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NAC genes contribute to enhance survivability of plants under conditions of
environmental stress and in secondary growth of the plants, thereby building biomass.
Thus, genetic transformation of plants using NAC genes provides a possibility to
tailor biofuel plants. Over-expression studies have indicated that NAC family genes
can provide tolerance to various biotic and abiotic stresses, either by physiological
or biochemical changes at the cellular level, or by affecting visible morphological and
anatomical changes, for example, by development of lateral roots in a number of plants.
Over-expression of these genes also work as triggers for development of secondary
cell walls. In our laboratory, we have observed a NAC gene from Lepidium latifolium
contributing to both enhanced biomass as well as cold stress tolerance of model
plants tobacco. Thus, we have reviewed all the developments of genetic engineering
using NAC genes which could enhance the traits required for biofuel plants, either by
enhancing the stress tolerance or by enhancing the biomass of the plants.

Keywords: NAC, genetically engineered plants, abiotic stress tolerance, secondary growth, cell wall synthesis,
biomass

INTRODUCTION

NAC (NAM, ATAF, CUC) genes containing the NAC domain, constitute one of the largest
plant-specific transcription factor (TF) families. NAC family TFs are characterized by a highly
conserved N-terminal DNA binding domain (Olsen et al., 2005) and a diversified C-terminal
domain that generally regulates the transcriptional activation (Yamaguchi et al., 2008). Functional
characterization of the NAC family genes using over-expression studies (He et al., 2005)
have helped understanding various biological roles of NAC proteins as indicated in Figure 1
Interestingly, NAC genes contribute to enhanced survivability of plants under stress (Puranik et al.,
2012), and in secondary growth of the plants (Nakano et al., 2015), thereby building biomass.

Biofuel plants of the future, so-called fourth generation biofuels are perceived to be the ones that
survive under harshest of conditions owing to their abilities to withstand stress, and produce large
amounts of biomass that can be converted to green diesel, via biomass-to-liquid technologies.

Here, we review the literature on functional characterization of NAC genes through over-
expression to establish their roles in stress tolerance and biomass production, the two important
parameters for biofuel plants.
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FIGURE 1 | Diversity of functions into which NAC genes and proteins
are involved in.

NAC ENGINEERED PLANTS FOR
GROWTH IN DEGRADED LANDS

Stress Tolerance
Members of NAC family genes from different plants have been
shown to provide tolerance to biotic and abiotic stresses (Jiang
et al., 2014; Mao et al., 2014; Shah et al., 2014). ATAF sub-family
in particular is involved in response to environmental stimulus,
and the mechanism of action of NAC may be ABA dependent
or independent. Ohnishi et al. (2005) provided comprehensive
evidence that OsNAC6 gene in rice was induced by cold, salt,
drought, abscisic acid (ABA), jasmonic acid (JA), and wounding.
Subsequently, similar results were also reported by Hu et al.
(2006, 2008) for SNAC1 and SNAC2 genes in rice, which too
were induced by cold, drought and salinity stresses. Similarly,
GmNAC11 and GmNAC20 genes from soybean were shown
to be differentially expressed in response to multiple abiotic
stress and plant hormones as a transcriptional activator of other
stress responsive genes like DREB1A, ERD11, cor15A, ERF5,
RAB18, and KAT2 genes (Hao et al., 2011). A well-characterized
NAC gene is AtNAC2 from Arabidopsis thaliana, whose elevated
expression levels have been reported in ethylene and auxin
overproducer mutants, when exposed to salt stress. The gene

also gets induced by ABA and drought stresses (He et al., 2005).
In our laboratory, we have identified a cold-inducible NAC
gene from a Brassicaceae family member Lepidium latifolium
(LlaNAC), which was subsequently validated by over-expressing
the gene in tobacco plants (Grover et al., 2014). The popularity
of the NAC gene as a tool to induce stress tolerance in plants
by genetic engineering can well be assessed by overlooking
the number of such reports within the calendar year 2015
(Table 1).

From human perspective, a good biofuel crop would be
the one which would also be resistant to the abiotic stresses.
Interestingly, a small number of NAC proteins have also
been reported to respond to the abiotic stresses (reviewed by
Nuruzzaman et al., 2013). Examples include OsNAC111 in rice,
belonging to the TERN subgroup, and has been shown to provide
tolerance to over-expressor plants against Magnaporthe oryzae
(Yokotani et al., 2014).

