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Alternanthera philoxeroides is an amphibious invasive weed that can colonize both

aquatic and terrestrial habitats. Individuals growing in different habitats exhibit extensive

phenotypic variation but little genetic differentiation. Little is known about the molecular

basis underlying environment-induced phenotypic changes. Variation in transcript

abundance in A. philoxeroides was characterized throughout the time-courses of

pond and upland treatments using RNA-Sequencing. Seven thousand eight hundred

and five genes demonstrated variable expression in response to different treatments,

forming 11 transcriptionally coordinated gene groups. Functional enrichment analysis of

plastically expressed genes revealed pathway changes in hormone-mediated signaling,

osmotic adjustment, cell wall remodeling, and programmed cell death, providing

a mechanistic understanding of the biological processes underlying the phenotypic

changes in A. philoxeroides. Both transcriptional modulation of environmentally sensitive

loci and environmentally dependent control of regulatory loci influenced the plastic

responses to the environment. Phenotypic responses and gene expression patterns

to contrasting hydrological conditions were compared between A. philoxeroides and

its alien congener Alternanthera pungens. The terricolous A. pungens displayed limited

phenotypic plasticity to different treatments. It was postulated based on gene expression

comparison that the interspecific variation in plasticity between A. philoxeroides and A.

pungens was not due to environmentally-mediated changes in hormone levels but to

variations in the type and relative abundance of different signal transducers and receptors

expressed in the target tissue.
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INTRODUCTION

Phenotypic plasticity, the ability of one genotype to produce
different phenotypes in response to different environments
(Bradshaw, 1965; Schlichting, 1986; Scheiner, 1993; Pigliucci
and Hayden, 2001; Pigliucci, 2005; Zhou et al., 2012), is
widely recognized as a rapid adaptive strategy that enables
plants to survive in different habitats (Daehler, 2003; Hulme,
2008; Prentis et al., 2008; Sultan et al., 2013). Plastic
responses to environmental variation allow organisms to produce
advantageous phenotypes in heterogeneous habitats without the
time cost required for natural selection, thus allow individuals
to withstand the challenges of environmental variability and
increase their niche breadth (Bradshaw, 1965; Sultan et al., 1998,
2009, 2013; Donohue et al., 2001; Richards et al., 2005; Sultan,
2010). Successful invasive species are usually characterized by
broader niche breadth and greater environmental tolerance
(Williamson, 1996; Vazquez, 2006; Higgins and Richardson,
2014). Phenotypic plasticity has long been proposed to play
an important role in facilitating successful invasions (Daehler,
2003; Richards et al., 2006; Hulme, 2008; Prentis et al., 2008;
Knop and Reusser, 2012; Sultan et al., 2013; Morris et al.,
2014). Understanding how adaptive plasticity occur in changing
environments can not only illuminate the role of phenotypic
plasticity in shaping the niche breath, but may also help account
for the success of invasive species (Davidson et al., 2011; Grether,
2014).

Alternanthera philoxeroides, commonly known as alligator
weed, is an invasive amphibious weed that is native to South
America but has now invaded into the temperate and tropical
regions across the world (Julien et al., 1995; Holm et al., 1997;
Pan et al., 2007). In its introduced range, A. philoxeroides rarely
produces viable seeds and propagates mainly via vegetative
regeneration, with fragments of stems or roots breaking off and
growing into new plants (Julien and Stanley, 1999; Geng et al.,
2007; Pan et al., 2007). All new plants produced in this way are
genetically identical clones. Interestingly, these clones can exploit
extremely diverse habitats, from lakes to dry lands (Huai et al.,
2003; Pan et al., 2007). Individuals growing in different habitats
exhibited notable morphological differences (Geng et al., 2007;
Gao et al., 2010). It has therefore been suggested that phenotypic
plasticity rather than the development of locally adapted ecotypes
is responsible for this species’ ability to colonize a wide range of
habitats with very different levels of water availability (Geng et al.,
2006, 2007; Li and Ye, 2006; Pan et al., 2007).

Although encompassing various phenomena spanning
multiple levels of organization, most phenotypically plastic
responses seem to take place by altering gene expression
and eventually altering ontogenetic trajectory in response to
environmental variation (Schmitt et al., 1999; Aubin-Horth and
Renn, 2009; Roelofs et al., 2010; Matsumoto and Crews, 2012;
Renn and Schumer, 2013). How environmental cues triggering
plastic responses at the molecular level and subsequently
inducing phenotypic plastic changes in organisms living in
fluctuating environments, has been a key focus in ecological
developmental biology (Sultan, 2010). With the development
of next-generation sequencing technologies, many studies have

been conducted to investigate environment-gene interactions
at the whole genome level (Landry et al., 2006; Stern et al.,
2007; Richards et al., 2012; Zhou et al., 2012; Johansson et al.,
2013; Smith et al., 2013a,b; Morris et al., 2014). Transcriptome-
wide expression variations associated with environmental
fluctuation have been detected in various organisms (Dal Santo
et al., 2013; Smith et al., 2013a,b; van Veen et al., 2013). By
incorporating functional annotation of differentially expressed
genes, great progress has been made in our understanding of
the signaling pathways and molecular processes involved in
environment-induced phenotypic changes (Aubin-Horth and
Renn, 2009).

