not well-known. In this study, we analyzed the expression profiling of poplar

roots treated by three forms of nitrogen: S1 (NH+), S2 (NH 34 4NO3), and S (NO−) by3

using RNA-SEQ technique. We found 463 genes significantly differentially expressed in

roots by different N treatments, of which a total of 112 genes were found to differentially

express between S1 and S2, 171 genes between S2 and S3, and 319 genes between

S1 and S3. A cluster analysis shows significant difference in many transcription factor

families and functional genes family under different N forms. Through an analysis of

Mapman metabolic pathway, we found that the significantly differentially expressed

genes are associated with fermentation, glycolysis, and tricarboxylic acid cycle (TCA),

secondary metabolism, hormone metabolism, and transport processing. Interestingly,

we did not find significantly differentially expressed genes in N metabolism pathway,

mitochondrial electron transport/ATP synthesis and mineral nutrition. We also found

abundant candidate genes (20 transcription factors and 30 functional genes) regulating

morphology changes of poplar roots under the three N forms. The results obtained are

beneficial to a better understanding of the potential molecular and cellular mechanisms

regulating root morphology changes under different N treatments.

Keywords: poplar, nitrogen metabolism, RNA-SEQ, nitrogen forms, long-time nitrogen treatment

INTRODUCTION

Nitrogen (N) element is one of macronutrients essential for plant growth, which accounts for 1.5–
2% of plant dry matter and ∼16% of total plant protein (Frink et al., 1999). Plant roots mainly
take up inorganic nitrogen in the form of ammonium (NH+

4 -N) and/or nitrate (NO
−
3 -N) from soil.

For most plants, a mixed nutrition of NO−
3 and NH+

4 is superior over sole NH+
4 -N or NO−

3 -N
source (Marschner, 2011). The proportion of NO−

3 to NH+
4 for optimal plant growth depends
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on plant species, developmental stage, environmental conditions,
and the total concentrations of supplied N (Jackson and Caldwell,
1993; Luo et al., 2013a; Zhang et al., 2014). Morphological
characters of plant roots and shoots are significantly different
when it is supplied by a moderate concentration of NO−

3 and
NH+

4 , respectively, as sole N source (Schortemeyer et al., 1997;
Claussen, 2002; Wang et al., 2003). For example, total dry
weight of tomato plants was decreased by 32–86% when it was
cultured by NH+

4 as sole N source, both total dry weight and
fruit dry weight were increased by 11 and 30% when adding a
low concentration of NO−

3 (N:A ratio = 75:25) to the culture
solution (Wang et al., 2003). NH+

4 as the sole N source resulted
in lower dry weight of tobacco roots as compared with the other
N forms (NO−

3 and NH4NO3; Zou et al., 2005). Moreover, there
were significant differences in physiological characters, including
activity of glutamate dehydrogenase (Acer pseudoplatanus),
total amino acid concentration (soybeans), photosynthetic rates
(wheat and maize), phosphoenolpyruvate carboxylase (Alfalfa),
glutamine synthetase (Pea), type II NAD(P)H dehydrogenase,
AOX genes and proline oxidase (Arabidopsis) when the plants
were supplied with NH+

4 and NO−
3 , respectively (Goodchild and

Givan, 1990; Chaillou et al., 1991; Cramer and Lewis, 1993;
Pasqualini et al., 2001; Frechilla et al., 2002; Escobar et al., 2006;
Patterson et al., 2010).

