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In the post-GWAS (Genome-Wide Association Scan) era, the interpretation of GWAS

results is crucial to screen for highly relevant phenotype-genotype association pairs.

Based on the single genotype-phenotype association test and a pathway enrichment

analysis, we propose a Metabolite-pathway-based Phenome-Wide Association Scan

(M-PheWAS) to analyze the keymetabolite-SNP pairs in rice and determine the regulatory

relationship by assessing similarities in the changes of enzymes and downstream

products in a pathway. Two SNPs, sf0315305925 and sf0315308337, were selected

using this approach, and their molecular function and regulatory relationship with

Enzyme EC:5.5.1.6 and with flavonoids, a significant downstream regulatory metabolite

product, were demonstrated. Moreover, a total of 105 crucial SNPs were screened using

M-PheWAS, which may be important for metabolite associations.

Keywords: association scan, upper tier metabolite pathway, Wilcoxon rank-sum test, metabolite, replication

INTRODUCTION

Since the publication of the sequencing data of the human genome (Lander et al., 2001;
Venter et al., 2001) and rice genome (Yu et al., 2002), a large number of genetics and
genomics studies have emerged based on the vast and varied information available from genomic
data.

The pioneering GWAS work traces back to 2005, when Klein et al. (2005) reported a whole-
genome case-control association study for genes involved in age-related macular degeneration
(AMD). They used a correlation analysis to study the relationship between phenotypes and
genotypes in a whole-genome scan. Klein et al.’s result sparked the study of GWAS. Two years
later, approximately 100 newGWAS studies emerged that proposed associations between SNPs and
various traits (Naidoo et al., 2011). In 2014, the number of human GWAS publications increased
to at least 1751, and these studies examined 11,912 SNPs (http://www.genome.gov/gwastudies/;
Welter et al., 2014). GWAS has also been widely used to explore the complex traits in plants, an
effort that has identified millions of SNPs and key genes associated with important agronomical
traits, such as the yield component, plant architecture, stress tolerance, disease resistance, and
flowering time (Han and Huang, 2013).

Although GWAS has been successfully applied to many species, the interpretation of GWAS
findings is impractical because most of the screened vital associations are part of a larger region
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of correlated variants (Hofker et al., 2014). Not only do strong
linkage disequilibria hinder the identification of causal SNP
variants (van der Sijde et al., 2014), but the majority of identified
SNPs are intergenic or lie within the intronic region of genes.
These problems all demonstrate that the underlying regulatory
mechanisms are not easily understood by merely calculating
associations between genotypes and phenotypes (van der Sijde
et al., 2014).

In the post-GWAS era, a large number of new emerging data
make the interpretation of previous GWAS results a challenge.
Newmethods such as PheWAS (Denny et al., 2010) and pathway-
based analyses have been proposed to alleviate this problem.

The emergence of large bodies of electronic medical records
(EMRs) may help identify gene-disease associations. Denny et al.
(2010) proposed a phenome-wide association scan (PheWAS)
based on the International Classification of Disease (ICD9)
clinic codes. After using Chi square test algorithm, four
of the seven known SNP-disease associations reported by
Burton (Burton et al., 2007) and Benjamin (Benjamin et al.,
2007) were replicated with sufficient power P-values based on
previous GWAS data. The PheWAS algorithm also identified 19
previously unknown SNP-disease associations, which indicated
that PheWAS analysis can be used to investigate SNP-disease
associations. Subsequently, Denny et al. (2013) applied the
PheWAS paradigm to relate the entire human genome with
EMRs. Their result replicated 66% of associations previously
identified with GWAS and revealed 63 pleiotropic associations.
This strategy demonstrated the reliability of the PheWAS
paradigm. Later, Carroll et al. (2014) developed an R package to
automatically run the PheWAS program.

