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Molecular markers allowed breeders to mendelize quantitative trait loci (QTL) providing
another demonstration that quantitative traits are governed by the same principles as
single qualitative genes. This research extends the QTL analysis to two and three QTL
and tests our ability to mendelize an oligogenic trait. In tomato, agricultural yield is
determined by the weight of the fruits harvested per unit area and the total soluble
solids (% Brix)–sugars and acids. The current study explores the segregation of multiple
independent yield-related QTL that were identified and mapped using introgression
lines (IL) of Solanum pennellii in cultivated processing tomato (S. lycopersicum). We
screened 45 different double and triple IL-QTL combinations for agricultural yield, to
identify QTL pyramids that behaved in an additive manner and were suitable substrate
for mendelizing an oligogenic trait. A pyramid of three independent QTL that significantly
improved Brix∗Yield (BXY - the soluble solids output per unit area) compared to M82
was selected. In the progenies of the tri-hybrid we bred using markers a nearly isogenic
‘immortalized F2.’ While the common mode of QTL–QTL interactions across the 45 IL-
QTLs combinations was less than additive, the three QTLs in the selected triple-stack
performed in an additive manner which made it an exceptional material for breeding.
This study demonstrates that using the phenotypic effect of all 27 possible QTL-alleles
combinations it is possible to make reliable predictions about the genotypes that will
maximize the yield.

Keywords: epistasis, mendelizing, yield, QTL, tomato, wild species

INTRODUCTION

Yield is a key trait for commercially grown crop plants. The challenge in breeding and genetic
analysis of yield is posed by the biological complexity of this trait, since yield reflects the cumulative
effects of multiple factors over time and across plant organs and field environments. While the
interaction of quantitative trait loci (QTL) with environmental conditions can be controlled
in genetic studies, epistasis which is a major force shaping the phenotype remains a difficult
component to quantitate (Carlborg andHaley, 2004; Mackay, 2014). The term ‘epistasis’ was coined
approximately 100 years ago to describe the difference between predicted genetic segregation,
based on the action of individual genes, and the observed product of a di-hybrid cross (Bateson,
1909). In the case of quantitative traits, epistasis refers to the deviation of a phenotype from
its predicted value based on additivity between the effects of the underlying independent QTL
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(Carlborg and Haley, 2004). The role and importance of
epistasis in the genetic architecture of quantitative traits remains
controversial (Carlborg and Haley, 2004; Hill et al., 2008).

Recent advances in genomic technologies and computational
capabilities have enabled more effective research to mendelize
QTL and elucidate the role of epistasis in the evolution and
genetic architecture of complex traits (Salvi and Tuberosa,
2005; Holland, 2007; Phillips, 2008; Mackay, 2014). However,
the genetic dissection of interactions between QTLs remains
a challenge and in many instances, requires the use of
specific populations and appropriate designs to reduce genetic
complexity and allow a focused and balanced analysis of
interactions.

The nearly isogenic introgression lines (IL) population in
tomato was developed 20 years ago (Eshed and Zamir, 1995)
to effectively re-introduce unused genetic variation from wild
species into the cultivated varieties and to facilitate efficient
mapping of complex as well as simple traits that originate from
the wild donor. The ILs consisted of marker-defined genomic
segments transferred (through controlled crosses) from the
drought-tolerant wild species Solanum pennellii into the genetic
background of an elite inbred variety; M82 (Eshed and Zamir,
1995). The ILs population constitute a “genetic library,” where
the whole wild species genome is divided into 76 lines, each
carrying a single homozygous introgression. Implementation
of this resource for QTL mapping exploits the nearly isogenic
nature of the lines, such that any phenotypic difference between
M82 and an IL, or the F1 cross of M82 with an IL (ILH),
can be attributed to allelic effects within the corresponding
S. pennellii genomic segments. The nearly isogenic nature of the
IL population provides increased power and sensitivity for QTL
mapping compared to whole-genome segregating populations
(Keurentjes et al., 2007) and was extensively used over the last two
decades to map QTLs for diverse traits (Lippman et al., 2007).

Epistatic relations among QTLs are often analyzed based on
phenotyping whole genome segregating populations, such as F2,
recombinant inbred lines (RIL), or double-haploids (DH) (Long
et al., 1996; Li et al., 1997, 2014; Wentzell et al., 2007; Rowe
et al., 2008; Buckler et al., 2009; Sandhu et al., 2014). The major
weakness in this approach for estimating epistasis lies in the lack
of statistical power to address digenic or higher order interactions
due to the rarity of such genotypes in the population, the
background effects of unlinked loci and the statistical problem of
multiple tests (Mackay, 2014). Using structured crosses of NILs or
ILs, epistasis can be tested in a nearly isogenic genetic background
that includes only the target IL-QTL, which can provide better
detection compared to RIL populations (Keurentjes et al., 2007;
Melchinger et al., 2007; Reif et al., 2009) (Supplementary Figure
S1). The focused nearly isogenic design is particularly beneficial
for the analysis of QTL epistasis for low heritability traits, such as
yield, where replicate trials are required to obtain solid estimates
of the phenotype. This approach was used by Eshed and Zamir
(1996) in their study of IL epistasis in tomato. The joint effect of
IL-QTLs pairs was tested and compared to the individual effects
of ILs. Out of 46 pairs of QTLs that had a significant effect in
the same direction, 24 showed significant interaction (P < 0.05)
and all were less than additive. A similar mode of epistasis was

