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Two decades after the first report of the plant homolog of the Receptor for Activated

C Kinase 1 (RACK1) in cultured tobacco BY2 cells, a significant advancement has

been made in the elucidation of its cellular and molecular role. The protein is now

implicated in many biological functions including protein translation, multiple hormonal

responses, developmental processes, pathogen infection resistance, environmental

stress responses, and miRNA production. Such multiple functional roles are consistent

with the scaffolding nature of the plant RACK1 protein. A significant advance was

achieved when the β-propeller structure of the Arabidopsis RACK1A isoform was

elucidated, thus revealing that its conserved seven WD repeats also assembled into this

typical topology. From its crystal structure, it became apparent that it shares the structural

platform for the interaction with ligands identified in other systems such as mammals.

Although RACK1 proteins maintain conserved Protein Kinase C binding sites, the lack

of a bona fide PKC adds complexity and enigma to the nature of the ligand partners

with which RACK1 interacts in plants. Nevertheless, ligands recently identified using the

split-ubiquitin based and conventional yeast two-hybrid assays, have revealed that plant

RACK1 is involved in several processes that include defense response, drought and

salt stress, ribosomal function, cell wall biogenesis, and photosynthesis. The information

acquired indicates that, in spite of the high degree of conservation of its structure, the

functions of the plant RACK1 homolog appear to be distinct and diverse from those in

yeast, mammals, insects, etc. In this review, we take a critical look at the novel information

regarding the many functions in which plant RACK1 has been reported to participate,

with a special emphasis on the information on its currently identified and missing ligand

partners.

Keywords: hormonal regulation, RACK1, signal transduction, WD-repeat protein, WD40 domain

INTRODUCTION

Receptors for activated C kinase (RACKs) were initially described as ∼33 kDa proteins from
particulate fractions of rat heart, which fulfilled the criteria of intracellular receptors for the
activated enzyme (Mochly-Rosen et al., 1991a,b). The first cloned sequence encoding one of such
receptors was obtained from a rat brain cDNA expression library and termed RACK1 due to its
ability to bind activated protein kinase C (PKC) (Ron et al., 1994). RACK1 is now known to be
a highly conserved intracellular adaptor protein belonging to the WD-repeat family only present
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in eukaryotic organisms. Its constitutive expression and
ubiquitous presence in both unicellular and multicellular
organisms highlights its functional importance. The protein
sequence contains seven WD-40 domains which assemble into a
typical seven-bladed β-propeller structure. Since this assembly
provides an interactive platform for the binding of potential
ligand partners in proximity, the notion that RACK1 only
functions as a receptor for active PKC isoforms has changed
to that of a versatile protein that also provides a scaffold for
direct or indirect interaction with many different ligands. This
ability has positioned RACK1 as a central hub for integration of
multiple pathways that impinge key cellular functions (Reviewed
in Adams et al., 2011).

Much of our current knowledge about RACK1 function has
arisen from mammalian cell studies; however, new emerging
models such as yeast, slime molds, and worms have also provided
clues to the variety of biochemical pathways in which RACK1
participates. For example, the Saccharomyces cerevisiae homolog
Asc1 has been reported to regulate protein translation critical
for cell wall integrity near the yeast budding sites (Melamed
et al., 2010). DdRACK1 from Dyctiostelium discoideum, has
been reported to interact with heterotrimeric G proteins and
impact growth and developmental processes (Omosigho et al.,
2014). Finally, the Caenorhabditis elegans, RACK1 homolog
interacts with the actin-binding protein UNC-115/abLIM for
axon pathfinding and lamellipodia and filopodia formation, while
in an independent and novel signaling pathway, it participates in
gonadal tip cell migration (Demarco and Lundquist, 2010).

Besides the many model organisms in which RACK1 has been
studied, plant RACK1 homologs have also been described. The
first report was that of the auxin-regulated RACK1 homolog
arcA (ArcA for auxin-regulated gene from cultured cells) from
tobacco BY2 cells (Ishida et al., 1993). Since then, plant RACK1
homologs were reported from Oryza sativa (Iwasaki et al., 1995;
Nakashima et al., 2008), Brassica napus (Kwak et al., 1997),
Medicago sativa (McKhann et al., 1997), Solanum lycopersicum
(Kiyosue and Ryan, 1999), Glycine max (Nielsen et al., 2001);
Arabidopsis thaliana (van Nocker and Ludwig, 2003), Phaseolus
vulgaris (Islas-Flores et al., 2009), and Zea mays (Wang et al.,
2014), among others. In animal cells, a single copy of RACK1
is encoded; however, this number is variable in plant genomes.
For example, the genome of A. thaliana encodes three RACK1
genes termed AtRACK1A (At1g18080), AtRACK1B (At1g48630),
and AtRACK1C (At1g18130) (Chen et al., 2006), while two
genes are present in O. sativa (Zhang et al., 2014). To date,
the evidence acquired indicates that plant RACK1 does not
have a unique function but rather, it is emerging as a multi-
functional protein playing a central role in critical biological
responses (Figure 1). Through cryo-electron microscopy (Cryo-
EM) studies using ribosomes from the fungi Thermomyces
lanuginosus and Saccharomyces cereviseae, it was revealed that
RACK1 is a component of the ribosomal 40S subunit (Sengupta
et al., 2004) that anchors PKC, a family of serine/threonine
kinases, to phosphorylate the eukaryotic Initiation Factor6
(eIF6). In addition to binding with PKC, RACK1 plays crucial
role in protein translation, tissue development, circadian clock,
neural responses and tumorigenesis in mammals (McCahill et al.,

2002; Robles et al., 2010). In plants, RACK1 regulates various
signaling pathways ranging from developmental processes such
as seed germination, flowering and leaf production, to immune
and stress responses against pathogen and environmental stimuli
(Chen et al., 2006; Ullah et al., 2006). Intriguing however, despite
the recent findings of new plant RACK1 ligands, has been the
search for signal-transduction and/or biochemical pathways in
which plant RACK1 is involved. In this review, we cover and
critically discuss past and present findings regarding the various
signaling and biochemical pathways in which plant RACK1 has
been reported to participate. In addition, we take a critical look
at the various binding partners with which it has been reported
to interact, and discuss the present trends and directions of the
field.

WD-REPEAT PROTEIN RACK1: A SMALL
INBUILT β-PROPELLER MOLECULE WITH
LARGE RESPONSIBILITIES

WD-40 domains assemble into β sheets to form blade-like
structures, and proteins containing seven WD-40 repeats such
as the β subunit of the heterotrimeric G protein can assemble
into a seven-bladed β-propeller-like structure (Reviewed in
McCahill et al., 2002). The β-propeller is a molecular platform
that facilitates interaction with several ligands from distinct
signaling pathways at the same time. RACK1 is a 36 kDa cytosolic
protein with high sequence identity with the β subunit of
heterotrimeric G proteins, and highly conserved in eukaryotes
where it shares 43–76% of sequence identity (Ullah et al., 2008).
Consequently, the WD-40 repeats are highly conserved in all
RACK1 homologs characterized so far, indicating that all of
them share the same structure. This assumption was supported
by the first crystallographic resolution of the AtRACK1A
isoform structure at 2.4 Å (Ullah et al., 2008). Subsequent
determinations of the crystallographic structure for RACK1
from different organisms, such as, S. cerevisiae (Yatime et al.,
2011), Tetrahymena thermophila (Rabl et al., 2011), and Homo
sapiens (Ruiz Carrillo et al., 2012) at 2.1, 2.4, 3.9, and 2.45 Å
resolution, also confirmed the β-propeller structure platform.
Thus, the available crystal structures have shown that its seven-
bladed structural dynamics presents the features to scaffold a
large number of proteins to facilitate numerous cellular signaling
pathways. As of now,more than 130 different interacting partners
of plant RACK1 homologs have been reported (Table 1 and
Figure 1), suggesting its involvement in various physiological
functions in this kingdom (Ullah et al., 2006; Kundu et al., 2013).

HORMONAL SIGNALING: SPECIES- AND
TISSUE-SPECIFIC RESPONSES

Since the discovery of arcA, the first plant RACK1 homolog
sequence from a subtraction library of BY2 cultured cells
subjected to auxin treatment (Ishida et al., 1993), it was reported
that its expression was regulated (induced) by the hormone.
Interestingly, this expressionwas exclusively stimulated by auxins
but not by cytokinins, abscisic acid (ABA), ethylene or heat
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FIGURE 1 | Plant RACK1 is related with several cellular processes through its interacting ligands. Only some of the proteins demonstrated to interact

directly with RACK1 are outlined. The β-propeller structure at the center corresponds to the top view of AtRACK1 (Ullah et al., 2008). The RACK1 interactors belong to

different cellular processes ranging from Cell wall biogenesis, Photosynthesis, Cytoskeletal, Immune defense, Stress response, Signaling, Gene expression regulation,

*Ribosomal biogenesis, Protein synthesis, Growth, Development and hormonal response, to Other and unknown.

(Ishida et al., 1996). It is interesting to note that RACK1 has
been found in stoichiometric quantities on the small subunit
of crystallized eukaryotic ribosomes (Gibson, 2012), and that it
has also been implicated in protein translation and ribosome
binding in plants (see below Chang et al., 2005; Ullah et al., 2008;
Guo et al., 2011a,b). Thus, it is tempting to suggest that plant
RACK1 may be able to regulate its own expression via hormonal
regulation. After Ishida et al. (1993) reported auxin-regulated
expression of arcA, several other reports implicated RACK1 in
hormonal signaling pathways. For example, Nakashima et al.
(2008) reported that auxin, ABA and methyl jasmonate, induced
rice RACK1A expression. As in tobacco cultured cells, in rice
cultured cells the auxin was also an inducer of OsRACK1;
however, unlike the case of ArcA, ABA did stimulate OsRACK1A
expression (Ishida et al., 1996; Nakashima et al., 2008). In
a separate similar report on Zea mays, growing seedlings
were subjected to ABA treatment while methyl jasmonate was
sprayed to the expanding leaves of growing plants. In both
cases, ZmRACK1 expresssion was induced and only a slight
difference between both hormonal treatments was observed

(Wang et al., 2014). These results further suggested that RACK1
indeed participated in hormonal signaling, albeit, under different
regulation from species to species.