Although PheWAS is also subject to disadvantages, such as a
lack of EMR data and population inconsistencies, which affect the
ability to validate findings, PheWAS hopefully offers a method
to explain GWAS data (Hebbring, 2014). Moreover, PheWAS
may combine GWAS findings with additional molecular data
and pathway information, which is crucial to functionally
characterize the associations. Specifically, current findings have
not elucidated the effect of SNP variants on downstream
pathways in the context of disease development (van der Sijde
et al., 2014).

Similar to PheWAS, pathway-based analyses can also enhance
the GWAS findings. This approach utilizes enrichment analysis
to screen interested genes that are related to high-ranking SNPs.
Because complex molecular networks and cellular pathways are
often involved in disease susceptibility and disease progression,
Wang et al. (2007, 2010) relied on prior biological knowledge of
genes and pathways to identify targeted genes that are enriched
in certain pathways. The enrichment data show that these genes
might be involved in pathogenesis as groups.

Because metabolites are of the utmost importance to
our understanding of the genetic regulation of biochemical
conversion, designing a system-based approach is essential to
track the flow of biological information based on the central
dogma, i.e., DNA→ transcripts→ protein→ metabolites→
phenotypes (Hofker et al., 2014). Several phenotypes have been
studied in the field of crop GWAS research, including the
yield component, plant architecture, stress tolerance, and disease

resistance (Han and Huang, 2013). Among these phenotypes,
metabolites are of great concern. Chen et al. (2014) conducted
a metabolic genome-wide association study to comprehensively
profile 840metabolites and approximately 6.4million SNPs. After
identifying thousands of key SNPs, they selected 36 candidate
genes that may be physiologically and nutritionally important
in the regulation of metabolites. Using similar methods for the
maize genome, Li et al. (2013) detected 74 genes associated with
oil biosynthesis in 1.03 million SNPs.

Based on systems genetics, we herein propose a metabolite-
pathway-based Phenome-Wide Association Scan strategy (M-
PheWAS) to discover currently unknown relationships in vast
amounts of GWAS data. PheWAS analyzes the association of
phenotypes (metabolites) and genotypes and uses pathway-based
approaches to identify metabolites and enzymes that are enriched
in certain pathways. M-PheWAS outputs a smaller group of SNPs
than previous GWAS approaches. The molecular mechanism
relating genotypes to phenotypes is then interpreted based
on systematic omics data. Finally, 273 SNP-target gene pairs
referring to 105 unique SNPs were obtained from evidence based
on 74 gene-EC pair and 52 unique enzyme matches identified by
pathway enrichment.

MATERIAL AND METHODS

Data Set
The population used in this work consisted of 533 diverse
accessions of Oryza sativa, including 200 varieties from China,
132 lines from the International Rice Molecular Breeding
Program, and 148 varieties from the US Department of
Agriculture rice gene bank. These datasets primarily consisted of
two subspecies of rice: indica and japonica (Chen et al., 2014).

Chen et al. built the metabolite dataset (Chen et al., 2014)
using liquid chromatography tandem mass spectrometry (LC-
MS/MS). In total, 840 distinct metabolic traits in the leaves of rice
plants at the five-leaf stage were obtained. Of these metabolites,
only 277 were identified or annotated, and 563 remained
unknown. Generally, the identified metabolites can be divided
into 14 different secondary classes, as shown in Figure 1. Most
of the known metabolites are flavonoids, which participate in
many vital molecular biological processes, such as UV filtration,
symbiotic nitrogen fixation and floral pigmentation (Galeotti
et al., 2008).

Metabolites are accumulated in these subspecies in two
specific manners. In indica, most metabolites are C-glycosylated
and malonylated flavonoids, whereas phenolamides and
arabidopyl alcohol derivatives are found in japonica.

The genotype data, which included 6,551,358 high-quality
SNPs, were collected from a report by Xie et al. (Xie et al.,
2010; Chen et al., 2014). To obtain these SNPs, Chen et al.
used BWA 0.6.1 to align the reads to pseudomolecules and then
used SAMtools and BCFtools to identify SNPs. Quality control
(QC) was conducted to ensure that the minor allele is present
at least five times in the population to obtain high-quality SNPs.
For indica, japonica and the entire population, Chen et al. used
2,767,191, 1,857,866 and 3,916,415 SNPs in GWAS, respectively
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FIGURE 1 | Class of metabolites.