Characterizing environment-specific gene expression is
important not only for elucidating the molecular mechanisms
underlying phenotypic plasticity, but also for identifying
candidate genes potentially responsible for the plasticity (Bar-
Joseph et al., 2012; Romero et al., 2012). However, simply
correlating phenotypes with gene expression patterns across
environments is insufficient for establishing a causal link
between environmental cue, gene expression and the resulting
phenotype, because gene expression is itself a plastic trait that can
be the result of responses to environmental fluctuations (Côté
et al., 2007). To determine whether the observed differential
expression is a cause of the plastic change in phenotype or a
consequence associated with the new phenotype, it is important
to track the progression of transcriptional variation across the
developmental time-course of phenotypic changes, but not
to focus on the expression patterns associated with the final
phenotypes (Aubin-Horth and Renn, 2009; Bar-Joseph et al.,
2012). Genes that trigger plastic development may only be
differentially expressed during the initial transition period when
developmental change is initiated (Aubin-Horth and Renn,
2009). It is also clear that gene expression itself is subject to
both genetic variation and environmental changes (Bossdorf
et al., 2008). Transcriptome variation across environments
may be genetically based differences between individuals
rather than inducible differences (plasticity). It has proven
difficult to conclusively distinguish the relative contribution
of genetic variants and environmental perturbations to gene
expression variation in sexually reproducing organisms (Gibson,
2008; Montgomery and Dermitzakis, 2009). A. philoxeroides
seems to provide a suitable model for explicitly addressing
the environmental effects on gene expression variation in an
ecological context. Due to its clonal propagation, the genetic
variability that inevitably accompanies sexual reproduction is
largely eliminated in A. philoxeroides.

Previously, we have conducted an extensive investigation
of the phenotypic variation of A. philoxeroides in natural
populations. Using a common-garden experimental protocol,
we have also documented the growth reaction norms of A.
philoxeroides in response to contrasting hydrological conditions
(Geng et al., 2006, 2007; Gao et al., 2010). However, little is
known about the molecular basis underlying the environment-
induced phenotypic changes in this species. In this study, we
examined the time-course of gene expression changes induced
by contrasting hydrological conditions in A. philoxeroides using
high-throughput RNA-Sequencing (RNA-Seq). The reference
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transcriptome of A. philoxeroides was generated by de novo
assembly. Temporally dynamic changes in gene expression
was assessed by digital gene expression profiling. Functional
annotation of differentially expressed genes will provide
information for identifying the core transcriptional responses to
environmental variations and the molecular basis underlying the
development of plastic traits.

Alternanthera pungens is an alien congener ofA. philoxeroides.
In contrast to the wide distribution of A. philoxeroides in various
aquatic and terrestrial habitats in southern China, A. pungens
is limitedly distributed in the terrestrial habitats in Yunnan,
Fujian and Hainan provinces. It has also been shown that A.
pungens exhibited much less phenotypic variation in internode
length, shoot diameter and pith cavity diameter than the
plants of A. philoxeroides in response to changing hydrological
conditions (Wang et al., 2010). The interspecific difference in
phenotypic plasticity could be one of the factors contributing
to the niche breadth and geographic variations between A.
philoxeroides and A. pungens. The objectives of this study were:
(1) to investigate the molecular underpinnings underlying the
environment-induced phenotypic variation in A. philoxeroides
by monitoring the change in gene expression patterns over time;
(2) to identify molecular determinants potentially responsible for
variation in plasticity between A. philoxeroides and A. pungens
based on gene expression comparison.

MATERIALS AND METHODS

Plant Materials and Common Garden
Treatments
Plants of Alternanthera philoxeroides (Mart.) Griseb. were
collected in Zhuji, Zhejiang Province (E120◦20′, N29◦40′) in
2006. The collected materials were grown in nutrient soil and
had been maintained in a greenhouse in Fudan University,
Shanghai (E121◦29′, N31◦14′) for more than 5 years. Stem
fragments of one individual plant were cut from ramets with
similar diameters and planted in plastic plates. After the first
two new leaves appeared, plants of similar sizes were individually
transplanted into sand pots, and were watered every day to keep
the matrix moist. A. pungens was collected from Yunnan, China.
Seeds were pre-germinated for 3 days, then the seedlings were
individually transplanted into sand pots and grown under the
same conditions as A. philoxeroides.