Early reports included the implication of Msgbl, the RACK1
homolog from M. sativa, in hormone-mediated cell division
since the transcript was preferentially located to dividing cells
of nodule primordia and meristem (McKhann et al., 1997).
However, contrary to arcA, which was exclusively induced by
auxin (Ishida et al., 1996), Mgsbl was induced by cytokinin
treatment of roots (McKhann et al., 1997). This work suggested
that plant RACK1 was involved in several hormone-mediated
pathways. Most recent work has been carried out on A.
thaliana RACK1 isogenes AtRACK1A, B, and C, although
a functional redundancy derived from the high sequence
conservation was expected and subsequently confirmed (Guo
and Chen, 2008). The involvement of RACK1 in multiple
plant hormonal pathways was confirmed by the study of
hormonal treatments and developmental processes of loss-
of-function Arabidopsis rack1a mutants (Chen et al., 2006;
Fennell et al., 2012). The rack1a mutants displayed defects
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TABLE 1 | Plant RACK1 ligand proteins.

RACK1

isoform

Ligand ID Name of the ligand Process Assay Specie References

CELL WALL BIOGENESIS

1 AtRACK1C AT1G08200 AXS2 (UDP-D-APIOSE/UDP-D-XYLOSE

SYNTHASE 2); UDP-glucuronate

decarboxylase

Cell wall organization c A. thaliana Klopffleisch et al., 2011

2 AtRACK1A AT1G20220 Alba DNA/RNA binding protein (NP

564108.1)

Cell wall related e A. thaliana Kundu et al., 2013

3 AtRACK1A/

AtRACK1C

AT2G27860 AXS1 (UDP-D-apiose/UDP-D-xylose

synthase 1); NAD or NADH

Binding/UDP-glucuronate decarboxylase

Cell wall organization c, g A. thaliana Klopffleisch et al., 2011

4 AtRACK1C AT3G02230 RGP1, Reversibly glycosylated

polypeptide 1; UDP-arabinose mutase 1

Cell wall biogenesis c A. thaliana Klopffleisch et al., 2011

5 AtRACK1C AT3G25150 NTF2, Nuclear transport factor 2 family;

protein with RNA Binding

(RRM-RBD-RNP motifs) domain

Cell wall organization c A. thaliana Klopffleisch et al., 2011

6 AtRACK1C AT5G14430 PMT9,

S-adenosyl-L-methionine-dependent

methyltransferases superfamily protein

Cell wall related c A. thaliana Klopffleisch et al., 2011

7 AtRACK1A AT5G35360 CAC2, Biotin carboxylase subunit Cell wall

organization/Fatty acid

biosynthesis

e A. thaliana Kundu et al., 2013

PHOTOSYNTHESIS

8 AtRACK1A AT1G20340 Plastocyanin major isoform,

DNA-damage resistance protein

(DRT112)

Light response e, f A. thaliana Kundu et al., 2013

9 AtRACK1A AT1G29910 CAB3, Chlorophyll A/B binding protein 3 Photosynthesis e A. thaliana Kundu et al., 2013

10 AtRACK1A AT1G29930 CAB1, Chlorophyll A/B binding protein1 Photosynthesis e, f A. thaliana Kundu et al., 2013

11 AtRACK1A AT1G31330 PSAF, Photosystem I subunit F Photosynthesis e A. thaliana Kundu et al., 2013

12 AtRACK1A AT1G55670 PSAG, Photosystem I subunit G Electron transport in

photosystem I

e A. thaliana Kundu et al., 2013

13 AtRACK1A AT1G59840 CCB4, Cofactor assembly of complex C Photosystem II

assembly

e A. thaliana Kundu et al., 2013

14 AtRACK1A AT1G60950 FED A, Ferredoxin-2 Light response e A. thaliana Kundu et al., 2013

15 AtRACK1A AT1G61520 LHCA3, Photosystem I Light Harvesting

Complex Gene 3

Light harvesting e, f A. thaliana Kundu et al., 2013

16 AtRACK1A AT1G67090 RuBisCO1A, Rubisco small subunit 1A Light

response/Photosyntesis

e, f A. thaliana Kundu et al., 2013

17 AtRACK1A AT2G34420 LHB1B2, Photosystem II light harvesting

complex protein B1B2

Light harvesting e A. thaliana Kundu et al., 2013

18 AtRACK1A AT2G34430 LHB1B1, Light-harvesting chlorophyll

protein complex II subunit B1

Light harvesting e A. thaliana Kundu et al., 2013

19 AtRACK1A AT2G43560 FKBP16-3, Peptidyl-prolyl cis-trans

isomerase

Protein

folding/Photosynthesis

e A. thaliana Kundu et al., 2013

20 AtRACK1A AT3G56940 CRD1, Magnesium-protoporphyrin IX

monomethyl ester [oxidative] cyclase

Chlorophyll

biosynthesis

e A. thaliana Kundu et al., 2013

21 AtRACK1A AT3G61470 LHCA2, Photosystem I Light Harvesting

Complex Gene 2

Light harvesting e, f A. thaliana Kundu et al., 2013

22 AtRACK1A AT3G62410 CP12-2, Domain-containing protein 1 Light response e A. thaliana Kundu et al., 2013

23 AtRACK1A AT4G12800 PSAL, Photosystem I subunit L;

Photosystem I reaction center subunit XI

Light

reaction/Photosystem II

assembly

e A. thaliana Kundu et al., 2013

24 AtRACK1A AT5G38430 RuBisCO1B, Small chain 1B Light response e A. thaliana Kundu et al., 2013

25 AtRACK1A AT5G64040 PSAN, Photosystem I reaction center

subunit N

Electron transport in

photosystem I

e A. thaliana Kundu et al., 2013

(Continued)

Frontiers in Plant Science | www.frontiersin.org 4 December 2015 | Volume 6 | Article 1090

http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive


Islas-Flores et al. Plant RACK1 Pathways and Ligands

TABLE 1 | Continued

RACK1

isoform

Ligand ID Name of the ligand Process Assay Specie References

CYTOSKELETON RELATED

26 AtRACK1A AT1G20010 TUB5, Tubulin beta-5 chain Cytoskeleton

organization

e A. thaliana Kundu et al., 2013

27 AtRACK1A AT1G49240 ACT8, Actin 8 Cytoskeleton

organization

e A. thaliana Kundu et al., 2013

28 AtRACK1A AT3G18780 ACT2, Actin 2 Cytoskeleton

organization

e A. thaliana Kundu et al., 2013

29 AtRACK1A AT4G20890 TUB9, Tubulin beta-9 chain Cytoskeleton

organization

e A. thaliana Kundu et al., 2013

30 AtRACK1A AT5G23860 TUB8, Tubulin beta-8 chain Cytoskeleton

organization

e A. thaliana Kundu et al., 2013

31 AtRACK1A AT5G44340 TUB4, Tubulin beta-4 chain Cytoskeleton

organization

e A. thaliana Kundu et al., 2013

IMMUNE DEFENSE

32 OsRACK1A AAF18438 SGT1, Suppressor of G2 allele of Skp1 Disease resistance b, d, f O. sativa Nakashima et al., 2008

33 OsRACK1A/

OsRACK1B

AB029508 Rac1, Small GTP-binding protein 1 Disease resistance/cell

death

a, b,

d, f

O. sativa Nakashima et al., 2008

34 OsRACK1A AB029510 Rac3, Small GTP-binding protein 3; Rho

family small GTPases

Disease resistance/cell

death

f O. sativa Nakashima et al., 2008

35 OsRACK1A AK058414 Rac7, Small GTP-binding protein 7; Rho

family small GTPases

Disease resistance/cell

death

f O. sativa Nakashima et al., 2008

36 OsRACK1A AK067504 Rac5, Small GTP-binding protein 5; Rho

family small GTPases

Disease resistance/cell

death

f O. sativa Nakashima et al., 2008

37 OsRACK1A AK100842 Rac6, Small GTP-binding protein 7; Rho

family small GTPases

Disease resistance/cell

death

f O. sativa Nakashima et al., 2008

38 OsRACK1A AK111881 RAR1, Required for Mla12 resistance;

zinc-binding protein

Disease resistance b, d, f O. sativa Nakashima et al., 2008

39 AtRACK1A AT1G07790 H2B Histone Defense response e A. thaliana Kundu et al., 2013

40 AtRACK1A AT2G16870 TIR-NBS-LRR class disease resistance

protein

Defense response e A. thaliana Kundu et al., 2013

41 AtRACK1A AT2G43790 MPK6, MAP kinase 6 Defense response b, g, h A. thaliana Cheng et al., 2015

42 AtRACK1A AT3G01500 CA1, Carbonic anhydrase 1 Defense response e, f A. thaliana Kundu et al., 2013

43 AtRACK1A AT3G12780 PGK1, Phosphoglycerate kinase 1 Defense and stress

response

e A. thaliana Kundu et al., 2013

44 AtRACK1A AT3G21220 MKK5, Mitogen-activated protein kinase

kinase 5

Defense response b, g, h A. thaliana Cheng et al., 2015

45 AtRACK1A AT3G45640 MPK3, Mitogen-activated protein kinase

3

Defense response b, g, h A. thaliana Cheng et al., 2015

46 AtRACK1A AT3G62030 ROC4, Peptidyl-prolyl cis-trans

isomerase CYP20-3

Defense response e, f A. thaliana Kundu et al., 2013

47 AtRACK1A AT4G00870 Transcription factor bHLH14 Defense response e A. thaliana Kundu et al., 2013

48 AtRACK1A/

AtRACK1b/

AtRACK1C

AT4G08500 MEKK1, Mitogen-activated protein

kinase kinase kinase 1 in a inactive form

(K361M)

Stress and defense

response

b, g, h A. thaliana Cheng et al., 2015

49 AtRACK1A AT4G12720 NUDT7, Nudix hydrolase 7 Defense and oxidative

stress response

b, d, g A. thaliana Olejnik et al., 2011

50 AtRACK1A AT5G04140 GLU1 Ferredoxin-dependent glutamate

synthase 1 (Fd-GOGaT)

Defense and stress

response

e A. thaliana Kundu et al., 2013

51 AtRACK1C AT5G09650 PPa6, Soluble inorganic

pyrophosphatase 1

Defense and stress

response

c A. thaliana Klopffleisch et al., 2011

52 AtRACK1A AT5G20630 GER3, Germin-like protein subfamily 3

member 3

Defense and stress

response

e A. thaliana Kundu et al., 2013

53 AtRACK1A AT5G24780 VSP1, Vegetative storage protein 1 acid

phosphatase

Defense response e A. thaliana Kundu et al., 2013

54 OsRACK1A AY603975 Rboh, NADPH oxidase Defense response f O. sativa Nakashima et al., 2008

(Continued)
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TABLE 1 | Continued