(Xie et al., 2010; Chen et al., 2014). These SNPs are all included
in our database, in which the minor allele was present at least five
times and its frequency was 0.05.

For screened SNPs, the target gene information was obtained
from a search for expressed quantitative trait loci within 210
recombinant inbred lines, which detected 13,647 eQTLs for
10,725 e-traits (Wang et al., 2014). The eQTL database consists
of probeset, LOD value, target gene name, gene annotation, and
cic/trans regulation, and the data are available in Wang’s work
(Wang et al., 2014; http://jxb.oxfordjournals.org/content/early/
2014/01/12/jxb.ert464/suppl/DC1).

M-PheWAS Methodologies
The M-PheWAS strategy evaluates the association of SNP-
metabolites based on a non-parametric test. For a fixed
metabolite, we separated 533 lines into two categories, A and
B, according to different gene types, i.e., SNPs. Subsequently,
the Wilcoxon rank-sum test (Wilcoxon, 1945), a nonparametric
alternative to the two sample t-test, was applied to evaluate the
association of a metabolite with a SNP.

The Wilcoxon rank-sum test is based solely on the sum of the
order in which the observations from the two samples fall. The
H0 hypothesis holds that the distribution of X-measurements in
population A is the same as that in B,

H0 : A = B.

For H1: A > B, the p-value is

p-value = pr (WA ≥ wA),

where wA denotes the observed rank sum for observations from
A, and WA represents the corresponding random variable. The
magnitude of the p-value inversely correlates with the strength of
the association between the SNP and metabolite.

The Bonferroni correction was used to account for multiple
tests, and only p-values of SNPs that satisfied p < 0.05/840 =

5.95× 10−5 were considered significant.
The selected metabolite pathway was then subjected to an

enrichment analysis. The metabolites that correspond to a fixed
SNP should cluster into a specific class to function consistently.
Information on the metabolites related to each SNP was then
retrieved and clustered into upper tier class of metabolites.
In the corresponding pathway, we attempted to enrich related
metabolites in one KEGG pathway based on the classification of
the metabolites.

Furthermore, the eQTL data obtained by Wang et al.
(2014) were utilized to harvest the SNP-eQTL relationship and
the target gene of the SNP-eQTL pair. These target genes
were used to obtain the corresponding protein-coding UniProt
sequences (probe information for the RNA microarray offered
by AffyMetrix), and the EC numbers (Enzyme Commission
number) of the protein-coding genes were retrieved from the the
UniProt/SwissProt database based on the UniProt codes (http://
www.uniprot.org/).

As shown in the workflow diagram (Figure 2), the M-
PheWAS strategy is based on two parallel molecular biologic
processes, i.e., the enrichment analysis of the pathway and the
eQTL target gene analysis.

Initially, a Wilcoxon rank sum test (with Bonferroni
adjustment) was used to study the genotype-phenotype
associations for each genotype (i.e., SNP). This approach yielded
a group of strongly associated metabolites for each SNP. For
QC, we checked each SNP-metabolite relationship and deleted
SNP-metabolite association pairs that contained the unknown
metabolites based on a mass spectrum analysis.

Each SNP that passed the single SNP-metabolite analysis
and QC was analyzed in parallel using two methods. First, a
pathway enrichment analysis was conducted to determine the
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FIGURE 2 | Flowchart of M-PheWAS strategy.

related Upper Tier Metabolite Pathway (UTMP). Second, eQTL
information was used to direct SNPs to target genes and enzymes.
The identified UTMP pathway was then searched for targeted
enzymes upstream of the target metabolite. The consistency of
the enzyme level and downstream metabolite level was checked
to verify the effect of the genotype due to SNP variations.