Morphological and physiological changes induced by different
N forms are closely linked to transcription-level changes. In
recent years, the role of NO−

3 in a global regulation of plant
transcriptome has been extensively explored. The previous
studies show that as compared with N-free samples, supplying
NO−

3 to Arabidopsis seedlings make transcriptional-level changes
of the biological processes including transcription and RNA
processing, biosynthesis of amino acids and nucleic acids,
trehalose metabolism, hormone biosynthesis, and N assimilation
as well as PtaNAC1, a transcription factor, which is thought to
be associated with root architecture under low nitrogen (LN)
conditions (Wang et al., 2000, 2003; Scheible et al., 2004; Bi
et al., 2007; Gifford et al., 2008; Wei et al., 2013). Researches
on molecular effects of NH+

4 and/or NH4NO3 nutrition are less
compared with the studies on that of NO−

3 , though several recent
publications reported regulation of NH+

4 on gene expression in
various plant systems. Fizames et al. (2004) identified 270 genes
differentially expressed in Arabidopsis roots when supplied with
NO−

3 or NH4NO3 as N source. Zhu et al. (2006) demonstrated
that NH+

4 as N source stimulated sulfur assimilation in rice
leaves. In alfalfa, Ruffel et al. (2008) revealed that over 3000 genes
expression was regulated by the status of plant N supply. Poplar
has emerged as a model system for understanding molecular
mechanisms of woody plants growth, development, and response
to environment (Brunner et al., 2004). Some progresses have been
achieved in morphological, physiological characteristics of some
fast-growing poplar trees (such as P. simonii × P. nigra) and
selection of stress-tolerant genes (Wang et al., 2011; Chen et al.,
2012; Li et al., 2012; Luo et al., 2013a, 2015; Gan et al., 2015).
However, to date, few studies focus on linkages of morphological
changes of roots and transcriptional-level characteristics when
poplar plants were treated by different N-forms nutrition
(NH+

4 or NO−
3 , or both). In this study, we hypothesized there

were potential coupling changes of N metabolism-related genes
and root morphology when the poplar plants were treated by
different N forms. So we examined transcriptome profiling of the
P. simonii × P. nigra roots using high throughput sequencing
technique and analyzed potential effects of long-term different
N forms on N metabolism and root morphology-related genes
of hydroponic-cultured P. simonii × P. nigra seedlings by a
large-scale comparative transcriptomes analysis.

MATERIALS AND METHODS

Plant Material and Treatments
Poplar seedlings (P. simonii × P. nigra) were germinated on
LA media (Hewitt, 1966) with 2% (w/v) sucrose and grown
in a growth chamber (light intensity of 200µmol photons
m−2 s−1 for 16 h per day, day/night temperature of 24/22◦C,
relative humidity of 50–55%) for 25 days. Then the seedlings
were transferred to a 4.0-L LA nutrient medium for 10 days,
containing complete nutrient solution within hydroponic boxes
under a 16/8 h light/dark regime at 24/22◦C and constant (60–
65%) relative humidity. The seedlings were transferred to N-free
medium for 3 days growth, which the time of N-free treatment
was determined according to the result of Balazadeh et al.
(2014) and our preliminary test (data not shown), then subsets
of seedlings were transferred back to LA complete mediums
containing 1mM NH+

4 , 0.5mM NH4NO3, or 1mM NO−
3 ,

respectively. The different N forms (S1 [NH+
4 -N]; S2 [NH4NO3];

S3 [NO−
3 -N]) were resupplied for another 21 days. To minimize

the effect of the altered N content on osmotic potential, the
nutrient solution was augmented by a certain amount of sodium
chloride to maintain the same cation concentration in the
nutrient medium. Samples were taken from the roots with
different N+ processing for 21 days (Urbanczyk and Fernie, 2005;
Wei et al., 2013). Then samples were stored at −80◦C for RNA
extraction (Figure 1).

FIGURE 1 | Schematic representation of the experimental set-up:

poplar plants were grown hydroponically in complete LA liquid

medium (N+ medium) for 10 days, then transferred to nitrogen-free

medium (N− medium) for 3 days; subsets of plants were transferred

back to complete medium (N resupply, S1 [NH+

4
-N]; S2 [NH4NO3]; S3

[NO−

3
-N]) for another 21 days. The total treatment period is 34 days.
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Root Measurements
Root length (length of taproots from stem end to root tip) was
measured using a ruler (Figure S1). Subsequently, the samples
were ground into fine powder in liquid N with a mortar and
pestle. Frozen powder of each sample was dried at 60◦C for 24 h,
then the dry weight was calculated.