RACK1

isoform

Ligand ID Name of the ligand Process Assay Specie References

STRESS RESPONSE

55 AtRACK1A AT1G08830 CSD1, Superoxide dismutase [cu-Zn] Response to oxidative

stress

e, f A. thaliana Kundu et al., 2013

56 AtRACK1A AT1G32640 MYC2 Transcription factor Response to drought

stress and ABA

treatment

e A. thaliana Kundu et al., 2013

57 AtRACK1A AT1G52420 UDP-Glycosyltransferase-like protein Response to hypoxia e A. thaliana Kundu et al., 2013

58 AtRACK1A/

AtRACK1C

AT1G78380 GSTU19, TAU 19 Glutathione

S-transferase

Response to drought

and oxidative stress

c, e A. thaliana Kundu et al., 2013;

Klopffleisch et al., 2011

59 AtRACK1A/

AtRACK1C

AT2G01140 Fructose-bisphosphate aldolase 3 Response to oxidative

and saline stress

c, e A. thaliana Kundu et al., 2013;

Klopffleisch et al., 2011

60 AtRACK1A AT3G52300 ATPQ, ATP synthase subunit D Response to saline

stress

e A. thaliana Kundu et al., 2013

61 AtRACK1A/

AtRACK1C

AT3G53990 USP, Universal stress protein family

protein/Adenine nucleotide alpha

hydrolases-like superfamily protein

Cold stress response c, g A. thaliana Klopffleisch et al., 2011

62 AtRACK1A AT5G20010 RAN-1 GTP-binding nuclear protein

Ran-1; RAS-related nuclear protein-1

Response to saline

stress/Protein import

into the nucleus

e A. thaliana Kundu et al., 2013

63 AtRACK1C AT5G20150 SPX1 domain-containing protein 1 Response to stress

starvation

c, g A. thaliana Klopffleisch et al., 2011

64 AtRACK1A/

AtRACK1B/

AtRACK1C

AT5G41990 WNK8, WITH NO LYSINE (K) KINASE 8;

Serine/threonine-protein kinase

Response to saline and

osmotic stress/

Response to glucose

c, d, g A. thaliana Klopffleisch et al.,

2011; Urano et al.,

2015

65 AtRACK1A AT5G59310 LTP4, Non-specific lipid-transfer protein

4

Response to drought

stress

e A. thaliana Kundu et al., 2013

66 AtRACK1A AT5G59320 LTP3, Non-specific lipid transfer protein

3

Response to drought

stress

e A. thaliana Kundu et al., 2013

SIGNALING

67 AtRACK1A AT1G05000 Tyrosine phosphatase family; Atypical

dual specificity phosphatase 1

Signaling c, d A. thaliana Klopffleisch et al., 2011

68 AtRACK1B AT3G18130 AtRACK1C, Receptor for Activated C

Kinase 1C

Signaling c, g A. thaliana Klopffleisch et al., 2011

69 AtRACK1A AT3G22942 AGG2, G-protein gamma-subunit 2 Signaling b, d, g A. thaliana Olejnik et al., 2011

70 AtRACK1A AT3G63420 AGG1, G-protein gamma-subunit 1 Signaling b, d, g A. thaliana Olejnik et al., 2011

71 AtRACK1A/

AtRACK1B/

AtRACK1C

AT4G34460 AGB1, G-protein beta-subunit 1 Signaling b, g, h A. thaliana Cheng et al., 2015

72 AtRACK1A AT4G34870 ROC5, Rotamase cyclophilin 5;

Peptidyl-prolyl cis-trans isomerase

CYP18-4

Signal transduction e A. thaliana Kundu et al., 2013

GENE EXPRESSION REGULATION

73 AtRACK1A AT1G06190 RHON1, Rho termination factor,

N-terminal domain; Ribonucleic

acid-binding protein

Transcription

termination

e A. thaliana Kundu et al., 2013

74 AtRACK1A AT1G09250 bHLH149, Basic helix-loop-helix

DNA-binding superfamily protein

Transcription e A. thaliana Kundu et al., 2013

75 AtRACK1A AT1G09590 L21-1, 60S Ribosomal protein Translation e A. thaliana Kundu et al., 2013

76 AtRACK1A AT1G15930 RPS12A, 40S Ribosomal protein S12-1 Translation/Stress

response

e A. thaliana Kundu et al., 2013

77 AtRACK1A AT2G18090 PHD Finger, SWIB/MDM2 and GYF

domain-containing protein

Transcription e A. thaliana Kundu et al., 2013

78 AtRACK1A AT2G19730 L28-1, 60S Ribosomal protein Translation e A. thaliana Kundu et al., 2013

79 AtRACK1A/

AtRACK1B/

AtRACK1C

AT2G27100 SE, Serrate RNA effector molecule;

miRNA factor

Pri-miRNA processing b, c,

d, g

A. thaliana Speth et al., 2013

(Continued)
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TABLE 1 | Continued

RACK1

isoform

Ligand ID Name of the ligand Process Assay Specie References

80 AtRACK1A/

AtRACK1B/

AtRACK1C

AT2G39820 eIF6B, 60S Ribosomal protein Translation/Ribosome

biogenesis

d, g A. thaliana Guo et al., 2011b

81 AtRACK1A AT2G44120 L7-3, 60S Ribosomal protein Translation e A. thaliana Kundu et al., 2013

82 AtRACK1A AT3G01530 MYB57, Myb domain protein 57 Transcription e A. thaliana Kundu et al., 2013

83 AtRACK1A AT3G06700 L29-1, 60S Ribosomal protein Translation/Ribosome

biogenesis

e A. thaliana Kundu et al., 2013

84 AtRACK1A AT3G23390 L36a, 60S Ribosomal protein Translation e A. thaliana Kundu et al., 2013

85 AtRACK1A AT3G27830 RPL12-A, 50S Ribosomal protein L12-1 Translation e A. thaliana Kundu et al., 2013

86 AtRACK1A/

AtRACK1B/

AtRACK1C

AT3G55620 eIF6A, 60S Ribosomal protein Translation/Ribosome

biogenesis

d, g A. thaliana Guo et al., 2011b

87 AtRACK1A AT4G09800 RPS18C, 40S Ribosomal protein S18 Translation e A. thaliana Kundu et al., 2013

88 AtRACK1C AT4G13940 HOG1, Homology-dependent gene

silencing 1; MEE58

adenosylhomocysteinase 1; SAHH1,

EMB1395, SAH1

Post-transcriptional

gene silencing

c A. thaliana Klopffleisch et al., 2011

89 AtRACK1A AT4G15000 L27-3, 60S Ribosomal protein Translation e A. thaliana Kundu et al., 2013

90 AtRACK1A AT4G21660 Splicing factor 3B subunit 4 mRNA Processing e A. thaliana Kundu et al., 2013

91 AtRACK1A AT4G34620 SSR16, Small subunit ribosomal protein

16

Translation/Ribosome

biogenesis

e A. thaliana Kundu et al., 2013

92 AtRACK1A AT4G39200 S25-4, 40S Ribosomal protein Translation e A. thaliana Kundu et al., 2013

93 AtRACK1A AT5G02960 S23-2, 40S Ribosomal protein Translation e A. thaliana Kundu et al., 2013

94 AtRACK1A AT5G06360 S8e, Ribosomal protein family protein Translation/Ribosome

biogenesis

e A. thaliana Kundu et al., 2013

95 AtRACK1A AT5G23740 RPS11-BETA, 40S Ribosomal protein

S11-3

Translation e A. thaliana Kundu et al., 2013

96 AtRACK1B AT5G43960 NTF2, Nuclear transport factor 2 family

protein with RNA Binding

(RRM-RBD-RNP motifs) domain

Nucleocytoplasmic

transport

d A. thaliana Dreze et al., 2011

97 AtRACK1B AT5G48650 NTF2, Nuclear transport factor 2 family

protein with RNA Binding

(RRM-RBD-RNP motifs) domain

Nucleocytoplasmic

transport

d A. thaliana Dreze et al., 2011

98 AtRACK1C AT5G51190 ERF105, Ethylene-responsive

transcription factor

Transcription c A. thaliana Klopffleisch et al., 2011

GROWTH, DEVELOPMENT, AND HORMONAL RESPONSE

99 AtRACK1A AT1G08590 CLV1-Like leucine rich repeat

transmembrane receptor-like protein

kinase

Vascular development e A. thaliana Kundu et al., 2013

100 AtRACK1A AT1G78370 GSTU20, TAU 20 Glutathione

S-transferase

Regulation of growth e A. thaliana Kundu et al., 2013

101 AtRACK1A AT2G02850 ARPN Plantacyanin Development e, f A. thaliana Kundu et al., 2013

102 AtRACK1A AT2G14890 AGP9, Arabinogalactan protein 9 Meristem growth e A. thaliana Kundu et al., 2013

103 AtRACK1A AT3G07900 O-fucosyltransferase-like protein Root hair cell

differentiation

e A. thaliana Kundu et al., 2013

104 AtRACK1C AT3G20830 AGC, cAMP-dependent,

cGMP-dependent and protein kinase C

family protein

Response to

brassinosteroid and

auxin

c A. thaliana Klopffleisch et al., 2011

105 AtRACK1B/

AtRACK1C

AT4G35470 PIRL4, Plant intracellular ras

group-related LRR 4

Gibberellin signaling d A. thaliana Dreze et al., 2011

106 AtRACK1C AT5G06110 DNAJ Domain; Myb-like DNA-binding

domain

Cell division/Protein

folding

c A. thaliana Klopffleisch et al., 2011

OTHER AND UNKNOWN FUNCTIONS

107 AtRACK1A AT1G18210 CML27, Putative calcium-binding protein Unknown e A. thaliana Kundu et al., 2013

108 AtRACK1C AT1G22920 CSN5A, COP9 Signalosome complex

subunit 5a, JAB1, AJH1

Photomorphogenesis c A. thaliana Klopffleisch et al., 2011

(Continued)
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TABLE 1 | Continued

RACK1

isoform

Ligand ID Name of the ligand Process Assay Specie References

109 AtRACK1A AT1G23100 GroES-like protein Protein folding e A. thaliana Kundu et al., 2013

120 AtRACK1A AT1G64230 UBC28, Ubiquitin-conjugating enzyme

E2 28

Protein catabolic

process

e A. thaliana Kundu et al., 2013

111 AtRACK1C AT1G68410 PP2Cc, Protein phosphatase 2C 15

family protein

Unknown c A. thaliana Klopffleisch et al., 2011

112 AtRACK1A AT2G04900 Uncharacterized protein Unknown e A. thaliana Kundu et al., 2013

113 AtRACK1A AT2G10940 Bifunctional inhibitor/lipid-transfer

protein/seed storage 2S albumin

superfamily protein

Lipid transport e A. thaliana Kundu et al., 2013

114 AtRACK1A AT2G18510 RRM1_SF3B4; RNA recognition motif 1

in splicing factor 3B subunit 4 (SF3B4)