RESULTS

Distribution of Metabolites
A non-parametric test is suitable for identifying associations in
metabolite expression data. An observation of the data structure
did not indicate underlying consistent distributions in expression
values. As shown in Figure 3, some of the expression levels
satisfied a normal distribution, e.g., mr1704 (unknown), whereas
some bar plots showed two peaks, such as that for mr1008 (N-
Sinapoylputrescine). In fact, trends in distribution could not be
identified for most of metabolites, e.g., mr1404 (unknown). The
Wilcoxon test is mainly applied to compare two non-normal
distributions or distributions with dissimilar shapes andmedians.
A Gaussian distribution test was utilized to assess the normality
of the metabolite data.

Second, the significance of proportion of flavonoids was
analyzed. Because the proportion of flavonoids in the metabolites
of the raw data was high, we used a binomial test to confirm that
the metabolites of flavonoids identified byM-PheWASwere non-
randomly distributed. The raw dataset contained 127 flavonoid
compounds of a total of 840 metabolites. Furthermore, seven
classes of metabolites are known for the SNP sf0315308337,
including four flavonoids identified by M-PheWAS. We used a
binomial test to assess the significance, which yielded a p-value
of 0.01245. Similarly, we predict that the proportion of flavonoid
among unknown metabolites is also high.

SNP-metabolite Associations Screened by
M-PheWAS
The SNP-metabolite association database from GWAS consists
of 2947 SNPs and 840 metabolites (Chen et al., 2014),

whereas the distribution of metabolites indicates a non-
Gaussian distribution, as shown in Figure S1. Therefore, a non-
parametric method, the Wilcoxon rank sum test, was used
to evaluate the key associations (at least one SNP to one
metabolite). Subsequently, 710 SNPs remained after Bonferroni
adjustment. Each SNP corresponded to an average of 20
metabolites. After removing unknown metabolites, the SNP
set decreased to 512. To simplify the enrichment strategy, we
deleted the SNPs associated with less than five metabolites
to yield 282 remaining metabolites. The whole genotype-to-
phenotype associations for this dataset are shown (Figure 4A).
Furthermore, the Manhattan plots of the M-PheWAS results
for each chromosome are shown in Figure S1. Figure 3A

shows the distribution of SNPs related to different numbers
of metabolites. Specifically, most SNPs were associated with
dozens of metabolites. These metabolites were then clustered
into corresponding classes. Because the proportion of flavonoids
in the metabolite raw data is high, we used a binomial test
to confirm that the metabolites of flavonoids identified by M-
PheWAS are non-randomly distributed (Figure 4B). The raw
dataset contained 127 flavonoids of a total of 840 metabolites.
Furthermore, seven metabolite classes are known for the
SNP sf0315308337, including four flavonoids identified by M-
PheWAS. We used a binomial test to assess the significance,
which yielded a p-value of 0.01245. Thus, the flavonoid
metabolite pathway was then considered the key UTMP pathway,
(osa00941, KEGG, http://www.kegg.jp/kegg-bin/show_pathway?
osa00941).

To test the repeatability of M-PheWAS and GWAS, we
observed the overlap of metabolites from M-PheWAS in GWAS.
For SNPs that passed the SNP-metabolite association test in M-
PheWAS, we examined the class of corresponding metabolites.
For every Metabolite-SNP association, pairs from GWAS and
PheWAS were verified when the associated metabolites fell
into the same class. M-PheWAS classified 182 metabolites
as flavonoids, and 50 of these flavonoids are verified and
have 473 metabolites related to flavonoids. These results show
that M-PheWAS was able to reliably replicate GWAS SNPs
(Figure 4C).
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FIGURE 3 | Example of the data structure of metabolite expression level value. (A) Normal distribution test of metabolite, sample mr1008, which does not

satisfy a normal distribution; (B) Histogram of metabolite, sample mr1404, which does not satisfy a normal distribution. (C) Histogram of metabolite, sample mr1704,

which satisfies the normal distribution.