found for fruit quality QTLs in tomato (Causse et al., 2007).
In autopolyploid sugarcane, sugar content showed diminishing
return following an increase in favorable alleles doses (Ming
et al., 2001). In mice, it was shown that the sum of the effects
of individual QTLs is significantly greater than the phenotypic
difference between the parental strains (Shao et al., 2008; Spiezio
et al., 2012). Similar results were found for aggressive behavior
in Drosophila melanogaster (Edwards and Mackay, 2009). It was
suggested that the less-than-additive architecture could be a
mechanism to ensure stability and canalization of phenotypes
despite genetic and environmental disturbances (Gillespie and
Turelli, 1989; Eshed and Zamir, 1996).

This study aimed to dissect and test all genotypes of a
triple QTL stack that broke the less-than-additive trend and
thus outperformed in our trials and produced high yield even
when compared to leading varieties in the market (Gur and
Zamir, 2004). This pyramid, constructed to include IL7-5-
5, IL8-3, and IL9-2-5, was named IL789. It significantly and
consistently improved tomato Brix and yield across diverse
genetic backgrounds and environments, including drought
conditions. The power of IL789 to break tomato yield prompted
us to dissect it into its components and reassemble it in all
possible genetic combinations. This exercise allowed us to extend
the mendelian analysis of a single QTL to three QTL that
segregate in the same tri-hybrid cross.

MATERIALS AND METHODS

Plant Material
Introgression Lines
The parental lines of the IL population were the processing
tomato, inbred variety M82 (S. lycopersicum), and the inbred
accession of S. pennellii (LA716). The development and genetic
characterization of the ILs population was previously described
in details (Eshed and Zamir, 1995; Liu and Zamir, 1999). Further
data are also available at the Solanaceae Genome Network (http://
solgenomics.net/).

Pyramided Introgression Lines and Construction of
3-way ‘Immortalized F2’
Pyramided genotypes were produced using crosses and marker-
assisted selections (MASs) to identify and track the introgressed
alleles. Independent ILs containing selected introgressions were
crossed to produce double heterozygous ILs (ILHs). A set of
36 double ILHs was tested in the field in the first year. Best-
performing entries were then self-pollinated and F2 plants
homozygous for both introgressions were selected using markers.
The fixed double ILs were then crossed to another selected single
IL to produce triple ILHs. The new triple ILHs and selected
double ILHs from the previous year, were tested under Dry field
conditions (see below) in the second year. The selected triple-IL
pyramid, IL789, was created by two rounds of crosses between
the donor ILs (IL7-5-5, IL8-3, and IL9-2-5), followed by marker-
assisted genotypic selection of desired combinations (Figure 1B).
To explore the entire range of epistatic relations between the
three single ILs, we produced an ‘immortalized 3-way F2’ that
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FIGURE 1 | Workflow for creation of IL789 pyramids and the ‘3-way Immortalized F2.’ (A) BXY quantitative trait loci (QTL) map (Gur et al., 2011) used as the
basis for selection of target IL-QTLs for pyramiding. The 12 tomato chromosomes are shown. Gray bars on the left of each chromosome are positions of
introgressions at each of the Solanum pennellii ILs (Eshed and Zamir, 1995, http://solgenomics.net/). Red bars are introgression lines that showed significant
increase in BXY compared to M82. (B) Description of the workflow for creation of the different QTL stacks. (C) The ‘All-Heterozygote’ pyramid, composed of single,
double and triple introgression lines that were backcrossed to M82; all introgressions are present at the heterozygote state (ILH; IL-Hybrid). (D) Crossing scheme for
producing 27 immortalized F2 segregants for the three QTL pyramid. Single, double and triple homozygote ILs were intermated to create the ‘3-way immortalized
F2’. The numbers (7, 8, or 9) indicate the chromosome number and refer to the presence in homozygote state of S. pennellii introgressions IL7-5-5, IL8-3, and
IL9-2-5, respectively. For the 27 genotypes at the ‘immortalized F2’ table; L = homozygote lycopersicum, H = Heterozygote, P = homozygote pennellii. Genotypes
are expressed in the following order: IL7-5-5/IL8-3/IL9-2-5.

reflected all 27 possible genotypic combinations for segregation
of three loci. An ‘immortalized F2’ is composed of fixed lines
and structured crosses in such a way that provide large seed
quantities for replicated trials using F2-like genotypes. Selected
F2 plants [derived from self-pollination of the triple IL-hybrid
(ILH789)] that were fixed for different combinations of the target
introgressions were used for a structured crossing scheme to
create the ‘immortalized 3-way F2’ (Figure 1D).