Embryo dormancy e A. thaliana Kundu et al., 2013

115 AtRACK1A AT2G21045 Rhodanese-like domain-containing

protein

Ion transport e A. thaliana Kundu et al., 2013

116 AtRACK1C AT2G22880 VQ Motif-containing protein Response to UVB c A. thaliana Klopffleisch et al., 2011

117 AtRACK1B/

AtRACK1C

AT2G29080 FTSH3 protease/AAA+ ATPase Protein catabolic

process

c A. thaliana Klopffleisch et al., 2011

118 AtRACK1A AT2G30105 LRR-UBQ, Leucine-rich repeats and

ubiquitin-like domain-containing protein

Unknown e A. thaliana Kundu et al., 2013

119 AtRACK1C AT2G44310 Calcium-binding EF hand containing

protein

Unknown c A. thaliana Klopffleisch et al., 2011

120 AtRACK1A AT2G44500 O-fucosyltransferase family protein Unknown e A. thaliana Kundu et al., 2013

121 AtRACK1A AT2G46000 Uncharacterized protein Unknown e A. thaliana Kundu et al., 2013

122 AtRACK1C AT2G47090 Zinc ion binding/nucleic acid binding Unknown c A. thaliana Klopffleisch et al., 2011

123 AtRACK1A AT2G47590 PHR2, Photolyase/blue-light receptor 2 DNA repair e A. thaliana Kundu et al., 2013

124 AtRACK1A AT3G07565 Uncharacterized protein Unknown e A. thaliana Kundu et al., 2013

125 AtRACK1A AT3G08690 UBC11, Ubiquitin-conjugating enzyme

E2 11

Protein catabolic

process

e A. thaliana Kundu et al., 2013

126 AtRACK1A AT3G13520 AGP12, Arabinogalactan protein 12 Modified amino acid

biosynthesis

e A. thaliana Kundu et al., 2013

127 AtRACK1A/

AtRACK1B

AT3G26090 RGS1, Regulator of G-protein signaling 1 Sugar response c, d, g A. thaliana Klopffleisch et al., 2011

128 AtRACK1C AT3G56410 Uncharacterized protein Unknown c A. thaliana Klopffleisch et al., 2011

129 AtRACK1A AT4G27960 UBC9, Ubiquitin conjugating enzyme Protein catabolic

process

e A. thaliana Kundu et al., 2013

130 AtRACK1A AT4G28030 GCN5-Related N-acetyltransferase

(GNAT) family protein

Metabolism e A. thaliana Kundu et al., 2013

131 AtRACK1C AT4G37540 LBD39, LOB domain-containing protein

39

Membrane fluidity c A. thaliana Klopffleisch et al., 2011

132 AtRACK1B/

AtRACK1C

AT5G03240 UBQ3, Polyubiquitin 3 Protein catabolic

process

a A. thaliana Kim et al., 2013

133 AtRACK1A AT5G04750 Putative F1F0-ATPase inhibitor protein Unknown e A. thaliana Kundu et al., 2013

134 AtRACK1A AT5G11500 Uncharacterized protein (DUF814) Unknown e A. thaliana Kundu et al., 2013

135 AtRACK1A AT5G48180 NSP5, Nitrile specifier protein 5 Catabolic processes e A. thaliana Kundu et al., 2013

136 AtRACK1A AT5G52430 Hydroxyproline-rich glycoprotein family

protein

Unknown e A. thaliana Kundu et al., 2013

137 AtRACK1A AT5G53300 UBC10, Ubiquitin-conjugating enzyme

E2 10

Protein catabolic

process

e A. thaliana Kundu et al., 2013

138 AtRACK1C AT5G65780 ATBCAT-5, Branched-chain-amino-acid

aminotransferase 5

Metabolism c A. thaliana Klopffleisch et al., 2011

In order to obtain homogeneous data, the ligand names and related process were assigned based on the gene information from each ID at the NCBI database. a, Affinity Capture;

b, Co-Immunoprecipitation; c, cDNA Library screen by YTH assay; d, One by one YTH assay; e, cDNA Library screen by suYTH system; f, One by one suYTH assay; g, in planta or

protoplasts BiFC; and h, Split firefly luciferase complementation (SFLC).
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in seed germination, flowering, and production of leaves. The
mutants also displayed a number of altered responses to
hormones such as: (a) reduced sensitivity to gibberellin and
brassinosteroid during seed germination; (b) hypersensitivity to
ABA during seed germination and early seedling development;
and (c) hyposensitivity to auxin in adventitious and lateral
root formation (Chen et al., 2006). The authors concluded
that AtRACK1A participated in multiple signal transduction
pathways during plant developmental processes. These data
were further substantiated by the report that Arabidopsis rack1a
single, and rack1a/rack1b or rack1a/rack1c double mutants, were
hypersensitive to ABA in developmental processes that included
seed germination, cotyledon greening and root growth (Guo
et al., 2009a). In addition, the mutants lost water more slowly
from the rosettes than the wild type, and were hypersensitive to
high concentrations of NaCl during seed germination. On the
other hand, plants overexpressing AtRACK1A displayed ABA
insensitivity. The authors concluded that Arabidopsis RACK1
was a negative regulator of ABA responses and that the three
AtRACK1 genes act redundantly to regulate such ABA responses.
Interestingly, the expression of all three AtRACK1 genes was
down-regulated by ABA, an effect contrary to the stimulation of
expression by auxin (Ishida et al., 1993) or cytokinin (McKhann
et al., 1997). In a later study, it was found that all three AtRACK1
proteins interacted physically with the two eIF6 protein isoforms
in Arabidopsis (Guo et al., 2011a), and that ABA down-regulated
the expression of both AtRACK1 and elF6 transcripts. These data
further suggested that plant RACK1 may be able to regulate its
own expression in a hormonally-regulated feedback loop.

Interestingly, it was found in a different work that the
AtRACK1A isoform seems to specifically mediate gibberellin
signaling, at least in a D-allose mediated inhibition pathway
(Fennell et al., 2012).When gibberellin was applied toArabidopsis
seeds, a significant up-regulation of AtRACK1A:GFP expression
in the embryo root tip region of seedlings was observed after
72 h. The opposite effect was observed by treatment with the
rare sugar D-allose, which is an inhibitor of seed germination
(Fennell et al., 2012). Further analysis on Arabidopsis rack1a
knockout mutants showed a significantly higher hypersensitivity
to D-allose inhibition of germination compared to wild type
seeds, and this inhibition was not counteracted by the addition
of gibberellin. Finally, in seeds harboring a functional RACK1A
in a rack1b/rack1c double mutant background, neither D-
allose nor D-allose plus gibberellin significantly affected seed
germination. These data suggested that D-allose negatively
regulated seed germination and gibberellin-mediated early
seedling development through the inhibition of RACK1A
expression (Fennell et al., 2012). These results also indicated
that specific plant RACK1 isoforms may be involved in
hormonal responses regulating developmental processes in
different fashion.

Hormonal relationships to RACK1 in symbiotic legumes have
been also carried out (McKhann et al., 1997; Islas-Flores et al.,
2009, 2011, 2012). In the smaller P. vulgaris RACK1 (PvRACK1)
gene family, treatment of bean seeds with the synthetic auxins
2,4-D (2, 4-Dichlorophenoxyacetic acid) and IAA (Indole-3-
acetic acid) showed that auxin negatively controlled PvRACK1

transcript accumulation during germination. It was found that
the maximum transcript accumulation of PvRACK1 was at 32 h
of germination without treatment. However, this accumulation
was delayed 8 h from the control with synthetic auxin treatment
(Islas-Flores et al., 2009). These findings suggested a weak
negative regulation of PvRACK1 transcription mediated by
auxin. This conclusion was supported by the fact that the
auxin transport blocker Naphthylphthalamic Acid (NPA) did not
have any effect on the level of PvRACK1 transcript, which was
consistent with a putative blocking of the auxin transport to
target sites (Islas-Flores et al., 2009). In a subsequent work, it
was demonstrated that the PvRACK1 transcript accumulation
was induced by ABA, cytokinin, and gibberellin during root
development. However, contrary to the above effect seen on P.
vulgaris germination, the transcript was also induced by auxin
on developing roots. It was shown that the transcript induction
was higher with auxin, gibberellin and ABA than with cytokinin
(Islas-Flores et al., 2011, 2012). Cytokinin induction of RACK1
expression in roots of other legume was also documented in
the previous report by McKhann et al. (1997), in M. sativa.
Thus, hormonal signaling mediated by RACK1 on developing
legume roots suggested its involvement in symbiotic processes
(see below). Some of the provided data on the hormonal
signaling-RACK1 relationship has also been discussed in a
previous review (Zhang et al., 2013). Taken together, the results
reported so far provide compelling evidence that plant RACK1
participates in hormonal signaling through regulation of protein
expression. Its own expression, in a likely array of feedback loops,
would also be regulated by phytohomones in tightly regulated
signaling networks critical for fundamental plant developmental
processes.

CELL PROLIFERATION AND PLANT
DEVELOPMENT

RACK1 has been related and even suggested as marker for
mammalian cell proliferative processes since early reports of
its overexpression in breast, lung and hepatocellular carcinoma
(reviewed in Li and Xie, 2015). Following this association,
Islas-Flores et al. (2011) inferred that plant RACK1 could
be involved in cell proliferation processes in symbiotic root
nodules. Using the model of P. vulgaris root nodules, and with
previous evidence that suggested that its genome only harbored
one PvRACK1 gene (Islas-Flores et al., 2009), they used an
RNAi approach to silence its expression and follow the root
nodule phenotype during development. It was observed that,
as expected, silencing of PvRACK1 expression led to a reduced
number and size of the nodules compared to controls (Islas-
Flores et al., 2011). They also observed a reduced red-brown
coloration of PvRACK1-knockdown nodules with respect to
controls. A closer examination of the cell ultrastructure revealed
that PvRACK1 knockdown prevented a proper formation of
the symbiosome and impaired cell expansion, which resulted
in a reduced cell size of both infected and non-infected cells
(Islas-Flores et al., 2011). These data were also consistent with
earlier findings where the RACK1 transcript was preferentially
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located to dividing cells of nodule primordia and meristem in
M. sativa (McKhann et al., 1997). These results suggested that
plant RACK1 is also involved in cell proliferation and expansion
directly related to symbiotic processes.