Illumina Sequencing and Data Processing
Total RNAwas isolated by using amodified CTABmethod (Chen
et al., 2009; Qu et al., 2010), then sent to Beijing Genomics
Institute (Shenzhen) where the libraries were produced and
sequenced using the Illumina Genome Analyzer (Solexa). All the
samples for Digital Gene Expression were run in two biological
replicates, which each replicate is a mixture of root samples
from four individual seedlings. Sequence tag preparation was
done with Illumina’s Digital Gene Expression Tag Profiling Kit
according to the manufacturer’s protocol (version 2.1B). Firstly,
the total RNA samples were treated with DNase I to degrade
any possible DNA contamination. Then the mRNA was enriched
by using the oligo (dT) magnetic beads (for eukaryotes). After
mixed with the fragmentation buffer, the mRNA was fragmented
into short fragments (about 200 bp). Then the double strands
of cDNA were synthesized by a series of primers, buffer, RNase
H and DNA polymerase I. The double strand cDNA was
purified with magnetic beads. End reparation and 3′-end single
nucleotide A (adenine) addition was then performed. Finally, the
fragments were ligated with the adaptors and enriched by PCR
amplification, each fragment will generate millions of raw reads.
Raw sequences were transformed into clean reads after certain
steps of data processing, including removal of the 3′ adaptor
sequence, empty reads, and low-quality reads.

All clean reads were mapped to the poplar× trichocarpa Torr.
Gray contigs assembly using SOAP2 and only no more than
a 2-nucleotide mismatch was allowed (Li et al., 2009). Clean
reads mapped to the reference contigs assembly from multiple
genes were filtered. The remaining clean reads were designed as
unambiguous clean reads. The number of unambiguous clean
reads for each gene was calculated and then normalized to
RPKM (Reads Per Kb per Million reads), which associated the
read number with gene expression levels (Morrissy et al., 2009).
Differential gene expression between different nitrogen forms
samples was determined by taking the log2 ratio of RPKM.

Identification of Differentially Expressed
Genes and Gene Ontology
The NOIseq was used to identify differentially expressed genes
for the samples treated by different N forms. Probability ≥ 0.8
and the absolute value of log2 Ratio > 1 were used as the
threshold to judge the significance of gene expression difference
(Tarazona et al., 2011). Cluster analysis of gene expression
patterns was performed by Genesis based on the K-means
method (Soukas et al., 2000; de Hoon et al., 2004). Gene ontology
(GO) analysis was applied to predict gene function and calculate
the functional category distribution frequency (Du et al., 2010).
Pathway analysis was mainly based on the Mapman (Thimm
et al., 2004).

Data Validation by qRT-PCR
The primers used for qRT-PCR validation are listed in Table S1.
They were designed on the basis of poplar refseq mRNA
sequences using the Primer-BLAST web resource at NCBI
(National Center for Biotechnology Information; http://www.
ncbi.nlm.nih.gov/BLAST). Quantitative RT-PCR (qRT-PCR) was
performed using the ABI7500 Real Time System (Applied
Biosystems). Gene expression was analyzed quantitatively
using the SYBR Green detection system with melting curve.
Amplification conditions were 95◦C for 3min, followed by 40
cycles of: denaturation, 95◦C for 15 s; annealing (55–60◦C) for
20 s; extension at 72◦C for 34 s. Samples for qRT-PCR were run
in three biological replicates and two technical replicates. The
results were normalized using the Pfafflmethod to report relative
expression (Pfaffl, 2001). For normalization of gene expression,
CYC063 and UBQ7 were used as internal standard (Figure S2).

Statistical Analysis of Root Morphological
Parameters
All data were analyzed using SPSS 19.0 software (SPSS, Inc.,
Chicago, IL, USA). The root length and dry weight of poplar
seedlings with different N forms were compared by one-way
ANOVA on the basis of Duncan’s test at the significance level of
0.05 (P < 0.05).