Two common garden treatments, pond and upland
treatments, were established in the greenhouse to simulate
the aquatic and terrestrial habitats colonized by A. philoxeroides
in natural environments. Two treatments were conducted
simultaneously, during the summer months of July and August
with about 12 h of daytime, and under identical climatic
conditions. In the pond treatment, the potted plants were
completely submerged in a series of plastic tanks containing tap
water to a depth of 50 cm, three or four plants per tank. Plants
were supplied with 1 L water per day in the upland treatment
and the soil was kept well-drained. One-month-old plants of
uniform size were selected for treatments. Eighty plants were
randomly assigned into the upland and pond treatments. Each

treatment contained 40 plants, which were assigned into two
blocks randomly. Twenty plants were located randomly in each
block. In each treatment, ten plants were used for monitoring the
changing trends in stem internode length and stem pitch cavity
diameter, five plants were used for anatomical observation and
monitoring cell death associated with pith cavity formation, five
plants were used for RNA extraction for de novo transcriptome
assembly, and twenty plants were used for temporal expression
profile analysis. Plants of A. pungens were subjected to similar
treatments under the same conditions.

Phenotypic Evaluation
Previous studies have shown that plants of A. philoxeroides
growing in different habitats exhibited significant phenotypic
differences. Particularly, plants in aquatic habitats had
significantly longer internodes and larger stem pith cavity than
those in terrestrial habitats (Geng et al., 2007; Gao et al., 2010).
These two traits were thus chosen as markers of phenotypic
variation under different conditions in this study. Phenotypic
observations were focused on fresh mature stem internodes
between the fifth and sixth nodes. The stem internode length and
stem pitch cavity diameter under upland and pond treatments
were measured daily on days 0–3 from the start of the treatments.
Ten branches from separate plants were randomly collected from
each treatment. To monitor cell death associated with pith cavity
formation, five branches of separate plants subjected to 48 h
submergence were randomly collected and were stained with
2% Evans blue (Gaff and Okong’o-Ogola, 1971) for 3min, and
then washed in water for 2 h before inspection. For anatomical
observation, plants were grown under the appropriate conditions
for 15 days. Then, five branches of separate plants were randomly
collected and used for paraffin sectioning and observation using
a light microscope in each treatment.

RNA-Seq Analysis of the Genome-wide
Transcription Dynamics of A. philoxeroides
in Response to Changing Hydrological
Conditions
Transcriptome sequencing and de novo assembly were used to
create a reference sequence resource for A. philoxeroides. After 1
month of treatment, tender shoots, mature leaves, young stems,
and mature stems were harvested from plants in the pond and
upland treatment groups. Five replicates from separate plants
were collected for each tissue and treatment. All samples were
stored in RNAlater (Ambion) until use. Total RNA was isolated
using TRIzol Reagent (Invitrogen), following the manufacturer’s
protocol. The quality and quantity of obtained RNA were
evaluated on a Bioanalyzer 2100 (Agilent Technologies). To
obtain comprehensive data on expressed gene sequences, RNA
samples from both treatments and four separate tissues of five
replicates were pooled and used for library construction.

cDNA library construction and Illumina pair-end sequencing
were performed at Beijing Genomics Institute (BGI), Shenzhen,
China (http://www.genomics.cn/index.php) according to
instructions provided by Illumina Inc. The sequence data
were deposited in the US National Center for Biotechnology
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Information (NCBI) Sequence Read Archive (SRA, http://
www.ncbi.nlm.nih.gov/Traces/sra; Wheeler et al., 2008) under
accession number SRP044887.

De novo transcriptome assembly was performed using
SOAPdenovo v1.04 with default settings (Li et al., 2010). The
BLASTx program was used to align the assembled unigenes
against the NCBI non-redundant protein (Nr) database (http://
www.ncbi.nlm.nih.gov) and the Arabidopsis protein database
at The Arabidopsis Information Resource (TAIR, http://www.
arabidopsis.org) with an E-value threshold of 10−10 at a 30%
identity. Functional annotation by Gene Ontology (GO, http://
www.geneontology.org) terms were obtained using the Blast2GO
program (Conesa et al., 2005). In addition, we obtainedmetabolic
pathway annotations for each hit by searching against the
Kyoto Encyclopedia of Genes and Genomes (KEGG, http://www.
genome.jp/kegg) pathway database (Ogata et al., 1999) using the
BLASTx program with an E-value cutoff of 10−10.