RACK1-induced developmental defects were studied in
A. thaliana with T-DNA insertion mutants. The rack1a loss-
of-function mutation in Arabidopsis led to the impairment
of multiple developmental processes that included seed
germination, leaf production, and flowering (Chen et al., 2006).
It was later reported (Guo and Chen, 2008), that loss-of-function
mutations in either rack1b or rack1c did not confer the same
developmental defects and phenotypes were apparently normal,
indicating that AtRACK1A could functionally complement
those mutations. Interestingly, either rack1b or rack1c mutation
enhanced the developmental defects caused by the rack1a
mutation in double mutant analyses. Furthermore, severe
effects on development and lethality were observed in the
rack1a/rack1b/rack1c triple mutants. The authors concluded
that RACK1 genes function in an unequally redundant
manner, critically and tightly regulating plant development
(Guo and Chen, 2008). More recently, Zhang et al. (2014)
reported an interesting work linking OsRACK1 to rice seed
germination. They first observed that in wild type rice seeds, the
OsRACK1A gene was highly expressed while OsRACK1B was
poorly expressed. They assessed its role in the control of seed
germination and observed that OsRACK1A underexpressing
seeds showed a significant delay in germination and a decrease
in their germination rate compared to the wild type. These
knockdown mutants also displayed an increased sensitivity to
an ABA-induced germination delay compared to wild type or
OsRACK1A overexpressing seeds (Zhang et al., 2014). These
results indicated that OsRACK1A positively regulated seed
germination in rice, similar to the first reports on the effect
of RACK1 on Arabidopsis germination (Chen et al., 2006).
Taken together, these reports clearly highlight a critical role
of RACK1 in cell proliferation and developmental processes
in plants. Zhang et al. (2014) proposed a mechanism in which
OsRACK1A positively regulates seed germination through
enhancing ABA catabolism and stimulation of H2O2 production,
and that they both interact to regulate seed germination. More
recently, a direct interaction between AtRACK1 and Gβ in
Arabidopsis upon activation of a pathogen defense signaling
pathway was reported (Cheng et al., 2015). Although, some
direct RACK1 interactors have been found and these have
revealed some clues regarding the impact they may have on
developmental processes, many more are predicted yet to be
discovered. These RACK1 interactors will be discussed in detail
below.

INNATE IMMUNITY AND ROS
PRODUCTION

RACK1 is involved in innate immunity responses in plants
through the formation of immune complexes. This aspect of
RACK1 function is discussed in detail in a parallel review within
this topic and we will only mention the most relevant and recent

findings. Innate immunity in rice is regulated by a complex
of regulatory proteins located at the plasma membrane. This
assembly is composed of OsRACK1, Rac1, RAR1, SGT1, Rboh
and the two HSP proteins, HSP90 and HSP70 (Thao et al., 2007;
Nakashima et al., 2008). It was found that RACK1 participates
in this complex by binding to Rac1, RAR1, SGT1, and Rboh
but not HSP90 (Nakashima et al., 2008). Rac1 transcriptionally
and post-transcriptionally regulates RACK1 and vice versa in
a feedback loop. A model has been proposed in which, when
a rice plant is attacked by pathogens (i.e., rice blast fungus),
Rac1 and/or RACK1 is/are activated and the immune complex is
formed. This newly formed immune complex can then directly
regulate the immune response through HSP70 and HSP90, or
interact with the N-terminus of RbohB to trigger the production
of ROS and fight the pathogen (Nakashima et al., 2008; Kawano
et al., 2014). More recently, Cheng et al. (2015) reported that
in Arabidopsis, all three RACK1 subunits also serve as scaffolds
for the MAPK pathway through binding to the Gβ subunit
upon activation of the MAPK cascade by a pathogen-secreted
protease. This cascade resulted in the activation of the immune
response although further downstream defense responses were
not investigated. It is possible that in this instance, ROS are
elicited to fight the invader, as it has been proposed to occur
in rice (Nakashima et al., 2008). The authors concluded that
a mechanistically distinct immune signaling must occur in
plants compared to yeast or mammals. In the latter, Ste5 or
β-arrestin scaffold MAPK’s, after upstream GPCRs activation,
whereas plants do not possess the corresponding orthologs
(Cheng et al., 2015). Recently, RACK1 expression was linked
to pathogen responses that led to ROS production in Maize
(Wang et al., 2014). These authors observed an increased
level of ZmRACK1 expression upon ABA or methyl jasmonate
treatment and hypothesized that in maize, a similar innate
immunity response to that occurring in rice (Nakashima et al.,
2008), could exist. In agreement, ZmRACK1 overexpression
resulted in a 2.5–3-fold increase in expression levels of the
pathogenesis-related protein genes PR-1 and PR-5, and the
protein was shown to interact with RAC1, RAR1 and SGT1.
These proteins were present in the Rac1 (a ROP/RAC small
GTPase) immune complex as determined by the Yeast Two
Hybrid (YTH) assay (Wang et al., 2014). It was also observed
that ROS production was higher in seedlings and leaves from
overexpressing lines than in the wild-type. These results were
in direct analogy with the immune response in rice where
an equivalent complex is formed and ROS production ensues
(Kawano et al., 2014).

G-protein signaling has been linked to ROS generation in
Arabidopsis guard cells as gpa1 mutants were impaired in
the production of ROS in response to ABA (Zhang et al.,
2011). In addition, Gudesblat et al. (2007) reported that MPK3
kinase acts downstream of ROS production in guard cell ABA
signaling. Thus, pathogen-activated defense responses in plants
may occur through similar mechanisms to those utilized for
hormone-mediated ROS production. This is consistent with
the model proposed by Kawano et al. (2014), where G-protein
functions upstream of OsRac1 in the early steps of rice defense
signaling.
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RACK1 ALSO APPEARS ON THE SCENE
OF STRESS RESPONSES

RACK1 has been implicated in a variety of responses elicited
by both biotic and abiotic stress in yeast (Núñez et al., 2009),
worms (Ziegler et al., 2009), mammalian cells (Arimoto et al.,
2008), and plants. Since ABA plays a major role in drought
and saline stress, and Guo et al. (2009a) had shown that rack1a
single, rack1a/rack1b, rack1a/rack1c, and rack1b/rack1c double
loss-of-function mutants exhibited hypersensitivity to ABA, they
tested seed germination on the same mutant lines subjected
to salt stress. The results showed a direct relationship between
ABA sensitivity and salt stress sensitivity in seed germination.
In their assays, rack1a single and rack1a/rack1b or rack1a/rack1c
double mutants, were severely affected during seed germination
under salt stress. On the other hand, the RACK1A overexpressing
plants showed a hyposensitivity to the salt treatment in the
germination assay. These results directly linked AtRACK1 to
stress responses inArabidopsis (Guo et al., 2009a). Unfortunately,
no determination of the effect of salt or other types of stress on the
expression of theAtRACK1 genes was carried out on germinating
Arabidopsis wild type seeds to directly test the stress effects on
AtRACK1 regulation.

In a separate work, using P. vulgaris plant roots transformed
withA. rhizogenes carrying a PvRACK1 overexpression construct,
severe damage and necrosis was observed when these were
subjected to heat stress. Heat-shocked transformed seedlings
showed systemic necrosis at 4–5 days post-inoculation, no callus
formation at the inoculation zone, and interrupted progression to
transgenic root formation (Islas-Flores, 2011; Islas-Flores et al.,
2012). These observations suggested that the overexpression of
the PvRACK1 gene in P. vulgaris, caused a severe imbalance in
the RACK1-mediated signaling cross-talk leading to an enhanced
effect of heat stress, which resulted in lethality. The exact
mechanisms and RACK1 interactors underpinning this enhanced
stress effect remain to be studied.

Subsequently, Kundu et al. (2013) identified oxidative,
drought and saline stress RACK1 ligands when AtRACK1A was
used as a bait to screen an A. thaliana inflorescence cDNA
library by the split-ubiquitin Yeast Two-Hybrid system (suYTH).
Identified ligands corresponded to CSD1 (Superoxide dismutase
[cu-Zn]), MYC2 (Transcription factor), GSTU19 (TAU 19
Glutathione S-transferase), Fructose-bisphosphate aldolase 3,
ATPQ (ATP synthase subunit D), RAN-1 (GTP-binding nuclear
protein Ran-1; RAS-related nuclear protein-1), WNK8 (WITH
NO LYSINE (K) KINASE 8; Serine/threonine-protein kinase),
and LTP3 and LTP4 (Non-specific lipid-transfer proteins 3 and
4; Kundu et al., 2013; Table 1). These results also linked RACK1
function to diverse types of stress including hypoxia, cold, and
starvation.

More recently, Olejnik et al. (2011) found that AtRACK1A
binds to AtNUDT7. AtNUDT7 is a pyrophosphatase that
hydrolyzes NADH and ADP-ribose in vitro, and plays a role
in the response to biotic and abiotic stress. The authors
proposed that the AtRACK1A-AtNUDT7 interaction negatively
regulates the cellular level of ROS and the cellular defense
pathway. This work uncovered new players in a novel pathway

in which RACK1 scaffolded interactors that are involved in
stress responses in Arabidopsis. Similarly, RACK1 expression
was linked to biotic stress imposed by pathogen responses in
rice and maize (Nakashima et al., 2008; Wang et al., 2014).
Rice andmaize plants overexpressing OsRACK1A or ZmRACK1,
respectively led to a reduction in leaf symptoms caused by
the fungi Magnaporthe grisea and Exserohilum turcicum (Pass.),
respectively. The extension of the leaf chlorosis and necrosis was
statistically and significantly lower in overexpressing OsRACK1A
or ZmRACK1 leaves than in the wild type. Unfortunately, no
assessment of the stress effect imposed by the pathogens on
OsRACK1A or ZmRACK1 expression was carried out, although
the ZmRACK1 transcript was up-regulated in leaves pre-treated
with ABA and methyl jasmonate (Wang et al., 2014). The above
results implicate both, plant RACK1 in the activation of biotic
and abiotic stress responses, and ABA in the regulation of these
responses. The exact mechanisms of action and clarification of
the opposing effects in different plant species await further study.

DOES RACK1 REGULATE THE microRNA
PATHWAY?