Field Trials
Yield trials were carried out in the open-field experiment station
in Akko, Israel. No specific permission is required to publish
results of experiments conducted in the Akko Experiment Station
that owns the fields where our trials were carried out. All the
experiments were planted in the field in Akko in a randomized

complete block design (RCBD) under two irrigation treatments
(Wet and Dry) in 10 replications within each treatment as
previously described (Gur and Zamir, 2004; Gur et al., 2011).
Seedlings (35 days after sowing) were transplanted in the field
with 50 cm between plants in a row and 2 m between rows
(common experimental density of 1 plant per m2). Field was
irrigated in the day of transplanting, with 30m3 of water for every
1,000 m2 of field area. For the rest of the growing season, the Wet
treatment was drip irrigated with 250 m3 per 1,000 m2, while no
additional irrigation was applied to the Dry treatment.

Phenotyping
Phenotyping was performed as previously described (Gur and
Zamir, 2004; Gur et al., 2011). Experiments were harvested in a
single harvest when on average 80–100% of the tomatoes were
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ripe (fully red). Red and green fruits were separated and weighed
separately to estimate the variation in earliness of ripening
between the tested genotypes. Plant vegetative weight (PW-
Kg/m2) was determined by weighing only the vegetative tissue
(after collecting the fruits) and after the roots were removed.
Total fresh yield (TY-Kg/m2) per plant or plot reflect the sum
of weights of the red and the green fruits. Average fruit weight
(FW-g/fruit) was calculated from a random sample of 20 fruits
per plant or plot. Concentrations of total soluble solids [BX,
measured in degrees Brix (%)] were measured, using a hand
refractometer (RFM-80 BS, ATAGO), from the juice of a random
sample of ten fully ripe fruits per plant or 20 fruits per plot. Fruit
number (FN-number of fruits/m2) was calculated as the ratio
between TY (g/m2) and FW (g/fruit). The total sugar yield per
plant was calculated as the BX∗TY (BXY-g sugar/plant).

Genotyping
The ILs and derived populations were genotyped using
Restriction Fragment Length Polymorphism (RFLP; Bernatzky
and Tanksley, 1986) and PCR-based (CAPS) markers. For the
MAS and stacking of target introgressions (as described in
Figure 1), flanking markers from the ends of each introgression
were used to track the alleles and ensure the integrity of the
transmitted introgression. Exception is IL7-5-5 where inversion
in this region between S. penneellii and S. lycopersicum (van der
Knaap et al., 2004) is inhibiting recombinations and the use of
single marker at the center of the introgression was sufficient.
Markers that were used are: IL7-5-5: CT52. IL8-3: TG510, CT148,
CT68. IL9-2-5: CP44, GP263. Detailed description of RFLP and
CAPs markers positions and sequences are available at http://
solgenomics.net/.

Statistical Analyses
Statistical analyses were performed as previously described (Gur
and Zamir, 2004; Gur et al., 2011) using the JMP V.8 software
package (SAS Institute, Cary, NC, USA). The selection of IL-QTL
for the 45 QTL stacks experiments was based on comparisons to
the nearly isogenic recurrent parent; M82. Lines that showed a
significant difference from M82 (p < 0.05, corrected for multiple
comparisons using Dunnet test) were defined as possessing an
IL-QTL. Less-than-additive hypothesis was tested by correlation
analysis between expected and observed BXY values. Expected
values were calculated as the sum of the single ILH effects
based on the independent mean comparisons of each ILH
to M82. QTL–QTL interactions were tested through ANOVA
(using the “Fit model” function of JMP program) where each
IL-QTL was tested as main effect and the double or triple
QTL by QTL interactions were also tested as factors in the
model. Comparisons between the pyramided combinations were
performed using the “Fit Y by X” function of the JMP program
followed by the “Compare all means” function that correct for
multiple comparisons using the Tukey–Kramer test. Mode of
inheritance parameters (a,d) for the three target IL-QTLs were
calculated and previously described in details by Gur et al.
(2011).

All the raw data for the presented experiments is available for
download from Phenome Networks Project Unity http://unity.

phenome-networks.com/ in a folder entitled “Dissecting 3-way
Pyramid”.

RESULTS

Less-than-additive is the Prevalent Mode
of Interaction between Yield QTL in the
IL Population
To identify yield-enhancing QTL stacks, we screened, over a
period of 2 years, 45 double and triple IL combinations and
compared them to M82 and the single ILs. This survey included
selected genotypes that were tested as ILHs and were compared
to their double ILH combinations. By comparing the yield of the
independent ILHs with the values of the double ILHs, we were
able to determine whether there is a deviation from additivity
indicative of epistasis. Our results were consistent with those of
the past (Eshed and Zamir, 1996) and overall, there was a strong
trend for the less-than-additive model. This trend can be viewed
in Figure 2, where the slopes of the regression lines (green),
whose intercepts were constrained to zero (which represents the
M82), were significantly lower than 1, which is the slope of
the expected regression line when assuming complete additivity.
Each point on this figure represents a double or triple-ILH, where
the predicted BXY (based on the sum of the effects of independent
ILHs) is plotted against the observed BXY. To improve the
confidence of this analysis aimed at identifying non-epistatic QTL
combinations, we conducted the trial over two irrigation regimes:
irrigated (Wet) and non-irrigated (Dry) trials, performed at the
same location. The less-than-additive pattern seemed to be more
prominent under drought stress, while under the Wet treatment,
there was more variation but the same pattern of diminishing
returns was evident. Despite the general less-than-additive trend,
we identified few combinations that showed additivity, where
the two with the most dramatic and consistent effect were the
double-stack ILH28 and the triple stack IL789, that are described
below.