To establish a temporal map of gene expression in A.
philoxeroides, stem internode tissues were harvested at 0, 1, 3, 6,
12, 24, 48, 120, and 288 h from the pond and upland treatments.
Seven replicates from separate plants were collected for each
time point and treatment. The internodes were selected for
sampling because they exhibit significant phenotypic plasticity
under different water conditions with respect to multiple traits
including pith cavity size and internode length (Gao et al., 2010).
Total RNA was isolated using TRIzol Reagent (Invitrogen).
RNAs of the seven replicates for each sample were pooled and
used for library construction. Differential single-ended gene
expression libraries were constructed using TruSeq RNA Sample
Preparation Kit (Illumina) according to the manufacturer’s
instructions and sequenced using an IlluminaHiSeq 2000 system.
The sequence data are available at the NCBI SRA with the
accession number SRP044889.

After Illumina sequencing, the raw reads were processed to
remove adaptors, low-quality reads and reads with unknown
bases. The remaining high quality reads (clean reads) for each
sample were separately aligned to our reference transcriptome
using SOAPaligner/soap2 (Li et al., 2009); 1 bp mismatches were
allowed. Gene expression levels were calculated from the number
of uniquely aligned clean reads and then normalized into units of
Reads Per Kilobase per Million reads mapped (RPKM;Mortazavi
et al., 2008). A previously described method (Audic and Claverie,
1997) was used to identify differentially expressed genes. The
false discovery rate (FDR) control method was adopted to correct
P-values in multiple hypothesis tests. Fold changes in gene
expression were determined from RPKM ratios. A gene was
considered to be differentially expressed if it had an FDR≤ 0.001
and the absolute value of log2Ratio≥ 1.

Differentially expressed genes were clustered and visualized
using the Self-Organizing Map (SOM) algorithm (Kohonen,
1982) based on the similarity of expression patterns. SOM
clustering was initially applied to histogram-normalized
log2Ratio data. Seven thousand eight hundred and five
differentially expressed genes were assigned to 442 hexagonal
SOM units. Differentially expressed genes sharing similar
expression patterns were assigned to the same hexagonal
SOM unit, and the hexagonal SOM units with similar average

expression patterns were adjacent to each other in the component
planes. The resulting hexagonal SOM units were then grouped
by k-means clustering (k = 11) in order to identify SOM regions
corresponding to coherent expression patterns. More coherent
hexagonal SOM units were identified by applying a Euclidian
distance coefficient threshold of 0.3 and then generated SOM
clusters. Finally, based on the median expression pattern of each
SOM cluster, which was calculated from the median values of
log2Ratio of all genes at each time point, the best-matched 50%
of all genes within each SOM cluster were plotted to visualize
gene expression variation patterns. GO enrichment analysis was
performed on the gene groups obtained by SOM clustering using
the R Bioconductor topGO package with default arguments
(Gentleman et al., 2004; Alexa et al., 2006). Fisher’s exact test was
used to determine significance of enrichment.

To validate the reliability of the gene expression data
obtained by RNA-Seq, the expression levels of genes of interest
were measured by real-time quantitative reverse transcription
polymerase chain reaction (qRT-PCR) under pond and upland
conditions at different time points. First strand cDNA was
synthesized using the PrimeScript RT (Perfect Real Time) kit
(TAKARA). The correctness of the gene sequences obtained from
the reference transcriptome was verified by reverse transcription
PCR using gene-specific primers, followed by TA cloning using
PMD19-T vector kit (TAKARA) and sequencing. qRT-PCR was
performed on a Roche Real-time PCR System (LightCycler
480) using SYBR Green PCR Master Mix (TAKARA). Three
independent biological replicates were performed for each
reaction. The gene-specific primers used for reverse transcription
PCR and qRT-PCR (Supplementary Table 1) were designed using
PRIMERS3 (Koressaar and Remm, 2007; Untergasser et al.,
2012). The Illumina sequencing data revealed a stably expressed
gene homologous to Arabidopsis ubiquitin-conjugating enzyme
10 (UBC10); this gene was used as internal reference. Relative
expression levels of target genes were calculated using the 2−11Ct

method (Livak and Schmittgen, 2001).

Experimental Validation and Comparative
Analysis between A. philoxeroides and A.

pungens
Different methods were used to verify the key molecular and
cellular processes revealed by gene expression analysis that
underpin the plastic phenotypes ofA. philoxeroides. Comparative
analyses betweenA. philoxeroides andA. pungenswere conducted
to detect molecular determinants potentially responsible for
variation in plasticity between two species.

To evaluate degrees of phenotypic variance via plasticity to
different water availability in A. philoxeroides and A. pungens,
plants of both species were subjected to pond and upland
treatments for 15 days before determining the stem internode
elongation length. The measurement was conducted randomly
on 15 branches from separate plants for each treatment and
species.