MicroRNAs (miRNAs) play significant roles in living systems
by modifying most protein coding transcripts at the post-
transcriptional level. miRNAs are a class of 21 nucleotide non-
coding small RNAs, simultaneously targeting many transcripts
and fine-tuning the expression of genes (Carrington and
Ambros, 2003; Bartel, 2004; Nunez et al., 2013). Although
the process of miRNA-mediated regulation of gene expression
shows similarities in plant and animal systems, there are clear
distinctions in terms of the identity of the regulatory proteins
and the cellular sites of miRNA biogenesis. In animals, these
tiny (∼21 nucleotide) miRNAs are involved in developmental
and pathological processes. In plants, miRNAs participate in
growth, flowering and development by regulating hormone
signaling, nutrient sensing, stress responses and immunity
against pathogen invasion (Ding et al., 2013; Jin et al., 2013).
While plant and non-plant miRNAs are both transcribed by the
RNA polymerase II, their biogenesis differs in terms of location.
Metazoan miRNAs are processed at two locations, the cytoplasm
and the nucleus. In the nucleus, pri-miRNAs are processed by
DROSHA and DIGEORGE SYNDROME CRITICAL REGION
8 (DGCR8), and the processed pre-miRNAs are then further
processed by DICER in the cytoplasm (Lee et al., 2003; Kim,
2005). Unlike their animal counterpart, plants do not have
DROSHA and DGCR8 to process the pri-miRNA to the pre-
miRNA. Instead, another RNase III-like protein known as
DICER-LIKE 1 (DCL1), in conjunction with the SERRATE (SE)
or HYPONASTIC LEAVES 1 (HYL1), process the pri-miRNAs
into the mature miRNAs, which occur exclusively in the nucleus.
The mature miRNAs are loaded onto the ARGONAUTE (AGO)
effector complexes-miRNA-induced complex (miRISC), which
regulates the target mRNAs for degradation or repression of
translation (Kurihara and Watanabe, 2004).

To date, three different reports have implicated RACK1 in
the miRNA pathway in C. elegans, humans, and Arabidopsis
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(Jannot et al., 2011; Speth et al., 2013; Speth and Laubinger,
2014). In plants it was found, through a YTH assay, that RACK1
interacts with the SE protein to regulate the mature miRNA
biogenesis in the nucleus (Speth et al., 2013; Speth and Laubinger,
2014). Subsequently, the interaction was confirmed in vivo by
the Bimolecular Fluorescence Complementation (BiFC) assay.
It was found that such interaction took place in distinct sub-
nuclear foci D-bodies, where SE was previously reported to
localize (Fang and Spector, 2007). Further support came with
the report that miRNA accumulation in rack1 loss-of-function
mutants was globally decreased causing de-repression of the
target mRNAs (Speth et al., 2013; Speth and Laubinger, 2014).
It was also reported that some pri-miRNAs accumulated at
higher levels in rack1mutants, suggesting that RACK1 affects the
processing and transcription/stability of certain pri-miRNAs in
plants (Speth et al., 2013; Speth and Laubinger, 2014). Moreover,
aberrant non-canonical miRNAs were more abundant in rack1
mutants, indicating that RACK1 is also involved in ensuring
precise processing (Speth et al., 2013; Speth and Laubinger,
2014). Plant pri-miRNAs and pre-miRNAs are cleaved in the
nucleus by the same RNase III enzyme DICER-LIKE 1 (DCL1).
Therefore, Arabidopsis RACK1 may be required for steps
upstream of, or with DCL1, to affect pri-miRNA processing or
stability.

Although RACK1 interaction with SE indicates a role in
miRNA biogenesis, it is not difficult to envision a RACK1 role
independent of miRNA biogenesis. For example, Otsuka et al.
(2011) reported, in hepatocellular carcinoma, that a few miRNAs
displayed impaired silencing upon RACK1 depletion with no
detectable changes in their overall levels (Otsuka et al., 2011).
However, lower amounts of these miRNAs were detected in
Ago2-containing complexes, leading the authors to propose that
RACK1 functions after miRNA maturation and is required to
load mature miRNAs into miRISCs. Similarly, Jannot et al.
(2011) observed that in C. elegans and human cells depletion of
RACK1 impaired miRNA regulation and reduced the amount of
AGO associated with the polysome (Jannot et al., 2011). They
proposed that RACK1, as an AGO-interacting protein, facilitates
the recruitment of miRISC to the ribosome. Interestingly, Speth
and Laubinger (2014) have shown that Arabidopsis AtRACK1
and AGO1 are part of a common complex outside the ribosome,
and that they co-localize in the nucleus and the cytoplasm. As
AtRACK1 has been shown to regulate pri-miRNA processing in
the nucleus, it is likely that free, rather than ribosome-bound
RACK1, is involved in the regulation of miRNA biogenesis
(Speth et al., 2013; Speth and Laubinger, 2014). Differences
in localization and binding partners may explain the distinct
functions of RACK1 in miRNA biogenesis and miRISC function.
Ribosome-bound RACK1 may help recruit miRISCs to the
ribosome, while free RACK1, perhaps with associated AGO,
may play roles in miRNA biogenesis in the nucleus and/or the
cytoplasm (Chu et al., 2014).

Whether RACK1 binds miRNA directly is not resolved yet.
Although RACK1 is predicted to bind the ribosome by primarily
anchoring to the 18S ribosomal RNA, the mechanism of binding
to the miRNA may be mediated by interaction with other
anchoring protein(s) like SE or HYL1.

Given the evidence that RACK1 is a negative regulator of
the stress hormone ABA signaling, it is not far-fetched to
suggest that RACK1 regulates this pathway possibly through
miRNA regulation. Indications that miRNAs participate in the
ABA response were first provided by the isolation of ABA-
hypersensitive mutants impaired in any of the several key genes
of the miRNA biogenesis pathway, HYL1, DCL1, HEN1, SE, and
HASTY (Ding et al., 2013). The hyl1 mutant was shown to be
hypersensitive to ABA during Arabidopsis germination (Lu and
Fedoroff, 2000). Drought-induced miRNAs down-regulate their
target mRNAs which may encode negative functional proteins
involved in the drought response. Conversely, other miRNAs
are down-regulated, leading to the accumulation of their target
mRNAs that contribute positively to stress adaptation. The
precise identification of the miRNAs and their targets in the
rack1 mutants would definitely allow to pinpoint the exact role
of RACK1 in the miRNA-mediated drought responses.

ARE THE RIBOSOME-BOUND RACK1
LIGANDS LOST IN TRANSLATION?

Although RACK1 has been implicated in many stress
signaling pathways, the in silico study of RACK1 inside
the GENEVESTIGATOR database indicates that RACK1
predominantly regulates protein translation and ribosome
biogenesis (Guo et al., 2011b). Through a careful analysis of
the online data and co-expression studies, Guo et al. (2011b)
found that the protein synthesis and ribosome biogenesis
function of RACK1 is regulated by the stress hormone ABA.
Loss in the relative abundance of 60S ribosome subunits and
80S ribosome in the rack1a/rack1b double mutants indicated a
role of RACK1 in the ribosome biogenesis. Such predominant
role of RACK1 in protein translation and ribosome biogenesis
is, therefore, represented by a thicker arrow in Figure 2. In
addition, by virtue of the RACK1 predominant localization on
the ribosome in different species, a role for the protein in the
regulation of global translation through ribosome biogenesis
and interaction with regulatory proteins has been envisioned
(Shor et al., 2003; Gerbasi et al., 2004; Nilsson et al., 2004;
Sengupta et al., 2004; Chang et al., 2005; Giavalisco et al.,
2005; Yu et al., 2005; Regmi et al., 2008; Coyle et al., 2009;
Armache et al., 2010; Guo et al., 2011a,b). In a recent report,
it was also revealed that Arabidopsis RACK1A, in conjunction
with other ribosomal proteins, controls the upstream Open
Reading Frame (uORF)-mediated protein translation of the key
transcription factor SAC51 to regulate growth and development
(Kakehi et al., 2015). Using Cryo-EM, Sengupta et al. (2004)
found that fungus RACK1 was located on the head region of
the 40S subunit, in the immediate vicinity of the mRNA exit
channel. Later, Coyle et al. (2009) provided evidence that S.
cerevisiae RACK1, Asc1 functions on the ribosome, implying a
physical link between the eukaryotic ribosome and cell signaling
pathways in vivo. Chang et al. (2005), in a proteomic analysis of
ribosomal proteins, first reported the identification of RACK1
protein from the Arabidopsis ribosome, where it was associated
with both the 40S ribosome subunit and polysomes. It has been
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FIGURE 2 | As an integrator of signaling, RACK1 regulates diverse cellular signaling pathways. Based on the available literature, a comprehensive view is

presented. Depending on the pathways, RACK1 acts either as a positive regulator (blue arrow) or as a negative regulator (red inhibitory arrow), most likely through

mediating protein-protein interaction. The thicker arrow denotes a predominant role of RACK1 in protein translation and ribosome biogenesis. Note that the pathways

may not always act in a unidirectional way as they often cross-talk. See text for further detail.

suggested that, although ribosome-bound RACK1 might directly
regulate translation per se, its function as a ribosomal protein
was likely linked to its capacity to recruit a particular cohort
of RACK1-associated proteins such as activated PKCβII in
animals (Adams et al., 2011). However, the lack of bona fide PKC
isoforms from the plant kingdom indicate that other kinases
may play a similar role in regulating RACK1-mediated ribosome
translation processes. On the other hand, a suggested model for
the role of RACK1 protein in ribosome assembly in non-plants
entails phosphorylation of eIF6 by PKC. The latter as a result of
interaction with eIF6 and PKC bound to a nearby 40S subunit
via RACK1 (Sengupta et al., 2004). The report that Arabidopsis
RACK1 directly interacts with eIF6 implicates plant RACK1 in
mediating the ribosome assembly in a similar way as observed
with their counterparts in mammalian cells (Guo et al., 2011a).
The superposition of the deduced crystal structure of Arabidopsis
RACK1A onto the yeast RACK1-40S ribosome model (PDB ID
code 1ARI) supports the notion that the top rim of RACK1A is
in contact with the ribosome allowing the bottom rim to interact
with regulatory proteins (Ullah et al., 2008). The lack of any
structural data on plant ribosome-bound RACK1 makes difficult

to support the claim that both, the mammalian and plant RACK1
proteins function in the same mechanistic way during the
regulation of protein translation. It appears even more difficult,
to extrapolate similar pathways of RACK1-ribosomal complexes
that are modulated under stress in mammalian cells (Arimoto
et al., 2008). When these cells enter stress by hypoxia or heat
shock (type 1 stress), the formation of stress granules is induced.
Stress granules are molecular aggregates of stalled translation
pre-initiation complexes (that prevent the accumulation of
mis-folded proteins), which also sequester RACK1. This RACK1
immobilization, in turn, suppresses the activation of the MTK1-
SAPK pathway leading to apoptosis, which would otherwise be
induced under conditions of type 2 stress (X-ray or genotoxic
drug exposure; Arimoto et al., 2008). Plants do not display, at
least phenotypically, any similar response under the various
stress conditions. This is most likely due to the plasticity and
ancestry of plant genomes brought about by the evolution
pressure that the incapability of movement has imposed. The
mechanisms of regulation of translation in plants under stress
are more likely to be under hormonal control, in which RACK1
also actively participates. For example, since RACK1 is known to
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be a negative regulator of the stress hormone ABA, it is possible
that plants are also able to modulate global protein translation
through RACK1-ribosomal associations under stress conditions.
The putative critical kinases and phosphatases key for regulation
through phosphorylation/dephosphorylation events, whether or
not present in multimolecular complexes with RACK1, remain
unidentified.