Analysis of Epistasis in the ILH28 Double
Hybrid
A QTL combination that was interesting and showed significant
double-QTL additivity was the double hybrid ILH28 (Figure 2),
built from the cross between IL8-3 and IL2-5. IL8-3 and IL2-5
are two lines that consistently improved yield components and
both showed a heterotic mode of inheritance, as the ILHs were
superior to both the IL and to M82. IL2-5 contains introgression
at the distal part of the long arm of chromosome 2, covering
the position of the fruit-size gene fw.2.2 (Frary et al., 2000). The
wild allele of fw.2.2 is associated with a very significant additive
fruit size-decreasing effect and therefore, hybrids with IL2-5 on
the processing tomato background, produce ‘midi-plum’-type
tomatoes that are ∼30% smaller than the common processing
tomato fruit. These QTLs were tested for their combining
pattern and epistatic relations over two seasons. The double ILH
was tested in yield trials alongside the single ILHs and M82.
Results from two seasons showed strong consistency and no
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FIGURE 2 | Correlations between expected and observed BXY across 45 double and triple hybrids in the wet and dry fields over 2 years. Expected (X
axis) and observed (Y axis) BXY values are presented for double and triple ILHs that resulted from crosses between single or double ILs. BXY values are presented
as percent difference from M82. Expected values were calculated as the sum of the single ILH effects, assuming complete additivity. The dashed red line represents
the expected regression line where X = Y and intercept is 0,0. The green line represents the observed regression line, with the intercept constrained to 0,0, which is
the value of M82. Equations for the observed by expected regression lines are presented at the left upper corner of each box. Slopes of all regression lines are
significantly lower than 1. The Red-to-Blue scale reflects the deviation from the X = Y line.

genotype∗year interactions were detected in a two-way ANOVA.
Therefore, we pooled the data from both years and analyzed
it together. Table 1 summarizes the effects of the two QTLs;
both ILH2-5 and ILH8-3 QTLs increased total yield (TY) by 78
and 33%, respectively, compared to M82. This heterotic yield
increase was associated with a 31% decrease in fruit size for
ILH2-5, and a non-significant 11% reduction in fruit size in
ILH8-3. These results imply that yield increase of both QTLs
is caused by an increase in the fruit number per plant. Brix
of ILH2-5 was not different from that of M82, while ILH8-
3 had a 33% higher Brix compared to M82. The BXY was
increased by 91 and 86% in ILH2-5 and ILH8-3, respectively.
To test the interaction between these two BXY-improving QTLs,
we performed a two-way ANOVA and tested the QTL-QTL
interactions for the above yield components (Figure 3). For the
ultimate output of processing tomatoes, i.e., sugar production
per unit area (BXY), QTLs performed in an additive manner

and the interaction was not significant (p = 0.77). For TY,
the expected performance of the double hybrid, as determined
from the sum of independent effects, was 111% compared to
M82, while the observed performance of the double hybrid was
a 123% increase (Table 1). However, this more-than-additive
pattern was not significant (p = 0.73), and was supportive
of complete additivity. The only measured trait that showed
interaction between the QTLs was Brix (p = 0.002, Figure 3),
as reflected by the fact that ILH28, the double ILH, increased
Brix by 10% compared to M82, which is significantly different
from the expected effect based on the additive model, which was
32%.

The IL789 Pyramid
Independent Effects of the Individual ILs
We chose to focus on three independent introgressions, located
on Chromosome 7 (IL7-5-5), Chromosome 8 (IL8-3), and
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TABLE 1 | Effects of ILH2-5, ILH8-3, and the double ILH28 on yield-related
traits.

ILH2-5 ILH8-3 ILH28

TY L 9.0 9.0 9.0

H 16.0 12.0 20.1

�% (H-L) 78%∗∗ 33% 123%∗∗

BXY L 323 323 323

H 617 600 850

�% (H-L) 91%∗∗ 86%∗∗ 163%∗∗

FW L 64.8 64.8 64.8

H 45.0 57.8 40.7

�% (H-L) −31%∗∗ −11%∗ −37%∗∗

BX L 3.8 3.8 3.8

H 3.8 5.0 4.17

�% (H-L) −1% 33%∗∗ 10%∗

TY, Total Yield (kg/m2); BXY, Brix∗Yield (g Sugar/m2 ); FW, Fruit Weight (g); BX,
Brix (%). L = homozygote S. lycopersicum allele. H = Heterozygote. �% (H-
L) = the phenotypic difference (in %) between the H genotype and the L genotype
∗P < 0.05, ∗∗P < 0.01.