Validation of the SNP-metabolite
Associations in Systems Review
A “general match” strategy was also carried out to supplement
the results of the exact match analysis. Specifically, genes coding
enzymes involved in flavonoid synthesis (UTMP: osa00941,
KEGG) that matched the first three parts of an EC number were

defined as a “general match.” Metabolites that clustered in the

UTMP pathway clustered into an upper tier class of metabolites.

If this class is the same as the enriched class of metabolites from
the SNP-metabolite pair, a general match is obtained.

The full results of the general match are shown in Table S2,
which provides 105 SNPs and their target gene information.
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FIGURE 4 | SNP-metabolite association in rice genome. (A) is the Manhattan plot of M-PheWAS results. The class-known metabolites are denoted in yellow,

whereas the other metabolites are indicated in other colors. The class-unknown metabolites are plotted in two color pairs, sky blue-dark red and slate blue-red,

depending on the p-value of the metabolite (above or below 5.95× 10−5); The bar plot of metabolite distribution of SNPs is shown in (B); the replication of

M-PheWAS and GWAS is shown in (C).

Exact matches were conducted to search for consistencies in
metabolites in a parallel analysis. After implementing the M-
PheWAS strategy, an exactly matching metabolite was identified
for SNP sf0315305925 and sf0315308337. Specifically, SNP
sf0315305925 corresponds to seven metabolites, i.e., Lupulin A,
Tricin 4′-O-(syringyl alcohol) ether 5-O-hexoside, Naringenin
(in KEGG osa00941), Apigenin 5-O-glucoside, Naringenin
O-malonylhexoside, DL-alpha, epsilon-Diaminopimelic acid,
and Tricin 4′-O-(B-guaiacylglyceryl) ether 5-O-hexosyl-O-
hexoside, whereas SNP sf0315308337 is associated with seven
other metabolites, including Lupulin A, Naringenin (in KEGG
osa00941), Tricin 4′-O-(syringyl alcohol) ether 5-O-hexoside,
DL-alpha epsilon-Diaminopimelic acid, di-C,C-pentosyl-
luteolin, Sinapic acid, and a Tricin 4′-O-(syringyl alcohol) ether
derivative. These 14 pairs all passed the single SNP-metabolite
association scan. Moreover, these metabolites mostly originate
from a UTMP flavonoid synthesis process (osa00941, KEGG).
Furthermore, this SNP was mapped to the same 40 target genes
(Table S1). Among these genes, Q84T92 is the only enzyme of the
40 produced proteins. The UTMP pathway was searched for this
enzyme, which indicated that Q84T92 is immediately upstream
of the enzyme (EC: 5.5.1.6) of the metabolite Naringenin
(C00509, KEGG compound).

Function Analysis and Validation of the Key
Metabolites-associated Loci
As an exact match, SNP sf0315305925 and sf0315308337 are
important SNPs, and these two SNPs share the 40 same target
genes. One of these genes encodes the enzyme EC:5.5.1.6, which
has been described as “Experimental evidence at transcript level.”
This description indicates that the existence of a protein has not
been strictly proven but that expression data [such as existence

of cDNA(s), RT-PCR or Northern blots] indicate the existence of
a transcript (Druka et al., 2003; http://www.uniprot.org/uniprot/
Q84T92).

Furthermore, an analysis of metabolite structure shows that
metabolites related to these two SNPs correlate.Table 1 shows the
corresponding metabolites of screened SNPs, and Table 2 shows
the chemical structure of compounds.

As mentioned above, the two significant SNPs were associated
with seven unique known metabolites each, and only 10 unique
metabolites were involved in total. Among these 10 metabolites,
nine exactly matched or most likely matched chemical structures
according to the compound names of the metabolites, and
we obtained seven unique chemical structures (see the figures
in Table 2) after searching for these metabolites names in
KEGGCompound database. The four unique chemical structures
(C10193, C00509, C04608, C01514) clearly belong to a flavonoid
class and are the derivatives of the flavone. Thus, they all fall into
the flavone functional group.