RESULTS

Morphological Characters of Poplar Roots
under Different N Forms
Significant difference in root length and dry weight was found
in roots treated by different N forms for 21 days (Figure 2).
Root length and dry weight of NO−

3 and NH4NO3 treated
seedlings were higher than that of NH+

4 treated seedlings for 21
days.

Illumina Sequencing and Aligning to the
Reference Genome
We sequenced three groups of cDNA libraries, S1 (NH+

4 ), S2
(NH4NO3), and S3 (NO−

3 ), and generated 18,232,002 sequence
reads, encompassing 1.71 Gb of sequence data (Table 1). Each
treatment was represented by ∼6 million reads that were
sufficient for the quantitative analysis of gene expression. The
sequence reads were aligned to the poplar reference genome
database using soap2 software (set to allow two basemismatches).
Of the total reads, 71.39% were matched either to a unique
(62.50%) or multiple (8.88%) genomic locations; the remaining
28.61% were unmatched (Table 1). Only the reads aligning
entirely inside exonic regions were matched, the reads from
exon-exon junction regions were not matched.

Global Analysis of Gene Expression
A total of 22,414, 25,691, and 26,170 genes, ranging from 100
to ≥2000 bp, were detected in the samples of S1, S2, and S3,
respectively. As shown in Table 2, the proportion of sequences
with matches to poplar databases was higher among the longer
assembled sequences. Specifically, a match efficiency of 32.23%

Frontiers in Plant Science | www.frontiersin.org 3 February 2016 | Volume 7 | Article 51

http://www.ncbi.nlm.nih.gov/BLAST
http://www.ncbi.nlm.nih.gov/BLAST
http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive


Qu et al. Morphology-Related Genes of Nitrogen-Treated Roots

FIGURE 2 | Morphological parameters of poplar roots with different N forms for 21 days. Upper: The picture of the root under different N forms; Lower:

Length of roots and the dry weighs of roots. Values are the mean of four replicates ± SE. a, b, and c indicate significant difference based on ANOVA analysis and

Duncan’s test (P < 0.05).

TABLE 1 | Summary of read numbers based on the RNA-SEQ data from

poplar roots under different N forms.

S1 [NH+

4
] S2 [NH4NO3] S3 [NO−

3
]

Total reads 5,981,660 6,075,136 6,175,206

Mapped reads 3,829,967 4,503,472 4,694,482

(64.04%) (74.10%) (76.03%)

Unique match 3,226,026 3,996,757 4,186,976

(53.94%) (65.76%) (67.81%)

Multi-position match 603,940 506,714 507,506

(10.08%) (8.34%) (8.22%)

Unmapped reads 2,151,693 1,571,664 1,480,724

(35.96%) (25.90%) (23.97%)

TABLE 2 | Distribution of the gene sequences detected in poplar roots

treated by different forms of nitrogen by RNA-SEQ.

Gene length (bp) Total number Percentage (%)

100–500 2268 5.62

500–1000 6817 16.89

1000–1500 9553 23.67

1500–2000 8715 21.59

≥2000 13,008 32.23

Total 40,361 100

was observed for sequences longer than 2000 bp, whereas the
match efficiency decreased to 16.89% for those ranging from 500
to 1000 bp, and to 5.62% for sequences between 100 and 500 bp
(Table 2).

FIGURE 3 | Change in gene expression profiles among different N

forms. S1, NH+
4 treatment; S2, NH4NO3; S3, NO

−
3 . The number of

up-regulated and down-regulated genes between S1 and S2, and between

S2 and S3 are summarized. Between the S1 and S2 libraries, there are 33

up-regulated genes and 79 down-regulated genes, while 76 up-regulated

genes and 95 down-regulated genes between the S3 and S2 libraries, and

130 up-regulated genes and 189 down-regulated genes between the S1 and

S3 libraries.