To verify the role of endogenous hormones in mediating
plastic gene expression and phenotypes cued by the external
environment, treatments with exogenous ethylene and
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gibberellin (GA) and their inhibitors were carried out in
common garden experiments. The ethylene treatment was
performed by placing the potted plants in closed chambers
with atmosphere containing 10 ppm ethylene under the upland
condition, three plants per chamber. In the case of GA treatment
under the upland condition, the potted plants were treated
with GA3 aqueous solutions at a concentration of 10µM.
Plants were treated by leaf spraying and root watering once a
day. Submerged GA-treated plants were flooded in 10µM of
GA3. In addition, separate groups of plants were pretreated
with the ethylene perception inhibitor 1-MCP (10 ppm) or
the GA biosynthesis inhibitor uniconazole (1.5µM) for 4 days
before the experiments. Plants of both species were subjected
to each treatment for 10 days before determining the internode
elongation length, the measurement was conducted randomly on
15 branches from separate plants for each treatment and species.
For both species, stem internode tissues were collected at 6, 24,
48, and 72 h from the ethylene, GA, pond and upland treatments
for RNA extraction. For each species, six replicates from separate
plants were collected for each time point and treatment.

To monitor the changing trend in cellular osmotic potential
under submergence in both species, cell saps of submerged plants
were collected from stem segments at 0, 1, 3, 6, 9, and 12 h of
the pond treatment. Osmotic properties were determined using
a PSYPRO system (Wescor). Eight branches from separate plants
of each species were randomly collected for each time point for
measuring osmotic potential. Meanwhile, stem internode tissues
were collected for both species at 1, 3, 6, 9, and 12 h of the pond
and upland treatments for RNA extraction. Six replicates from
separate plants were collected for each time point and treatment.

The expression levels of genes encoding α-expansins and
three genes homologous to Arabidopsis ESKIMO 1 (ESK1,
AT3G55990), cellulose synthase A8 (CESA8, AT4G18780) and
methionine synthase 1 (MS1, AT5G17920), respectively, were
analyzed by qRT-PCR in both species. The A. pungens sequences
of these genes were obtained by reverse transcription PCR
using the primers designed based on the sequences of A.

philoxeroides (Supplementary Table 1). PCR products were
cloned using the PMD19-T vector kit (TAKARA). Ten clones
were randomly selected and sequenced for each PCR product.
Three independent biological replicates were performed for each
qRT-PCR reaction. The expansin genes are downstream targets of
the signal transduction pathway that induce cell wall loosening
and ultimately facilitate elongation (Cosgrove, 2000; Lee et al.,
2001). Arabidopsis ESK1, CESA8, and MS1 have been predicted
to be involved in osmotic stress response (Bohnert and Jensen,
1996; Narita et al., 2004; Chen et al., 2005; Bouchabke-Coussa
et al., 2008).

RESULTS

Phenotypically Plastic Variation of A.
philoxeroides under Different Treatments
Growth in the pond condition promoted rapid elongation of
stem internodes in A. philoxeroides (Figure 1A). The internode
cells were clearly wider (based on transverse sections) and longer
(based on longitudinal sections) for plants grown in the pond
condition than those in the upland condition (Supplementary
Figure 1). In addition, A. philoxeroides constitutively forms
gas spaces in its stems that are known as pith cavity. Growth
under pond conditions caused further development of the pith
cavity (Figure 1B). Evans blue staining indicated the formation
of lysigenous aerenchyma during the extension of pith cavity
(Supplementary Figure 2). The extent of cell death increased after
48 h of growth in the pond condition (Supplementary Figure 2).

De novo Assembly and Annotation of A.
philoxeroides Transcriptome
De novo transcriptome assembly using ∼55.1 million clean
reads generated 144,082 unigenes (Supplementary Table
2). Of them, 10,242 were greater than 1000 bp in length
(Supplementary Table 3). 39,055 (27.11%) showed significant
similarity to known proteins in the NCBI Nr database and

A B

FIGURE 1 | Phenotypic variation of Alternanthera philoxeroides under upland and pond conditions. (A) Variation trends in stem internode elongation. (B)

Variation trends in stem pith cavity enlargement. Quoted values are means + s.d., n = 10.
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the TAIR database. 35,890 unigenes were assigned to 96 GO

categories (Supplementary Figure 3). KEGG pathway analysis
showed that 34,400 (23.88%) unigenes showed significant

similarity to the known proteins in the KEGG database, and

16,107 could be mapped to 125 pathways (Supplementary
Table 4).

Expression Profiling of A. philoxeroides in
Contrasting Hydrological Conditions
Temporal patterns of gene expression in A. philoxeroides
grown in contrasting hydrological conditions were obtained by
time series transcriptome analyses using RNA-Seq. Seventeen
independent cDNA libraries were generated and sequenced.