Physiological and Morphological
Adaptations
NAC family genes are also involved in a number of growth and
development processes, as well as in tissue formation, which
in turn help a plant to survive stress. For example, membrane-
associated NAC TFs, up-regulated by stress conditions,
have been found associated to a variety of morphological
features like delayed flowering, reduced growth, curled
leaves, etc., under stress conditions (Kim et al., 2007a,b).
Arabidopsis lines over-expressing RhNAC3 gene from rose
displayed hypersensitivity during seed germination and leaf
closure on ABA or drought stresses (Jiang et al., 2014).
A number of NAC genes have also been reported downstream
to ETHYLENE-INSENSITIVE2 or similar genes, thereby
participating in leaf senescence, fruit ripening, etc. (Ay et al.,
2014; Kim et al., 2014; Nieuwenhuizen et al., 2015). Zhao
et al. (2015) reported delayed leaf senescence and higher
nitrogen concentrations in grain by over-expressing wheat
TaNAC-S.

Another well known effect of NAC over-expression in plants
is lateral root formation, which is generally observed as a
response or phenotypic adaptation to water scarcity. The effect
has best been studied for AtNAC2 from Arabidopsis thaliana,
being associated to lateral root development under salt stress.

TABLE 1 | Recent reports on demonstration of acquiring stress tolerance in NAC over-expressor plants.

Donor plant Gene Over-expressor plant Abiotic stress to which tolerance
acquired

Reference

Macrotyloma uniflorum MuNAC4 Arachis hypogaea Drought Pandurangaiah et al., 2014

Cicer arietinum CarNAC3, CarNAC6 Populus
deltoides × Populus
euramericana

Drought, salinity Movahedi et al., 2015

Miscanthus lutarioriparius MlNAC5 Arabidopsis thaliana Drought, cold Yang et al., 2015

Brassica napus BnaNAC19, BnaNAC82 Nicotiana benthamiana Hypersensitivity-like response to
reactive oxygen species

Wang et al., 2015

Oryza sativa SNAC3 Oryza sativa Heat, drought Fang et al., 2015

Triticum aestivum TaNAC29 Arabidopsis thaliana Drought, salinity Huang et al., 2015
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Further, model plants over-expressing AtNAC2 gene were also
shown to have extensive lateral root development (He et al.,
2005).

NAC ENGINEERED PLANTS FOR
BIOMASS PRODUCTION

Biomass, i.e., deposition of photosynthetic free energy, is
an important source of biofuels today. Vegetative tissues of
specialized crops like switch grass, miscanthus and poplar are
primarily used for this purpose. Therefore, any engineering event
in plants that prolongs or enhances vegetative meristematic
activity is desirable from biomass production point of view.
In our laboratory, we raised LlaNAC over-expressor lines that
could accumulate 2–3 times more biomass and chlorophyll
pigments than the wild-types. In addition, these plants matured
early, had shorter life cycles (Grover et al., 2014), and could
capture 3–5 times more carbon dioxide. It is pertinent to
mention that the nearest homolog, ANAC056 from Arabidopsis
thaliana, of the gene that we cloned (i.e., LlaNAC) clustered with
VND subfamily of genes (Zhong et al., 2010a). Expression of
ANAC056 is predominant in cork, xylem, silique, hypocotyls,
and stamen. VND genes clearly participate in secondary
growth in perennials, their overall effects in annuals and
herbaceous plants like Arabidopsis and Lepidium, shall be more
thoroughly evaluated. VND proteins function in formation of
various tissues other than xylem vessels too (Bennett et al.,
2010).

NAC proteins target a number of genes in the genome
including those which are involved in stress responses, growth,
and secondary wall synthesis (discussed below) or cambial
activities. Previous estimated have suggested that as many as 72
genes are the target genes to NAC proteins (Shamimuzzaman
and Vodkin, 2013). Such versatility in their action is partly due
to their ability to form homo- and hetero-dimers, which act as
transcriptional switches (Olsen et al., 2005), and partly because
many NAC TFs are downstream to each other (Grover et al.,
2014).