The up-regulation of SNPs and metabolite levels were verified
by eQTL data from Wang et al. (2014). Among the 524 lines,
205 SNPs corresponded to a G-A phenotype, which is the same
as that in Minghui63, whereas 319 lines corresponded to a C-T
genotype. The metabolites differences between the two classes
show that a G→C mutation in SNP sf0315305925 and A→T
mutation in SNP sf031508337 increase the metabolite levels. The
Wilcoxon rank sum test shows a strong significance with a p-
value of 2.2 × 10−16, which proves that the mutation in these
two SNPs results in the up-regulation of metabolites. The results
of this analysis are shown in Table 3.

Similarly, the up-regulation of mRNA tended to be
significant. We selected 216 chips with microarray data from a
set of gene-chip data (Xie et al., 2010). Among the 216 lines,
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TABLE 1 | Corresponding metabolites of screened SNP.

SNP sf0315305925

Flavonoid—osa00941 EC:5.5.1.6 sf0315305925 mr1585 Lupulin A Terpene

osa00941 EC:5.5.1.6 sf0315305925 mr1104 Tricin 4′-O-(syringyl alcohol) ether 5-O-hexoside Flavonoid

osa00941 EC:5.5.1.6 sf0315305925 mr1263 Naringenin(in KEGG osa00941) Flavonoid

osa00941 EC:5.5.1.6 sf0315305925 mr1437 Apigenin 5-O-glucoside Flavonoid

osa00941 EC:5.5.1.6 sf0315305925 mr1248 Naringenin O-malonylhexoside Flavonoid

osa00941 EC:5.5.1.6 sf0315305925 mr1454 DL-alpha, epsilon-Diaminopimelic acid Others

osa00941 EC:5.5.1.6 sf0315305925 mr1949 Tricin 4′-O-(β-guaiacylglyceryl) ether 5-O-hexosyl-O-hexoside Flavonoid

SNP sf0315308337

Flavonoid—osa00941 EC:5.5.1.6 sf0315308337 mr1585 Lupulin A Terpene

osa00941 EC:5.5.1.6 sf0315308337 mr1263 Naringenin(in KEGG osa00941) Flavonoid

osa00941 EC:5.5.1.6 sf0315308337 mr1104 Tricin 4′-O-(syringyl alcohol) ether 5-O-hexoside Flavonoid

osa00941 EC:5.5.1.6 sf0315308337 mr1454 DL-alpha, epsilon-Diaminopimelic acid Others

osa00941 EC:5.5.1.6 sf0315308337 mr1090 di-C,C-pentosyl-luteolin Flavonoid

osa00941 EC:5.5.1.6 sf0315308337 mr1050 Sinapic acid Ployphenol

osa00941 EC:5.5.1.6 sf0315308337 mr1206 Tricin 4′-O-(syringyl alcohol)ether derivative Flavonoid

TABLE 2 | The chemical structure of related metabolites of two screened SNPs.

mr1585 NA

mr1104 C10193

mr1263 C00509

mr1437 C04608

mr1248 C00509

mr1454 C00666, C00680

mr1949 C10193

mr1090 C01514

mr1050 C00482

mr1206 C10193

TABLE 3 | Significance analysis of up-regulation of SNP toward metabolites level.

SNP sf0315305925 Avg metabolite level SNP sf0315308337 Avg metabolite level

Reference Genotype G A

(G, A)-Genotype (Minghui63) G (205 lines) 9.9935 A (205 lines) 10.0089

(C, T)-Genotype (Zhenshan97) C (319 lines) 10.5151 T (319 lines) 10.5052
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TABLE 4 | Significance analysis of up-regulation of SNP toward mRNA

expression level.