A

B

FIGURE 2 | Gene expression of Alternanthera philoxeroides in contrasting hydrological habitats. (A) Number of unigenes expressed at different time points

under the pond and upland treatments. (B) Genes exhibiting differential expression between the pond and upland treatments at different time points. Bars pointing up

and down indicate the number of genes whose expression was up- or down-regulated in the pond treatment relative to the upland treatment, respectively. Fold

changes in expression are color-coded.
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A total of 123.12 million single-end clean reads of 49 bp
in length were obtained. On average, 3.95 million reads per
library were aligned to unique location in our A. philoxeroides
reference transcriptome (Supplementary Table 5). In total,
134,784 (93.54%) unigenes with at least one uniquely mapped
read were detected in at least one sample. To minimize false
positives for expressed genes, at least two uniquely mapped
reads were required for detectable expression of a given
unigene. The number of expressed unigenes for different time
points and treatments is shown in Figure 2A. In total, 112,320
(77.96%) unigenes were expressed in at least one sample, and
the average number of expressed unigenes per sample was
65,991. By comparing the gene expression profiles for the
pond and upland treatments at each time point, we identified
7805 differentially expressed genes, including 1589 genes whose
intensity of expression differed more than 10-fold (Figure 2B,
Supplementary Table 6). In addition, there were 1266 genes
that exhibited differential expression within 1 h of the start of
treatment (Figure 2B). The expression profiling data obtained by
RNA-Seq was verified by qRT-PCR. The transcript abundances of

17 genes of interest measured by RNA-Seq at different time points
of the treatments showed a significant correlation with the qRT-
PCR measurements (R = 0.893, P = 5.04E-20; Supplementary
Figure 4).

Self-Organizing Maps (SOM) were used to identify co-
regulated genes among the 7805 differentially expressed genes
(Figure 3A). Eleven clusters of genes that share similar
expression patterns were identified (Figure 3B). Figure 3C

shows the temporal patterns of expression of 11 clusters.
GO enrichment was performed to determine whether the co-
regulated genes in each cluster were significantly associated with
a specific biological process, cellular component or molecular
function (Figure 4, Supplementary Figure 5, and Supplementary
Table 6).

Cluster 2 (CS2) contained genes exhibiting sustained
induction under the pond treatment. Their up-regulation began
within 3 or 6 h and persisted throughout the 288 h experimental
period. This cluster was enriched in genes involved in translation
(Fisher P-value 1.00E-30), ribosome biogenesis (1.00E-30), RNA
methylation (1.00E-30), and various organic substance metabolic

A

C

B

FIGURE 3 | Temporal patterns of gene expression in Alternanthera philoxeroides in contrasting hydrological habitats. (A) Component planes of a

Self-Organizing Maps (SOM) fitted to the treatment time point data set. Each component plane shows histogram-normalized variation in gene expression [log2
(pond/upland)] at one time point, using a color gradient from blue to red to indicate up- and down-regulation (see color bar). (B) Eleven robust clusters (CS1–CS11)

were identified; the separate clusters are color-coded. (C) Temporal expression profiles for the 11 clusters are plotted based on the 50% of best-fitting genes in each.

Time points are plotted on the X-axis while the Y-axis indicates the value of log2 (pond/upland).
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FIGURE 4 | Gene Ontology (GO) enrichment amongst Alternanthera philoxeroides differentially expressed genes in contrasting hydrological habitats.

This plot shows enriched GO terms (Fisher P < 0.01) in co-regulated groups: cluster 2 (CS2), CS3, CS4, and CS8 shown in the Figure 3. Supplementary Figure 5

shows enriched GO terms in all 11 clusters. Only the biological processes are showed.
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processes, such as the pyrimidine ribonucleotide biosynthetic
process (6.10E-13), the sterol biosynthetic process (2.40E-12),
the isopentenyl diphosphate biosynthetic process (1.40E-06),
and the purine nucleotide biosynthetic process (1.30E-05). CS2
was also enriched in genes associated with response to gibberellin
stimulus (0.001) and cell wall modification (1.30E-10), including
genes essential for cell wall loosening, such as expansin genes.
In addition, CS2 had an overrepresentation of transport
associated genes, including genes involved in urea transport
(1.10E-08), hydrogen peroxide transmembrane transport
(8.00E-05), and water transport (0.023). Notably, genes encoding
flavin-dependent monooxygenases (FMO), whose transcripts
accumulation has been identified as a marker for programmed
cell death (Olszak et al., 2006), were also sustainedly up-regulated
under the pond condition.