Secondary Cell Wall Synthesis
Secondary cell walls are the most abundant biomass and
renewable source of energy. Interestingly, secondary
cell wall biosynthesis is regulated by a subset of closely
related NAC domain proteins, i.e., NST1/ANAC043,
NST2/ANAC066, and NST3/SND1 (SECONDARY WALL-
ASSOCIATED NAC DOMAIN PROTEIN1)/ANAC012
as master transcriptional switches (Zhong et al., 2008).
These proteins bind to a triggering expression of other
genes downstream by binding at 19-bp consensus sequence,
(T/A)NN(C/T)(T/C/G)TNNNNNNNA(A/C)GN(A/C/T)(A/T)
called as secondary wall NAC binding element (SNBE; Zhong
et al., 2010b). Downstream genes, SND2 and SND3 (Zhong
et al., 2008) up-regulate genes associated with cellulose, xylan,
mannan, and lignin biosynthesis and polymerization.

Other NAC TFs belonging to this sub-family include Vascular
NAC related domain proteins (VND6 and VND7) which act

as regulators of secondary cell wall biosynthesis specifically
in vascular vessels (Yamaguchi et al., 2008). These genes are
expressed in fiber cells of inflorescence stems, hypocotyls, valve
endocarp layer and in the cells surrounding vascular vessels in
replum of siliques (Shah et al., 2014). Examples include BdSWN5
in Brachypodium distachyon, OsSWN1 in grasses (Chai et al.,
2015), and wood associated NAC domain proteins (WND2B and
WND6B) in poplar (Zhong et al., 2010a; Zhao et al., 2014). The
role of alternative splicing too has been suggested in function of
these genes as regulators of secondary cell wall biosynthesis (Zhao
et al., 2014). Interestingly, a number of other NAC genes too
lie downstream of VND subfamily genes (Shamimuzzaman and
Vodkin, 2013). Wood-associated NAC domain TF (PtrWNDs),
are alternatively spliced (Zhao et al., 2014) occurs exclusively in
secondary xylem fiber cells. The two PtrWND1B isoforms play
antagonistic roles in regulating cell wall thickening during fiber
cell differentiation in Populus sp.

Cellular maturation of root cap is also regulated by NAC TF
family members, viz., SMB (SOMBRERO), BRN1 (BEARSKIN1),
and BRN2, along with VND and NST genes (Bennett et al.,
2010). Interestingly, SMB, BRN1, and BRN2 over-expression
show similar phenotypic patterns to VND/NST genes (Bennett
et al., 2010).

PERSPECTIVES

NAC gene family is not only one of the largest gene families in
plants, but is also one of the best characterized gene families in
plants. A random search on google scholar using the key words
“Characterization of NAC genes” returns more than 100 relevant
result links. Inclusion of information from all of these papers
would have required publication of a monograph on NAC genes,
and is thus out of the scope of this mini-review. However, there
have been few or even negligible efforts on realization of potential
of the NAC genes by preparing genetically engineered crops for
food or fuel purposes. Thus, while NAC genes remain a favorite
among Plant Molecular Biologists, they are yet to be adopted by
Plant Biotechnologists.

Sufficient evidence is available on, how NAC over-expressing
plants negotiate stress better than the wild-type plants.
A transgenic crop over-expressing NAC gene would thus
have much wider applicability and adaptability to a conventional
breed or variety. Conversely, the agrochemicals can judiciously be
directed to food crops. Further, a number of reports implicating
role of NAC proteins in secondary wall synthesis and thereby
biomass accumulation are available, thereby opening a lucrative
opportunity for designing second or fourth generation biofuel
plants. An obvious objection would be that stress tolerance
and biomass accumulation are different properties, and are not
accounted by a single NAC gene. Panorama of traits are generally
observed in transgenic plants designed with an objective to
characterize these genes. For example, Xia et al. (2010) observed
biotic and abiotic stress tolerance due to the effect of a single gene,
Uauy et al. (2006) reported senescence controlling NAC gene
improving grain protein, zinc, and iron content in wheat, NAC
gene from Lepidium latifolium improved both stress tolerance
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as well as biomass characters in over-expressing tobacco lines
(Grover et al., 2014). Much recently, Chen et al. (2015) found
OsNAC2 over-expression affects height of the plant, insensitivity
to gibberellic acid and delays flowering.

In view of the above, it is justified to conclude that an open
minded screening of NAC over-expressor plants is required to
evaluate the potential for biofuel plants. Implementation of NAC
transgenic plants for economic benefits in biofuel production
may be dictated by the local requirements, and necessary strategy
can be drafted based on the huge literature available in public
domain.
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