SNP sf0315305925 and Avg mRNA Level

SNP sf0315308337

Reference Genotype G and A

(G, A)-Genotype (Minghui63) G and A (93 lines) 8.5579

(C, T)-Genotype (Zhenshan97) C and T (117 lines) 8.7650

three repeats were obtained from Minghui63, three repeats were
obtained from Zhenshan97, and the other 210 repeats were
obtained from RILs. The two screened SNPs correspond to the
same probes in all chips. For the parent line Minghui63, the
chip repeats are GSM1192467, GSM1192468, and GSM1192469,
whose mRNA expression values were 10.12, 9.124, and 10.499,
respectively. For Zhenshan97, the chip repeats are GSM1192470,
GSM1192471, and GSM1192472, with mRNA expression values
of 8.41, 6.749, and 8.873, respectively. The result shows that
mutated SNPs were strongly up-regulated. We tested this
significance in a larger population, i.e., the entire RIL group, and
the results of this analysis are shown in Table 4.

As shown above, the Wilcoxon rank sum test indicated strong
significance with a p-value of 2.2 × 10−16. The mutations in
SNPs result the up-regulation of metabolites. Because the SNP-
regulated enzyme and the downstream metabolite are located in
fluctuating areas of the UTMP pathway osa00941, we believe this
evidence to indicate the effect of SNPs variations on genotype-
phenotype relationships.

Overall, the utility of the M-PheWAS strategy was
demonstrated by the consistency of up-regulated of enzymes and
downstream products in the UTMP pathway. Specifically, the
variations of SNP sf0315305925 and sf0315308337 up-regulate
both the enzyme EC: 5.5.1.6 and downstream products, as shown
in Figure 5.

DISCUSSION

GWAS, which is a powerful method for analyzing genotype-
phenotype correlations, has been successfully applied to study
various species. GWAS has been shown to be essential as an
analytical genetic research tool not only for human hereditary
diseases and cancer but also for fundamental genetic analyses
of other economic species. The advantages of this technique
lie in its ability to elucidate the relationship between genetic
mutations and a specific phenotype based on the level of network
of genetic mutations, i.e., the complex relationships between
specific traits and the network of genetic mutations (Hebbring,
2014). Although GWAS has been widely applied to whole-
genome research, its coverage unfortunately remains low, which
constitutes a significant problem (Hebbring, 2014). PheWAS,
which is a relatively new method for association analyses,
complements analyses of correlations between mutations and
phenotypes (Hebbring et al., 2015), and its ability to identify
the known SNP-phenotype associations and predict new SNP-
phenotype associations has been validated. Prior to GWAS,
PheWAS was developed, which can effectively identify the

pleiotropy of a gene and consequently screen out potential
phenotypes related to a single mutation. This ability is beneficial
to drug research, especially for studies of drug repositioning, side
effects and combination. This current hybrid strategy focuses on
a combination of PheWAS and EMR data, in which the disease-
phenotypes are defined according to codes of the International
Classification of Diseases (ICD). However, the definition of
phenotypes is highly dependent on the EMR and ICD codes,
which limits the applicability of PheWAS—the very problem
it was designed to circumvent. Recently, Hebbring used lexical
terms obtained from text mining as the phenotypes to strengthen
the PheWAS approach (Hebbring et al., 2015).

In this work, we integrated the achievements of previous
studies and proposed a typical M-PheWAS strategy. Because
the GWAS results are comparatively valuable for reference, we
analyzed the published GWAS results (Chen et al., 2014) to
sharply reduce the computation time, improve the validation of
results, and supplement previous GWAS information. Although
PheWAS analyses of diseases or other apparent phenotypes
have indicated significant correlations between genotypes and
phenotypes, the interpretation of results are far from perfect.
The fundamental theory of genetic information transfer indicates
the involvement of various inherent processes from genetic
mutations to apparent phenotypes, including transcription
process from the genome to the transcriptome, translation
from the transcriptome to the proteome, the modification,
and regulation process from the proteome to metabolome, the
regulation and characterization process from the metabolome
to the phenome, and epigenetic effects due to the environment
that influence the phenome. Because these processes are
inherently complex, many unknown factors may affect GWAS
and PheWAS. Thus, we herein defined the metabolome of rice
as the phenome for PheWAS analysis and then validated the
SNP-metabolite associations based on systems genetics to reduce
the complexity and uncertainty of information flow from genetic
mutations to apparent phenotypes. This approach also allowed
us to understand how genetic mutations (or genetic mutation
network) act on a specific trait based on the metabolic network.