The genes in CS3 and CS4 exhibited strong induction
beginning 1 h after the start of pond treatment, but their
level of induction then decreased steadily and returned to
the original levels. The genes in CS4 showed a faster decline
in expression levels than those in CS3. Both CS3 and CS4
were enriched in genes associated phytohormone signaling
pathways, especially for ethylene mediated signaling, such as
group VII ETHYLENE RESPONSE FACTOR (ERF; homolog
of Arabidopsis RAP2.2), ETHYLENE RESPONSE (ETR), and
ETHYLENE INSENSITIVE (EIN). CS4 included a gene encoding
the gibberellin receptor, GIBBERELLIN INSENSITIVE DWARF
(GID). CS3 also included genes encode proteins related to
calcium-mediated signaling (3.40E-06). Transcripts annotated
as transcription factor and kinase/phosphatase genes were
remarkably overrepresented in both clusters. About 8.14 and
11.69% of the co-regulated mRNAs in CS3 encoded transcription
factors and kinases/phosphatase, respectively. The corresponding
ratios in CS4 were 10.96 and 9.59%, respectively.

The genes in CS6 and CS7 were mostly down-regulated in
the pond treatment. The genes in CS7 were transiently up-
regulated at the start of the pond treatment but then exhibited
sustained down-regulation. This cluster was enriched in genes
associated with response to xenobiotic stimulus (6.40E-04),
induced systemic resistance—jasmonic acid mediated signaling
pathway (8.20E-04), systemic acquired resistance—salicylic acid
mediated signaling pathway (2.08E-03), defense response to
fungus (4.73E-03), response to insect (7.93E-03), response
to bacterium (8.48E-03), and vacuolar protein processing
(9.35E-03).

The genes of CS8 exhibited a significant “up-down” pattern
of expression. The expression levels of CS8 genes peaked at
3 h of the pond treatment and dropping quickly thereafter.
This cluster was significantly enriched in genes associated
with several processes involved in cell wall strengthening,
including the glucuronoxylan metabolic process (1.00E-28),
the xylan biosynthetic process (1.10E-28), the glucuronoxylan
biosynthetic process (2.10E-20), the lignin biosynthetic process
(7.80E-11), the lignin biosynthetic process (8.00E-07), the
cellulose biosynthetic process (0.005), secondary cell wall
biogenesis (9.10E-26), cell wall thickening (5.60E-21), and xylem
development (8.50E-08). CS8 was also enriched in genes linked
to osmotic stress responses and osmotic solute accumulation,

including response to water deprivation (1.60E-05), response
to osmotic stress (3.30E-04), establishment or maintenance of
transmembrane electrochemical gradient (1.20E-04), polyamine
catabolic process (2.50E-05), glutamate biosynthetic process
(1.60E-04), cellular modified amino acid biosynthetic process
(2.40E-04), proteolysis (4.50E-04), and sucrose biosynthetic
process (0.001).

Diverse Gene Categories Showing
Transcriptional Responses to
Environmental Change in A. philoxeroides
Cell Wall Modification-related Genes
Cell volume expansion during elongation growth requires
the loosening of cell walls. Many enzymes are responsible
for this process, including expansins (EXPs), xyloglucan
endotransglucosylase/hydrolases (XTHs), cellulases, and
pectinesterases (Fry et al., 1992; Catoire et al., 1998; Rose and
Bennett, 1999; Darley et al., 2001; Rose et al., 2002; Kende et al.,
2004; Lee et al., 2010). Many genes encoding cell wall-loosening
enzymes exhibited sustained induction under the pond treatment
(Supplementary Figure 6), such as all 12 differentially expressed
genes encoding α-expansins (EXPAs), and 19 genes encoding
XTHs, two genes encoding pectinesterases, and four genes
encoding cellulases.

Aquaporin and Ion Pump Genes
Enlarging cells absorb large amounts of water via aquaporins.We
identified 22 differentially expressed genes encoding aquaporin
(Supplementary Figure 7). Notably, 14 of the 18 differentially
expressed genes encoding the plasmamembrane intrinsic protein
(PIP) and the tonoplast intrinsic protein (TIP) were significantly
up-regulated under pond condition. Cell enlargement growth
is typically accompanied by the transport of inorganic ions
via ion pumps. All four differentially expressed genes encoding
plasma membrane H+-ATPase were up-regulated under the
pond treatment (Supplementary Figure 8). In addition, one gene
encoding plastid membrane H+-ATPase, two genes encoding
vacuolar H+-PPase, and three genes encoding plasma membrane
Ca2+-ATPase were also identified as the up-regulated genes in
the stem internodes of A. philoxeroides under pond conditions
(Supplementary Figure 8).