Chromosome 9 (IL9-2-5), that affected the components of
BXY and were described in details previously (Gur and Zamir,
2004). Figure 4 summarizes the independent effects of these

IL-QTLs on yield components from three growing seasons in
wet and dry fields. These previously described results (Gur
and Zamir, 2004) are briefly presented here as an integral
reference for the current study. IL7-5-5 had dominant effect
on yield, as both the homozygous IL and heterozygous ILH
showed 30% higher yield, compared to M82, in wet field and
a non-significant 12 and 22% increase in the dry fields. IL7-
5-5 did not have an effect on Brix, but showed a dominant
effect on BXY. IL8-3 in its homozygous form was significantly
inferior to M82 for yield (−55 and −34% for the Wet and
Dry treatments, respectively), but as heterozygote (ILH) showed
45 and 25% yield increase compared to M82 (Wet and Dry,
respectively). This result reflects a significant overdominant
effect for this introgression (d/[a] = 2.5); (Gur and Zamir,
2004; Gur et al., 2011). Brix of the heterozygote ILH8-3 was
20 and 10% higher than M82 in the wet and dry conditions,
respectively. The increase in both yield and Brix of ILH8-
3 led to the observed overdominant effect on BXY in both
irrigation regimes (70 and 40% increases compared to M82 in
the wet and dry fields, respectively; d/[a] = 5). The reduced
yield of IL8-3 was possibly caused by a pleiotropic effect of
a recessive slight leaf necrosis gene that had stronger effect
under drought stress. IL9-2-5 had higher yield compared

FIGURE 3 | Interaction plots for yield components between the underlying QTLs at the ILH28 double-stack. Two-locus genotypic effects for ILH2-5,
ILH8-3, and the double introgression hybrid ILH28. Presented are plots for Brix∗Yield (BXY; g sugar/m2 ), Total Yield (TY; Kg/m2 ), Fruit Weight (FW; g), Brix (BX; %). X
axis (Chr8) are genotypes at IL8-3. The red lines represent genotypes homozygous for the S. lycopersicum allele at IL2-5, the green lines represent genotypes
heterozygous at IL2-5. L = homozygote S. lycopersicum allele. H = Heterozygote. Chr2 reffer to IL2-5, Chr8 refer to IL8-3. Chr2xChr8 reflects the interaction as
calculated from a two-way ANOVA.
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FIGURE 4 | Phenotypic effects of IL 7-5-5, IL8-3 and IL9-2-5 under Dry and Wet field conditions. Introgression lines IL7-5-5, IL8-3, and IL9-2-5 were
compared to M82 (data are presented as percent difference from M82) in homozygous (IL) and heterozygous (ILH) states, under Wet and Dry field condition. The
bars represent total yield (TY), Brix (BX), and Brix∗Yield (BXY) least-square means (± standard error) from three growing seasons; these data were pooled, since no
season × genotype interactions were found. The baseline represents M82, where the mean BXY values of M82 from the three seasons was 353 g/m2 in the irrigated
treatment and 184 g/m2 in the dry treatment. The additive effect (a) is half of the difference between each IL and M82. The dominance deviation (d) is the difference
between ILH and the mid-value of its parents. Values marked by an asterisk are significant changes from baseline (p < 0.05). All experiments were transplanted in a
randomized block design with 10–15 replications per entry.

to M82 only at the homozygote state in the wet field.
For both Brix and BXY IL9-2-5 showed additive mode of
inheritance as the ILH was intermediate between M82 and the
homozygous IL.

Analysis of Main Effects and Interactions
of the IL789 Pyramid
These three ILs were further crossed to create a triple-IL pyramid
(designated IL789), which contained all the three introgressions
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TABLE 2 | Phenotypic effects of pyramided introgressions and the interactions between them in the All-Heterozygous pyramid.

Genetic factor Effect (BXY) Prob > | t| Effect (TY) Prob > | t| Effect (BX) Prob > | t|

IL7-5-5 83.5 0.018 2.18 0.005 −0.02 0.869

IL8-3 132.5 0 1.64 0.033 0.64 0

IL9-2-5 85.1 0.016 0.53 0.484 0.58 0

Int-7∗8 18.1 0.605 0.24 0.749 0.18 0.062

Int-7∗9 −61.6 0.08 −1.1 0.152 −0.07 0.499

Int-8∗9 −51.2 0.145 −0.9 0.241 −0.12 0.223

Int-7∗8∗9 54.6 0.12 1.29 0.093 −0.06 0.544

BXY, Brix∗Yield (g Sugar/m2); TY, Total Yield (kg/m2); BX, Brix (%). For the main effects of each of the introgressions, the values are the difference between the M82 and
the lines carrying the S. pennellii alleles in the heterozygous state. For the interactions, the effects are the deviation from the expected value, assuming no interaction.
Bolded underlined values are significant at p < 0.05

(Figure 1B). It took two generations and one MAS step to
get from the independent ILs to the triple IL-hybrid (ILH789),
which was heterozygote at all three introgressions. In order to
explore the epistatic relations among these three IL-QTL on a
common genetic background, we produced lines that represented
all the single, double and triple combinations of this pyramid
(Figure 1B).