Gene Expression Profiles under Different
Nitrogen Treatments
To obtain statistical differences in gene expression among
different N treated libraries, we compared the RPKM-derived
read count using a likelihood ratio test. To minimize false
positives and negatives, we assumed that a statistical analysis
was reliable when applied to genes with an RPKM value ≥

2 in both of the two replication libraries. It should be noted
that the statistical significances are based on expected sampling
distributions. To determine the differentially expressed genes
among different N treated libraries, the threshold we used is
a two-fold or greater change in expression and Probability ≥
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FIGURE 4 | Expression patterns clustering and gene annotation. Two-dimensional hierarchical clustering classifies 463 differential gene expression profiles into

four expression cluster groups according to the similarity of their expression profiles.
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TABLE 3 | Summary of significantly over-represented functional groups in ammonium-regulated and nitrate-regulated gene sets.

Nitrogen conditions Category Gene ontology term Observed frequency (%) Expected frequency (%) Corrected P-value

S2-vs.-S1 C Extracellular region 15.40 2.30 0.04456

F Oxidoreductase activity 36.70 11.90 0.00026

Dioxygenase activity 10.20 0.60 0.00053

Oxidoreductase activity (single donors) 10.20 0.70 0.00106

Oxidoreductase activity (paired donors) 8.20 0.40 0.00231

Ion binding 42.90 21.90 0.03417

Cation binding 40.80 20.30 0.03473

S2-vs.-S3 P Plant-type cell wall modification 6.30 0.10 3.51E-05

Cell wall modification 7.90 0.20 5.29E-05

0.8, and we obtained a set of 602 DEGs (Tables S2–S4). A
total of 112 significantly changed genes were detected between
the S1 and S2 libraries, with 33 up-regulated genes and 79
down-regulated genes (Figure 3; Table S3). Between the S2
and S3 libraries, a total of 171 DEGs were detected, with 76
up-regulated genes and 95 down-regulated genes (Figure 3;
Table S4). This suggests that the differentially expressed genes
between S1/S2 is smaller than that between S3/S2. After
eliminating duplicate genes, we found 463 genes significantly
differentially expressed between the N treatments. All the
predicted poplar genes were assigned to different functional
categories using Blast2GO (version 2.2.5; http://www.blast2go.
org/; Conesa et al., 2005).

Functional Analysis of DEGs Based on
RNA-SEQ Data
Based on sequence homology, all the significantly changed
genes were categorized into 26 functional groups in the three
main categories (cellular component, molecular function, and
biological process) of the GO classification. Among the groups,
nine functional groups were significantly enriched (P ≤ 0.05),
including extra cellular region (GO:0005576), oxidoreductase
activity (GO:0016491), dioxygenase activity (GO:0051213),
oxidoreductase activity (single donors; GO:0016701),
oxidoreductase activity (paired donors; GO:0016705), ion
binding (GO:0043167), cation binding (GO:0043169), plant-type
cell wall modification (GO:0009827), and cell wall modification
(GO:0042545; Table 3).

Clustering of DEGs in the Three N-Treated
Conditions
Based on a similarity of gene expression profiles of two-
dimensional hierarchical clustering, we classified 463 differential
expression profiles into four expression cluster groups (Clusters
1, 2, 3, and 4; Figure 4). Visual inspection of these expression
groups suggested diverse and complex patterns of gene
regulation. Clusters 1 and 4 contained the genes induced or
repressed by NO−

3 , while the genes induced or repressed by NH
+
4

were grouped in Cluster 2 and 3 (Figure 4).
In order to identify differentially expressed genes and

transcription factors that are associated with different N

forms, we identified 20 putative TF genes through the
Mapman Transcription factors Database (pathway). Meanwhile,
30 functional genes associated with N forms are shown in
Figure 4; the entire data were listed in Table S5. Figure 4

showed that the expression level of extension of cell wall
related genes such as EXPA11 and EXPB3 (Cluster 1) were
significantly increased under NO−

3 treatment. In Cluster 2,
the genes encoding NH+

4 transporters and NO−
3 transporters

(such as AMT2;1, NRT 2.5, NRT3.1) were changed significantly
under NO−

3 and NH4NO3 forms. Under NH+
4 treatment, the

expression levels of the genes encoding N storage proteins
are significantly increased (PLP2). Interestingly, there was no
significant difference in genes expression in N metabolism
pathway, mitochondrial electron transport/ATP synthesis and
mineral nutrition (Figure 5; Figure S3).