In this study, we applied a modified PheWAS strategy, M-
PheWAS, to perform a customized PheWAS analysis of the
published GWAS results and obtain potential SNP-metabolite
associations. To test the significance of these association pairs,
a Gaussian distribution test was used to assess the distribution
of the expression level of each metabolite in different sample
lines. These distributions, which are shown in Figure 3, indicate
that the majority of metabolites are non-random. Furthermore,
the obvious overlap of the PheWAS and GWAS results further
indicates that the associations obtained herein are significant.
Therefore, the M-PheWAS strategy was proved to be valid.
Upon considering the rationality and relative reliability based
on systems genetics, we analyzed and identified the biological
correlation between genetic mutations andmetabolic phenotypes
based on various omics data. Although the data available
for rice are relatively scarce, our research benefited from the
availability of recently obtained omics data. Specifically, we
selected flavonoids as metabolites, for which rich information is
available, and ultimately identified two “exact matches.” These
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FIGURE 5 | Up-regulation evidence of SNPs in metabolites pathway.

exact matches demonstrate the rationality and reliability of the
M-PheWAS approach and systems genetic validation. Therefore,
they shed light on associations that have not yet been identified
by systems genetic validation and indicate that these associations
can be treated as the predicted SNP-metabolite association pairs,
which may serve as a reference for future studies.

Interestingly, visualizing the association pairs by M-PheWAS
analysis revealed a cluster of horizontal parallel line segments
with the same metabolic points in the post median area of
chromosome 12 (Figure S1). This phenomenon indicates that
these SNPs correspond to a region of parallel line segments that
shares the same regulatory effects, which implies that these SNPs
are located in the same regulatory element in the genome. In
addition to this phenomenon, similar cases can be found in
Figure S1, e.g., the middle and first quarter areas of chromosome
1, the middle and first third areas of chromosome 3, the middle
and first third areas of chromosome 6, the last third area of
the chromosome 8, and the last third and quarter areas of
chromosome 12. The above clusters each represent a regulatory
element or signify an interaction among regulatory elements.
Overall, we did not observe shared metabolites for different SNPs
in different chromosomes. Thus, these clusters are more likely to
be regulatory elements rather than interactions of SNPs.

Although the matches that we obtained via M-PheWAS are
reliable based on the systems genetics validation, they are not
ideal. The number of exact matches was lower than expectation,
which constitutes a bottleneck for the analysis of M-PheWAS
results. These drawbacks are primarily due to two reasons. First,

available data on rice are scarce, and the lack of systematic
data affected the systems genetic analysis. Second, the metabolite
data and eQTL data used in this research were collected from a
mixed sample group, and differences in this sample unpredictably
the analysis. Although we generally assumed that most of the
underlying genetic regulation and metabolism processes for a
given species were the same, the different growing phages may
slightly change the physiological status. Thus, a hybrid strategy
consists of waiting for more omics data for rice and to develop
more efficient algorithms to compensate for this shortage.

In conclusion, our research proved that the improved M-
PheWAS efficiently analyzed rice metabolism based on systems
genetics. Moreover, we successfully identified and validated
important SNP-metabolite association pairs, which provide
references for further studies. In addition, the application of
PheWAS to study the genetic structure of the metabolome is
a novel approach, and we successfully interpreted metabolic
phenotypes in a plant. Given the in-depth study of complex
traits in plants and the accumulation of data, the application
of M-PheWAS to botany will attract increasing attention from
researchers.
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