All-Heterozygote Pyramid
The first field experiment included fixed F3 lines (progenies
from self-pollination of ILH789) that were homozygous for
the different combinations, and their F1s with M82, where all
introgressions were in heterozygous state (Figure 1C). This
means that each line was either homozygote for all the relevant
introgressions or heterozygote for all. These fixed F3 segregants
and F1s, including an F3 line that had none of the introgressions
(used as an internal genetic reference, corresponding to M82),
were tested in the field, in a replicated trial, for their yield-
related phenotypes. In order to test the interactions between
the IL-QTL using these genotypes, we divided the experiment
into two genetic groups: ‘all-homozygous’ pyramid (contained
homozygotes at all introgressed loci) and ‘all-heterozygous’
pyramid (contained heterozygotes at all introgressed loci). Since
the homozygous IL8-3 had a strong negative effect on yield,
we used the ‘all-heterozygous’ pyramid only to evaluate the
main effects and epistasis on total-yield (TY), Brix (BX) and
Brix∗total yield (BXY). The main effect of each IL-QTL, along
with the epistatic interactions between them, was tested in a
three-way ANOVA, where the single introgressions and the
double and triple interactions were tested as factors in the
model. As shown in Table 2, none of the interactions were
significant (at p < 0.05), while for each of the traits, at least
two introgressions showed a significant effect. For BXY, the
main effects of all the three introgressions were significant
and none of the interactions were significant. These findings
suggest an additive mode of action between these tested
QTLs. This can also be demonstrated in a simple way, by
comparing the expected BXY for ILH789 (based on complete
additivity of the single introgression effects), which is 97%
higher than M82, to the observed value, which was 120%
higher than M82 (The difference between these values is not
significant).

3-Way ‘Immortalized F2’
In order to further explore the whole range of epistatic relations
between these three IL-QTL, we produced a set of 27 genotypes
that covered all the possible genetic combinations for these
three unlinked introgressions. The common way to test a
complete set of allelic interactions is to use an F2 population
that segregates at the loci of interest and capture all possible
genotypic combinations. The use of direct F2 segregants for the
analysis of epistasis between QTLs for complex traits, such as
yield, requires genotypic screening of large populations before
planting, to ensure balanced representation of all genotypes
and enough replicates to provide sufficient statistical power.
To simplify this process, we decided to intermate between
the available fixed single, double and triple pyramided ILs
to create F1s that represented the 27 genotypic combinations
and reflect F2 segregation (Figure 1D). These 27 genotypes,
which can be regarded as an ‘immortalized F2,’ were then
tested in a replicated field trial. The experiment included 27
genotypes × 20 replications, totaling 540 plants with a pre-
defined genotype. Mean BXY values for each line from this
trial were calculated and are projected in color-codes manner
on the 3D genotypic matrix (Figure 5); a detailed multiple-
range mean comparison between all 27 genotypes is available
in Supplementary Table S1. Figure 5 presents an overview
of this experiment; the color transformation from the blue
range to red/pink range on this figure, as we move between
different nodes or along axes or surfaces from homozygote
S. lycopersicum (L) to heterozygote (H) or homozygote S.
pennellii (P), is an indication of the independent and additive
effects.

The reference segregant from this population that is
homozygous for the cultivated tomato alleles at all three
QTL (L/L/L), is located in the left upper corner (dark blue;
BXY = 310 g sugar/m2). As expected, this nearly isogenic
reference was not significantly different from the common
recurrent parent of the IL population, M82. The best-performing
genotype in this pyramid was homozygote S. pennellii on chr7,
heterozygote for chr8 (in consensus with the known heterotic
effect of this QTL) and homozygote S. pennellii for chr9. This
genotype is located on the right side of the middle surface (P/H/P;
dark red, BXY = 759 g sugar/m2) and displayed a 145% higher
BXY compared to the L/L/L segregant.
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FIGURE 5 | 3D genotype and BXY of the IL789 pyramid. Each node represents a genotype from the 27 (3∧3) combinations. The different axes represent the
different introgressions on chromosome 7, 8, and 9. L = homozygote lycopersicum, H = Heterozygote, P = homozygote pennellii. Colors reflect the mean BXY
values for each genotype as calculated from 20 replicates of single plants. The green dashed line highlights single QTL effects.

TABLE 3 | 3-way Analysis of Variance (ANOVA) of BXY for the ‘immortalized F2’ from the IL789 pyramid.

BXY (�%L/L/L)c

Sourcea Factorb DF Sum of squares F Ratio Prob > F HETERO (H) HOMO (P)

Chr7 Main 2 3750.65 5.13 0.0063 11 19

Chr8 Main 2 20041.7 27.43 <0.0001 29 −12

Chr9 Main 2 24767 33.90 <0.0001 32 51

Chr7 × Chr8 Interaction 4 3751.57 2.57 0.0378

Chr7 × Chr9 Interaction 4 994.251 0.68 0.6059

Chr8 × Chr9 Interaction 4 1658.79 1.14 0.3395

Chr7 × Chr8 × Chr9 Interaction 8 3303.41 1.13 0.3418

aFactors tested in the model: main effects, two-way and three-way interactions. Chr7, Chr8, and Chr9 refer to IL7-5-5, IL8-3, and IL9-2-5, respectively. bCategory of
the tested factors – main effect or interaction term. cPhenotypic effects of the single introgressions in the heterozygous (H) and homozygous pennellii allele (P) states on
Brix∗Yield (BXY). Effects are expressed as percent difference from the nearly isogenic internal reference line that is homozygote lycopersicum (L/L/L) at the three QTLs
and was not statistically different from M82.