DISCUSSION

In this study, we aimed to investigate transcriptional-level
changes of poplar roots under different N forms (NH+

4 , NO
−
3 ,

and NH4NO3) for a long time (21 days). We found root length
and dry weight in NO−

3 or NH4NO3 significantly higher than
that in NH+

4 condition. Our results (Figure 2) are in agreement
with that found in the rice (Oryza Sativa L.; Schortemeyer
et al., 1997; Li et al., 2006). To better understand the changes
of root morphology and growth under different N forms, we
examined differentially expressed genes of poplar roots treated
by different N forms (Tables S2–S4). Based on the result of
GO analysis, we only found enrichment of GO term oxidative
stress under NH+

4 treatment and GO term cell wall under
NO−

3 treatment. Podgorska et al. (2013) analyzed physiological
responses (up to 8 weeks) of Arabidopsis leaves to NO−

3 or
NH+

4 treatment and found that NH+
4 nutrition led to increase of

leaf NAD(P)H/NAD(P)+ ratio, reactive oxygen species content
and accumulation of biomolecules oxidized by free radicals of
Arabidopsis thaliana. Patterson et al. (2010) believed that the
NH+

4 -induced responses were primarily associated with biotic
stress and cellular redox (Patterson et al., 2010). In this paper, our
results are consistent with the above results.

We examined genes expression of N-form associated
metabolic pathways, but did not find significantly differentially
expressed genes in N metabolism pathway. In a previous
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FIGURE 5 | Schematic representation of primary metabolism of poplar roots at different forms of nitrogen. Gray charts represent significantly differentially

expressed genes in the metabolic pathways. White charts represent the genes without significantly different expression in the metabolic pathways. The left and right

columns represent the S1/S2 and S3/S2 at the transcriptional level, respectively. Up- and down-facing triangles represent an increase and decrease in transcripts.

The digital in columns represent the number of change genes. It can be found that there was no significantly difference gene in nitrogen metabolic pathway.
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study on transcript levels of barley plants supplied with
NO−

3 , NH+
4 , or NH4NO3 for 48 h, only three genes were

found to be specifically NO−
3 /NH

+
4 -induced/repressed (Lopes

and Araus, 2008). Hoffmann et al. (2007) studied the genes
expression of Arabidopsis seedlings continuously on the medium
containing NH+

4 or NO−
3 for 15 days, and only found two genes

differentially expressed under different N forms. In the study
of Beatty et al. (2009), the alanine aminotransferase (AlaAT)
gene was transferred into rice plants and over-expressed through
a tissue-specific promoter; the authors found the transgenic
plants had a strong N use efficiency but less change in the
transgenic transcriptome as compared with the controls, with
only 0.11 and 0.07% differentially regulated genes in roots
and shoots, respectively. According to significant difference
of N transport-related genes (Figure 5), we assumed that N
transport related genes play an important role in the regulation
of long-time N uptake, and N metabolism related genes may be
in a steady state in the poplar roots under N forms treatment for
21 days.