Finally, another feature that sets apart plant RACK1 proteins
from their non-plant counterparts, is their putative role in
the regulation of the chloroplastic ribosome-based translation
process. Kundu et al. (2013) reported that RACK1A, the
predominant isoform in Arabidopsis, physically interacts with
dozens of cytosolic and chloroplastic ribosomal proteins.
Important among them is the RPL12-A protein which contains
a signal sequence that exclusively localizes the protein to the
chloroplast. In addition, RACK1A is also found to interact
with a member of Ribosomal protein L36a/L7-3 family protein
that is also reported to be localized in the chloroplast (Kundu
et al., 2013). Interestingly, it was reported that the spinach
chloro-ribosome L7-3/L12-A proteins in combination with L1,
form the base stalks of the 70S chloro-ribosome as observed
by Cryo-EM. These base stalks were larger than those of the
Escherichia coli 70S ribosome, one of various features that
distinguished them from one another (Sharma et al., 2007).
In view of the RACK1 associations with putative chloroplast-
localized ribosomal proteins, it is tempting to speculate that
RACK1 may regulate the translation process by either affecting
the chloro-ribosome assembly and/or stability, or by directly
regulating the translation process.

RACK1A is also reported to interact with the major
components of photosynthetic proteins translated by the chloro-
ribosomes which include photosystem I and II components and
the large subunit of RuBisCo-associated proteins. Since chloro-
ribosomes control chloroplastic translation in a light dependent
manner, it will be interesting to investigate whether plant RACK1
is able to regulate the photosynthetic protein abundance of the
chloroplast. This would have a direct effect on regulating the
photosynthesis-based total growth and development of a plant.

RACK1-INTERACTING LIGANDS, SOME
SOLID EVIDENCE, AND SOME ENIGMA

Structurally, RACK1 presents multiple conserved surface
residues contained on the WD-40 repeats, where these binding
sites allowmultiple interactions and set the bases of its scaffolding
characteristics. Although, it is capable to form homodimers, it is
also found as a free monomer allowing to form hetero-complexes
with an expanding number of partners. It is well known that
RACK1 has a large number of direct ligands; for example,
in metazoans over 90 ligands have been reported as RACK1
interactors (Adams et al., 2011). RACK1 binding partners have
been identified in several intracellular fractions, where they are
transported and placed in proximity to their modifying enzymes
or substrates.

Plant RACK1 presents two conserved surface regions (region
1, blades 1–4; and region 2, blades 5 and 6) believed to

mediate potential protein–protein interaction sites (Ullah et al.,
2008). Probable interacting partners were proposed based on the
comparison of residues contained in these regions, with known
residues that mediate interaction with characterized ligands (Dell
et al., 2002; Chen et al., 2004; Ullah et al., 2008). In addition,
RACK1 has a structural and translational function as it has been
documented that it forms part of the ribosome in metazoans
and plants, and it is coexpressed with up to 80% of ribosome
proteins (Guo et al., 2011b). RACK1 has been identified on the
head of the 40S ribosomal subunit were its conserved region 1
directly interacts with the helices 39 and 40 of the 18S rRNA,
and the ribosomal protein S2p, while the conserved region 2 is
exposed for interaction and recruiting of binding partners such
as PKC (Nilsson et al., 2004; Sengupta et al., 2004; Armache
et al., 2010). Consequently, plant RACK1 should also be found
in the ribosome for recruiting PKC to phosphorylate eIF6 as in
animal cells (Ceci et al., 2003). However, it is well documented
that plant genomes lack this type of kinase (Guo et al., 2011b)
and so far no equivalent plant kinase to fulfill a parallel
function has been found. Therefore, since direct comparison of
RACK1 interacting ligands in animal cells cannot be extrapolated
to plant cells, alternative strategies to unequivocally identify
plant RACK1 interactors have been necessary. For example,
approaches that demonstrate direct physical interaction such
as the yeast two hybrid (YTH) and BiFC assays, confirmed
interaction of AtRACK1A, B, and C with eIF6A and B (Guo et al.,
2011b). These strategies confirmed, in part, what was observed in
metazoans, as well as the functional involvement of plant RACK1
in protein translation and ribosome stability. It is important to
highlight that, to date, still no plant kinase equivalent to animal
PKC has been identified in those complexes so how the initiation
of translation is regulated in plants remains an open question.
The identification ofOryza sativa RACK1A (OsRACK1A) as part
of the immune complex interacting with Rac1, Rboh, RAR1, and
SGT1 (Nakashima et al., 2008) revealed the first plant RACK1
ligands, which had remained elusive for many years. This was
achieved by means of a Rac1 affinity column in a search for
Rac1 ligands in an assay using prior activation by a sphingolipid
elicitor. OsRACK1A interaction was further confirmed by the
YTH and suYTH assays.While OsRACK1B bound to a less extent
to Rac1, the binding of the other Rac isoforms, Rac3, Rac5,
Rac6, and Rac7 to OsRACK1A was also confirmed. Furthermore,
the direct interaction of OsRACK1A with the other immune
response related proteins RAR1 and SGT1, and with N-Rboh was
also shown by YTH and suYTH. Finally, it was also demonstrated
that the interaction of OsRACK1A with Rac1, RAR1, and SGT1
occurred on blades 1 and 2, indicating that the conserved region 1
wasmediating this interaction. Subsequently, the same group also
reported that the key transcription factor OsRap2.6 contributes
to rice innate immunity through its interaction with RACK1A
in compatible interactions (Wamaitha et al., 2012). These results
established the role of plant RACK1 in innate immunity and
resistance to rice blast fungus infection.

After the first rice report of RACK1-interacting ligands,
Klopffleisch et al. (2011) reported an Arabidopsis signal-
transduction interactome that included the heterotrimeric G
protein subunits and the three Arabidopsis RACK1 isoforms.
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This was achieved by a high-throughput YTH system screening
prey cDNA libraries from nine Arabidopsis tissues. After ten
screens, seven ligands for AtRACK1A, four for AtRACK1B,
and twenty four for AtRACK1C were identified (Table 1). Eight
of these were confirmed by BiFC in planta and interestingly,
novel unexpected functions were found. The nature of the
identified AtRACK1 ligands revealed an involvement in cell
wall formation and stress (Klopffleisch et al., 2011). Earlier
work had suggested a more important function for AtRACK1A
than AtRACK1B and AtRACK1C because AtRACK1A loss-
of-function resulted in multiple defects in plant development
while the loss of function of AtRACK1B and AtRACK1C did
not (Guo and Chen, 2008). Therefore, it was unexpected that
the largest proportion of ligands was obtained for AtRACK1C.
Interestingly, no direct interaction among RACK1 isoforms and
G protein subunits was found in this interactome (Klopffleisch
et al., 2011). More plant RACK1 ligands were identified when
AtRACK1A was used as a bait to systematically screen a suYTH-
based Arabidopsis inflorescence cDNA library (Kundu et al.,
2013). Ninety potential ligands were reported as involved in
several functional plant processes such as oxidative, drought and
saline stress, photosynthesis, and protein biosynthetic pathways
(Kundu et al., 2013; Table 1). These data also demonstrated
that the suYTH assay was more efficient than the YTH since
more ligands were identified. It is likely that in this assay, the
activation of the reporters was carried out in the cytoplasm
where the interactors are found, and the probability to get
positive interactions was higher. Kundu et al. (2013) also showed
that phosphorylation on tyrosine 248 (Y248) of AtRACK1A
was critical for the interactions since when a Y248F-RACK1A
mutant was used in the suYTH assay, no positive interactions
were observed. Importantly, this Y248 residue is conserved
among A. thaliana, H. sapiens, D. melanogaster, and S. cerevisiae,
and is located on blade 6 of the conserved region 2, at the
bottom of the propeller (Ullah et al., 2008). These results
also confirmed that tyrosine phosphorylation occurs on plant
RACK1, and that it is required for both, homodimerization of
AtRACK1A, and binding of interactors. Within the identified
ligands in this report, four kinases were found: CLV1-like
leucine-rich repeat transmembrane receptor-like protein kinase,
AGC (cAMP-dependent, cGMP-dependent and protein kinase C
family protein), PGK1 (Phosphoglycerate kinase 1), and WNK8
(WITH NO LYSINE (K) KINASE 8) protein kinase (see below).
From these kinases, only WNK8 has been characterized as
an atypical serine/threonine kinase that directly interacts with
RACK1B and RACK1C, but not with RACK1A (Klopffleisch
et al., 2011). Furthermore, YTH assays revealed that all three
AtRACK1 proteins physically interacted with WNK8, and
confirmation of this interaction was carried out on tobacco leaf
epidermal cells by BiFC. Indeed, the three AtRACK1 isoforms
were phosphorylated by WNK8 at threonine 162 and serine
122 (T162 and S122) without substrate specificity. The RACK1
residue S122 is also conserved in several species (A. thaliana,
O. sativa, H. sapiens, D. melanogaster, and S. cerevisiae) and
localizes on blade 3, while T162 residue is on blade 4 and is
plant-specific. Blades 3 and 4 are in the conserved region 1, on
the top rim of the propeller (Ullah et al., 2008). AtRACK1 was

confirmed as a substrate of WNK8 and this phosphorylation
negatively affected its stability. The phosphomimetic mutations
on S122 and T162 abolished its expression at the protein level
but the accumulation of theAtRACK1 transcript was not affected.
This suggested that AtRACK1 is controlled by phosphorylation
and subsequent protein degradation (Urano et al., 2015). From
these data, more information has been obtained regarding the
binding properties of RACK1, new interacting ligands, and how
phosphorylation affects this binding. However, the responsible
tyrosine kinase critical for binding, and whether its association
in a complex with AtRACK1 occurs, remain unknown and new
strategies will have to be implemented to solve this enigma.