To determine significance of main effects and interactions, we
performed a 3-way ANOVA. As shown in Table 3, all main effects
of the individual QTLs were highly significant. Except for the
interaction between Chr7 and Chr8 QTLs, that showed marginal
significance (p = 0.0378), none of the other two or three-way
interactions were significant at (p < 0.05). As presented earlier,
IL7-5-5 seemed to have a dominant mode of action; IL9-2-5 was
additive and IL8-3 had an over-dominant mode of action for BXY
(Figure 4). These observations are consistent with current results
that were obtained from the 27 genotypes from the dissected
pyramid (Table 3). The BXY effects of each of the introgressions
(as heterozygotes or homozygotes, in percent difference from

M82) were calculated from the unified three-way ANOVA and
confirmed the effects and mode of inheritance found for the
independent ILs. Another way to test the impact of interactions
in this QTL pyramid using this population, is by calculating
predicted BXY values for each of the 27 segregants based on
factorial model and Least-square mean estimates. Predicted BXY
values were calculated in two ways: (1) using a model where only
the main effects (of the three QTLs, without interactions) were
entered and (2) using the completemodel where double and triple
interactions were also included as factors (Figure 6). The R2 from
regression of predicted versus observed reflects the predictive
value for each model. The partial model (assessing only the main
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FIGURE 6 | Predicted vs. observed BXY for partial and complete models. Regressions of predicted vs. observed BXY values for the 27 ‘immortalized F2’
genotypes. (A) Partial model: predicted values were calculated based on model with main effects alone. (B) Full model: predicted values were calculated based on
model with main effects + QTL by QTL interactions. The Red-to-Blue scale reflects the deviation from the predicted regression line.

effects; left box) showed an R2 of 0.82 and the complete model
had an R2 of 0.94. While the complete model, as expected, was
highly predictive, the partial model, that lacks interactions, still
provided a very high R2, confirming the minimal impact epistasis
has within this pyramid.

DISCUSSION

Over the years, tens of trait loci from wild species donors have
beenmapped and introgressed into the cultivated tomato genome
using MAS (Foolad, 2007). The S. pennellii IL population (Eshed
and Zamir, 1995) was exploited to address two components
related to tomato genetics and breeding: (1) introduction of
unused favorable trait alleles that were neglected during tomato

FIGURE 7 | Linear pyramiding effect: regression of favorable allele
count against BXY, across 27 segregants from the IL789 pyramid. The
X axis is the favorable (S. pennellii) allele count. All wild alleles were counted in
the same manner as +1, except for the pennellii allele at IL8-3 when present
as a homozygote (P); this genotype was counted as −1 due to the negative
impact of a recessive gene within this introgression causing partial sterility.

domestication and (2) creation of an effective framework for
detection and mapping of QTL for complex traits, such as yield.
The current study took a step forward by demonstrating the
power of this framework for the identification of potential QTL
stacks for yield improvement followed by detailed dissection
of their combined performance. A three-step approach was
taken: initially, using the IL population, individual yield-
related QTLs were mapped and validated under Wet and Dry
field conditions (Eshed and Zamir, 1995; Gur et al., 2011).
The fact that the ILs were extensively characterized for yield
components and comprehensive phenotypic data were captured
into a unified database (Gur et al., 2004; Lippman et al., 2007)
allowed us to generate a comprehensive profile for each IL and
to identify QTLs that potentially improve yield components
through diverse pathways. These lines served as candidates for
pyramiding.

The combination of IL7-5-5, IL8-3, and IL9-2-5 is an example
for this approach; the multi-year and multi-trait phenotypic
characterization of these lines (and their F1s with M82;
ILHs) indicated potential complementation and additive yield
improvement. IL9-2-5 harbors at least two linked QTL that affect
the components of BXY (Fridman et al., 2002). One of the QTLs
is Brix9-2-5, which represents a single nucleotide polymorphism
(SNP) that replaces an amino acid within the flower and fruit-
specific apoplastic invertase (LIN5). The wild species allele
increases sugar content of the fruit as a result of a modification of
enzyme functions (Fridman et al., 2004). The other QTL within
the IL9-2-5 introgression is seemingly associated with plant
architecture and affects yield and Brix through modifications of
sink-source ratios (Fridman et al., 2002). IL8-3 possesses at least
one over-dominant yield-improving QTL. The yield increase is
triggered by enhanced vigor that results inmore flowers and fruits
in plants carrying this introgression in a heterozygote state. IL8-
3 also carries a recessive gene that causes slight leaf necrosis in
plants homozygous for the S. pennellii allele. Through analysis
of recombinant sublines of IL8-3, we were able to separate
between the yield heterosis and the leaf necrosis linkage drag
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(unpublished data). Another interesting attribute of IL8-3 is a
yield-increasing effect that acts through the roots, most likely
triggered by a more vigorous root system. This root-specific QTL
was identified and validated in grafting experiments where M82
grafted on IL8-3 produced higher yields than self-grafted and
non-grafted M82, which were very similar to each other (Gur
et al., 2011). The mode of action of IL7-5-5 requires further
characterization but a recent study showed that this IL and IL8-
3 both decreased cell number in the pericycle of the roots (Ron
et al., 2013). From the multiple observations of IL7-5-5 in the
field, we assume that the effect is related to improved fruit-setting
under different environments, that may induce yield stability in
genotypes carrying this QTL. The additivity within IL789 was
confirmed in yield trials not only in the M82 background but also
in commercially relevant hybrid combinations, where the IL789
pyramid significantly improved BXY across four different genetic
backgrounds when compared to commercial hybrids (Gur and
Zamir, 2004).