In this study, we analyzed genes expression of N-form
treated poplar roots by Mapman software (Thimm et al., 2004);
and identified four gene expression clusters, a NO−

3 -induced
cluster (Cluster 1), an NH+

4 -repressed cluster (Cluster 2), an
NH+

4 -induced cluster (Cluster 3), and a NO−
3 -repressed cluster

(Cluster 4), respectively. The significantly differentially expressed
genes (Table S5) were classified to 20 metabolism pathways
(Figure 5), some of which (30 functional genes) have been
clearly annotated in Figure 4. We found gene families members
related to the synthesis of cell wall in different clusters (Figure 4;
Table S5). For example, exp3 and expA11 belong to cluster 1,
and expA17 belongs to cluster 2, while paralog expB2 belongs to
cluster 4 (Figure 4). EXPA and EXPB were known to have cell-
wall loosening activity and to be involved in cell expansion and
other developmental events during which cell-wall modification
occurs (Cosgrove, 2000). EXPA and several EXPB are implicated
as catalysts of “acid growth,” and regulate the expansion activity
rapidly by modulating pH of cell wall (McQueen-Mason et al.,
1992; Li et al., 1993, 2003; Cho and Kende, 1997; Sampedro
and Cosgrove, 2005). In fine roots of Populus popularis, net
fluxes of NH+

4 and NO−
3 are in association with H+ fluxes

and change the pH around the root (Luo et al., 2013b). In the
present study, the transcriptional level changes of exp genes may
be related only to N form but not to change of extracellular
pH; because we replaced the culture solution per 2 days for
eliminating the effect of medium pH. It is inferred that the exp
family genes may play a key role in morphogenesis of the poplar
roots when they are treated by different N forms for a long
time.

Nitrogen absorption related genes, for example, NRT2.5 and
NRT3.1, and the genes associated with NH+

4 absorption,AMT2.1,
occurred in the cluster 2. The NRT3 family in Arabidopsis
contained two members, AtNRT3.1 and AtNRT3.2. The NRT3
family genes in Arabidopsis play a role in NO−

3 transport
(Okamoto et al., 2006; Orsel et al., 2006). The two NRT3 genes
appear to be closely correlated with each other, but NRT3.1
(NAR2.1) appears to play a more significant role in high-affinity
NO−

3 uptake (Okamoto et al., 2006). These genes are not NO−
3

transporters, but have been shown necessary for NO−
3 transport

through interaction with the otherNRT2 transporters (Plett et al.,
2010). From Figure 4, we found that the expression of NRT3.1
gene was inhibited only by NH+

4 treatment, whereas under NO−
3

or NH4NO3 treatment, NRT3.1 expression level was increased
significantly as compared with that with NH+

4 treatment. So
we considered that NO−

3 might be an essential for NRT3.1
expression, which would promote N absorption. AMT2.1 genes
that are associated with NH+

4 absorption were expressed in low
abundance of NH+

4 as a sole nitrogen source.
Poplar BSP genes, which belong to the nucleoside

phosphorylases gene family, are expressed before the
metabolic nucleotide salvaging, and play an important role
in ecophysiological adaptation for inter- and intra-seasonal N
storage and cycling (Pettengill et al., 2013). In this study, we
obtained a transcription read of bsp-like gene (Comments as
PLP; Figure 4), which might be a kind of storage protein of a
poplar, specifically induced by NH+

4 . The magnitude of gene
expression in stems is significantly higher than that of leaves
and roots, and has a high homology with the NP-like subfamily
of the BSP gene family (data not shown). We speculated that
the BSP protein synthesis may have a close correlation with the
exogenous NH+

4 concentration.
Recent publications show that myb48 (Plavcova et al., 2013)

and wrky75 (Devaiah et al., 2007) are significantly differentially
expressed under different N treatments. In the present study,
we identified 20 transcription factors (TF) mRNAs that have
close correlations with N forms. However, potential roles of the
identified TF mRNAs in root morphogenesis are unknown. So
functional verification of the transcription factors is necessary in
future work.

In summary, there are significant differences inmorphological
characteristics and N transport-related genes of the poplar roots
between the three N forms for 21 days, but with no significant
difference in the transcription level in N-metabolism pathway
(Figure 5). Further study should focus on transcriptional level
changes of poplar roots treated by different N forms for a short-
term period using RNA-SEQ and reveal potential molecular
mechanisms. Further work is proposed to select functional genes
related to root morphology and functional assignment of the
transcription factors under different nitrogen forms.
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