Growing evidences show that RACK1 is also involved in
MAPK pathways. For example, in mammalian systems it has
been reported that RACK1 induces cell proliferation via the
MAPK cascade in association with the ERK, JNK and p38 families
(López-Bergami et al., 2005; Vomastek et al., 2007). While
significant knowledge of the RACK1-MAPK cascade relationship
in mammalian and yeast systems over the past two decades has
emerged, much less is known on how these pathways function
in plants. This is further hampered by the facts that plant cells
do not have bona fide G protein-coupled receptors (GPCRs),
canonical PKC, or any of the RACK1, G protein and MAPK-
linking chaperone orthologs of yeast ste5 or mammalian beta
arrestin (Witzel et al., 2012; Urano et al., 2013). Although, it
was completely unknown how plant RACK1 contributed to the
MAPK pathways, recently, Cheng et al. (2015) provided the
first intriguing evidence that Arabidopsis RACK1 scaffolds the
MAPK pathway through binding to the Gβ subunit. This finding
links RACK1 to upstream G-protein signaling and downstream
activation of a MAPK cascade in a pathogen-secreted, protease-
mediated immune signaling pathway. They hypothesized that
the 25% amino-acid sequence identity and similar seven-bladed
β-propeller structure between RACK1 and Gβ might play a
role in linking the G protein complex to downstream MAPK
pathways. Their study showed that Arabidopsis RACK1 forms
a complex with Gβ, MEKK1 (a MAPKKK), MKK4/MKK5 (two
redundant MAPKKs), and MPK3/MPK6 in the presence of a
pathogen-secreted protease treatment. Furthermore, they found
that all three RACK1 protein isoforms bind the Gβ subunit.
MPK3/MPK6 induced immune responses against pathogen
infection through phosphorylation activation of their substrates.
In a separate study in which RACK1 association was not
investigated, Lieberherr et al. (2005) showed that attenuation of
OsRac1 by RNAi-mediated knockdown or loss of function of
Gα (termed as dwarf1), drastically decreased OsMAPK6 levels.
They found that OsMAPK6 and active but not inactive OsRac1
formed a protein complex in rice immunity. It is worth noting
that Ras-MAPK or G protein-MAPK cascades occur in response
to various stimuli, such as hormones or environmental stresses
(Kawano et al., 2010). Since OsMAPK6 and OsRac1 proteins are
in the same protein complex in the immune signaling pathway,
it can be envisaged that OsRACK1 might have a functional link
in this complex. However, unlike Arabidopsis, a direct evidence
showing that OsRACK1 scaffolds the rice immunity signaling
pathway with any member of the MAPK superfamily has not
been reported so far and remains to be elucidated.
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The heterotrimeric G protein is composed of three different
canonical subunits (α, β, and γ), which in Arabidopsis are
named GPA1, AGB1, and AGG1/AGG2 (there are two genes
encoding the Gγ subunit in Arabidopsis). Before 2011, all the
screens identifying one of the heterotrimeric G protein subunits
interacting with RACK1 had been in animals. However, the
essential residues for this interaction were already identified on
blades 1–4 of plant RACK1 and thus, the conserved region 1
could mediate binding to the Gβγ dimer and the Gαβγ trimer
(Dell et al., 2002; Ullah et al., 2008). Earlier reports documented
that AtRACK1A, AtRACK1B, and AtRACK1C did not interact
directly with AGB1 as tested by YTH, suYTH, and Co-IP assays
(Guo et al., 2009b). However, a recent study demonstrated that all
three AtRACK1 isoforms interacted with AGB1 by threemethods
(Cheng et al., 2015). First, BiFC in Nicotiana benthamiana
leaves demonstrated that RACK1A, RACK1B, and RACK1C
interacted with AGB1, MEKK1(K361M), MKK4, MKK5, MPK3,
and MPK6, but not GPA1 or MPK4. Second, the interactions
were further confirmed only for AtRACK1A by means of
BiFC and split firefly luciferase complementation (SFLC) assays
in Arabidopsis protoplasts. Third, binding between all three
Arabidopsis RACK1 proteins and AGB1 was observed in co-
immunoprecipitation experiments with Arabidopsis mesophyll
protoplasts using Flag-tagged RACK1 proteins as the bait and
HA-tagged AGB1 as the prey. In contrast, no binding was
observed when HA-tagged GPA1 was used as prey (Cheng et al.,
2015). This further supported the central role of RACK1 in
innate immunity, as previously shown for O. sativa (Nakashima
et al., 2008). In addition, Olejnik et al. (2011) later reported
that AtRACK1A bound to AGG1, AGG2, and AtNUDT7. The
latter is a pyrophosphatase capable of hydrolyzing NADH and
ADP-ribose in vitro, and plays a role in the response to biotic
and abiotic stresses. These data suggested a correlation between
heterotrimeric G protein function and stress responses.

The data indicates that GPA1does not directly interact with
RACK1 in any of the implemented assays (YTH, suYTH, Co-IP,
in planta BiFC, SFLC, etc.). Moreover, although the interaction
between RACK1 and the AGG1/AGG2 subunits was not analyzed
in these reports, it was previously shown that AtRACK1A
consistently interacted with both AGG1 and AGG2 using in vitro
(pull-down), and in vivo (YTH and BiFC in protoplasts) assays
(Olejnik et al., 2011). Therefore, the accumulating evidence leads
to the notion that plant RACK1 can form complexes with the Gβ

and Gγ subunits, but not with Gα. Thus, it is likely to participate
in the regulation of some heterotrimeric G protein functions such
as pathogen-activated immune response and oxidative stress,
which are processes where other plant RACK1 interactors have
been identified. Nevertheless, plant RACK1 participation in G
protein-mediated developmental processes as found in other
models (Omosigho et al., 2014), should not be ruled out.

CONCLUDING REMARKS AND FUTURE
DIRECTIONS

It is clear that plant RACK1, in analogous manner to its animal
homolog, has earned itself a name in the WD-repeat protein

family as a promiscuous but multi-interactive protein key for
many critical plant processes and responses.

Plant RACK1 ligands remained elusive for almost two decades
after the report of the first homolog in tobacco; however due
the growing interest in RACK1 function, and the development
of new analytical techniques, a total of 138 ligands have been
identified so far (Table 1). This identification allowed to assign
RACK1 function to a wide range of biological processes in which
RACK1 is the central scaffolding molecule.

The particular feature of RACK1 to scaffold multiprotein
complexes, also render it with the capability to participate
in a wide variety of cell processes. Its properties result in
the spatio-temporal regulation of critical signal-transduction
events in plants including hormonal control, stress responses,
development, immune defense, protein translation regulation,
miRNA production, photosynthesis, and cell wall biogenesis. A
central participation in all these processes require its constitutive
and ubiquitous expression in order to carry out its varied and
exquisite functions.

Although, significant progress has been made, the
mechanisms that control its expression and functions are
not yet well understood. It is now known that its expression
is, in part, affected in a species- and tissue-specific dependent
fashion by hormones (auxins, gibberellins, cytokinin, etylene,
ABA, brassinosteroids, and methyl jasmonate), phosphorylation
(Tyr248, S122, and T162), stress, and some ligands. An example
of the species-specific differential regulation of RACK1 in plants
is the distinct marked effect produced by ABA, which functions
as a negative regulator of RACK1 expression in Arabidopsis, but
does not have any effect on the expression of arcA in N. tabacum.
On the other hand, it induces the expression of RACK1 in O.
sativa, M. truncatula, P. vulgaris, and Z. mays. It is important
to point out that the variation of the plant RACK1 expression
patterns in different species could be the result of tissue-specific
regulation. For example, these assays were carried out in different
tissues and organs such as seedlings (A. thaliana), roots (M.
truncatula and P. vulgaris), leaves (Z. mays), and cultured cells
(N. tabacum andO. sativa). Furthermore, a differential regulation
of RACK1 expression induced by auxin was observed between
germination (slight down-regulation) and root development
(up-regulation) in the same plant, P. vulgaris. In addition, it was
shown recently that RACK1 becomes unstable and undergoes
protein degradation upon phosphorylation by WNK8 on serine
122 and threonine 162 residues. Furthermore, RACK1 expression
is also controlled by some ligands such as Rac1, which associates
in an immune complex, thereby regulating its expression at
transcriptional and post-transcriptional levels. RACK1, in turn,
regulates Rac1 transcription in a feedback loop. In summary,
RACK1 regulation in plants is carried out at several levels which
involve responses to hormones, post-translational modifications
such as phophorylation, and direct interactions with ligands.

Another salient feature of its functional versatility is that
RACK1 forms a structural part of the 40S ribosome and thus, it is
involved in regulation of protein expression. This is substantiated
by the facts that: (a) several ribosomal proteins were identified
as ligands (Figure 1; Table 1); (b) it binds to the translation
initiation factor eIF6 A and B to maintain the 60S ribosome
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biogenesis and whose phosphorylation leads to 80S monosome
assembly; and (c) it participates in the pre-miRNA processing via
interaction with the SE protein, increasing the processivity and
transcription/stability of certain pri-miRNAs.

Finally, defense against pathogens has emerged as one of the
main processes in which RACK1 is involved in plants (Table 1).
As shown forO. sativa and Z. mays, it is involved in the formation
of the immune complex that participates in the resistance against
the rice blast fungus, where it directly interacts with Rac1,
RAR1, SGT1, and Rboh. RACK1 also interacts directly with
the pyrophosphatase NUDT7, which is induced by bacterial
pathogens and abiotic stressors. In addition, the relationship
between RACK1 and processes of stress, photosynthesis and cell
wall biogenesis became apparent since a dozen, eighteen and
seven interactors, respectively, were indentified for each process
(Table 1). These are novel processes in which RACK1 had not
been implicated until recently. These recent findings highlight
the importance to study and identify new interactors and their
mechanisms that regulate and dictate when and where RACK1
will bind to channel its participation in a particular process.

Even though A. thaliana has been used traditionally as a
plant model and copious research on RACK1 has been carried
out on this species, future studies will likely move into the

direction of searching for RACK1 functions in plant systems
with smaller RACK1 gene families and/or in which one isogene
predominantly expresses such as P. vulgaris,O. sativa, or Z.mays.

In conclusion, significant light has been shed regarding the
role of plant RACK1 function in critical plant physiological
pathways so far (Figure 2). With the ever flowing advent of
new technologies and the availability of simpler plant models,
the fine dissection of the interaction mechanistics and the
unequivocal identification of critical RACK1 interactors should
be achieved in order to unveil the whole of plant RACK1
function.
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