The third phase that is described in the current study dissected
the triple-stack and reconstructed this pyramid to examine
all possible interactions between the three independent QTLs.
The nearly isogenic nature of the IL population allowed us to
efficiently build a nearly isogenic triple-IL pyramid, break it down
to its components through F2 segregation and then reconstruct it
in the form of an ‘immortalized F2’ population that segregated
to the three target QTLs only, thereby capturing all possible
genotypic combinations. The fact that the tested ‘immortalized
F2’ was generated from F2 segregants derived from the triple
ILH provided further confidence in positioning the QTLs based
on the defined introgression profile of the ILs and excluded
the possibility of involvement of undetected small introgressions
elsewhere. The 3-way nearly isogenic ‘immortalized F2’ design
not only enabled testing of QTL interactions in a common
genetic background (i.e., no other background segregation), it
also allowed the testing of heterozygotic genotypes that are
not present in other common segregating populations, such as
RILs or DH. Based on this analysis, we were able to define
the optimal allelic combination within the IL789 pyramid and
to point to the best performing pyramided genotype. While
in a previous study, the triple-stack was utilized in an ‘all-
heterozygote’ form (ILH789-H/H/H; Gur and Zamir, 2004),
we showed here that in accordance with the expected mode
of inheritance of the independent QTLs (Figure 4, Table 3),
the best performing pyramided genotype was homozygote for
the S. pennellii allele at IL7-5-5, heterozygote for IL8-3 and
homozygote for the S. pennellii allele at IL9-2-5 (P/H/P). This
combination significantly improved BXY by 32% compared to
the previously described ‘all-heterozygote’ genotype (Figure 5,
Supplementary Table S1). To generalize this finding, the stacking
impact can be best illustrated through the correlation between
favorable allele count and BXY performance (Figure 7). Through
a simplified model of equal effects of all participating favorable
alleles (except for S. pennellii IL8-3 at the homozygote state),
a significant linear regression between favorable allele count
and BXY is shown. Despite the variation between different
allelic combinations featuring the same favorable allele count,
there was a significant linear increase in BXY as the number

of favorable alleles increased from 0 to 5. The average
contribution of wild favorable alleles in this stack was 71 g
sugar per m2, corresponding to a 23% improvement compared
to the internal reference that did not carry any S. pennellii
allele.

At the most fundamental level, plant breeding is about
stacking favorable allelic combinations to produce desired
improved plant phenotypes. While such genetic improvements
were achieved over thousands of years through direct phenotypic
selections, in the past 20 years, it has become possible to
genetically dissect traits and introduce breeding improvement
by identifying and stacking discrete genetic components using
linkedmolecular markers (Morgante and Salamini, 2003; Morrell
et al., 2011). With the continuously increasing cost difference
between genotyping and phenotyping, genotypic selection
and indirect trait-allele-stacking in breeding is becoming the
common practice for simple monogenic traits (Peleman and
van der Voort, 2003). The challenge remains in implementation
of such an approach for improvement of complex polygenic
traits, such as yield, where multiple QTLs interact with each
other and with the genetic background. Beside the complexity
of identifying favorable discrete genetic components for yield,
it is the interactions that limit the predictability and the
effectiveness of this approach. An example for this limitation
can be demonstrated through the varying yield effect of a
mutation at the SINGLE-FLOWER TRUSS (SFT) gene (Krieger
et al., 2010), where a dramatic heterotic yield improvement
was shown for determinate tomatoes that were homozygotic
for a recessive mutation at the SELF-PRUNING (SP) gene
(sp/sp; Pnueli et al., 1998), while in indeterminate genetic
backgrounds (SP/+), the SFT mutation did not show any effect
on yield.

Exotic genetic libraries are a useful resource for crop
improvement (Zamir, 2001). Identification and pyramiding
of yield-related QTLs were performed in rice (Ashikari and
Matsuoka, 2006; Zong et al., 2012) and tomato (Gur and
Zamir, 2004). In the current study, we demonstrated a start-
to-end pathway that uses an exotic nearly isogenic library to
address yield improvement in tomato followed by thorough
genetic dissection of epistasis between the three underlying
pyramided loci. While nearly isogenic populations were shown
to be a powerful tool for main-effect QTL mapping through
the elimination of epistatic background effects (Eshed and
Zamir, 1995; Keurentjes et al., 2007), they also provide
advantages for analyzing epistasis through structured crosses
(Eshed and Zamir, 1996; Melchinger et al., 2007; Reif et al.,
2009). In this study we show that for an oligogenic trait it
is possible to make reliable predictions about the genotypes
that will maximize the phenotype and improve agricultural
yield.
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