Cell Death-related Genes
The expression of 68 genes implicated in cell death differed
significantly between two water habitats (Supplementary Figure
9). Many of these genes were associated with reactive oxygen
species (ROS) generation and metabolic pathway. Genes
encoding proteins involved in H2O2 generation exhibited
consistent or late up-regulation under pond conditions, such as
the aldehyde dehydrogenase and the VERNALIZATION5/VIN3-
like protein (Supplementary Figure 9). Three of the four
differentially expressed genes encoding catalases (CATs), which
catalyze the degradation of H2O2, were down-regulated under
pond conditions (Supplementary Figure 9). Genes encoding
FMOs, metacaspase and homologs of Arabidopsis MYB30 were
also found significantly up-regulated following submergence
(Supplementary Figure 9).
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Protein kinase, Protein Phosphatase, and

Transcription Factor
Three hundred and forty-seven genes encoding protein kinases
and sixty-three genes encoding protein phosphatases showed
different expression patterns in the pond and upland treatments
(Supplementary Figure 10 and Supplementary Table 7). In
addition, 332 genes encoding transcription factors were
differentially expressed in the two habitats. These transcription
factors spanned 28 major families (Supplementary Figure 11A).
Of them, the group VII ERF transcription factors have been
shown to be associated with the elongation growth and adaptive
anaerobic responses in submerged plants (Nakano et al., 2006;
Hattori et al., 2009). Many ERF genes were strongly up-regulated
in A. philoxeroides under pond conditions, including the
group VII ERFs Contig23336 and ACluster3868_Consensus1
(Supplementary Figures 11B,C and Supplementary Table 8).

Calcium and Hormone Mediated Signaling-related

Genes
One hundred and eight genes associated with calcium-mediated
signaling exhibited different mRNA accumulation patterns in
the two studied water habitats (Supplementary Figure 12). Of
which, 70 were up-regulated under pond conditions, including
genes encoding calmodulins (CAMs), CaM-like proteins
(CMLs), calcineurin B-like proteins (CBLs), calmodulin-
binding proteins, calcium-binding domain-containing proteins,
calcium/calmodulin-dependent protein kinases, CBL-interacting
protein kinases, and cyclic nucleotide-gated channels (CNGCs).
We also observed significant transcriptional regulation of
genes involved in multiple phytohormone-mediated signaling
pathways (Supplementary Figure 13). Genes associated with
ethylene signaling pathways were among those most strongly
induced by the pond treatment. Of the 53 differentially expressed
genes implicated in ethylene signaling, 26 were induced within
1 h of the start of the pond treatment. Twenty-three of the forty
differentially expressed genes implicated in gibberellin signaling
exhibited a late and sustained induction beginning 3 or 6 h after
the start of pond treatment. Of 98 differentially expressed genes
associated with abscisic acid signaling, 72 were significantly
down-regulated under pond conditions.

Comparative Analysis of Plastic Responses
between A. philoxeroides and A. pungens
Transcriptional profiling showed that genes involved in
biosynthesis and signaling of ethylene and GA were highly
induced under the pond treatment (Supplementary Figure
13). To verify their roles in mediating ecologically-relevant
phenotypic responses, treatments with exogenous ethylene and
GA and their inhibitors were carried out in common garden
experiments. The results showed that both ethylene and GA
induced appreciable internode elongation in A. philoxeroides,
similar to that induced by submergence (Figures 5A–C).
Meanwhile, the ethylene perception inhibitor 1-MCP and the
GA biosynthesis inhibitor uniconazole both strongly suppressed
internode elongation under pond conditions (Figures 5B,C),
suggesting the appreciable internode elongation under pond
conditions in A. philoxeroides required ethylene and GA

perception. In contrast, the terricolous A. pungens exhibited a
much less degree of internode elongation than A. philoxeroides
under the pond treatment (Figure 5A). Likewise, the promotion
by application of ethylene and GA was limited to internode
elongation in A. pungens (Figures 5B,C).

Seven α-expansin genes were isolated from A. philoxeroides
(AphEXPAs), and eight from A. pungens (ApuEXPAs;
Supplementary Figure 14). The transcription levels of A.
philoxeroides EXPAs (AphEXPA1 to AphEXPA6) increased
markedly under pond conditions exceptAphEXPA7 (Figure 5D).
Conversely, four of the eight A. pungens EXPAs (ApuEXPA1,
ApuEXPA2, ApuEXPA4, ApuEXPA8) did not show any induction
following submergence; three (ApuEXPA3, ApuEXPA6,
ApuEXPA7) exhibited slight but transient up-regulation
and were then down-regulated once more; and one (ApuEXPA5)
exhibited a weakly fluctuating expression pattern (Figure 5E).
Both ethylene and GA treatments caused sustained increases in
transcript abundance of six EXPAs (AphEXPA1 to AphEXPA6)
in A. philoxeroides (Figure 5D). However, none of the EXPAs of
A. pungens exhibited sustained induction in response to either
ethylene or GA treatment (Figure 5E). Overall, the patterns
of EXPA expression induced by ethylene and GA treatment
were very similar to those observed following submergence, and
correlated with the degree of elongation growth of internodes
(Figures 5B–E).

The induction of diverse osmostress response genes were
detected at the early stage of the pond treatment (CS8; Figure 4).
During the first 3 h of the pond treatment, the osmotic potential
of the cell sap varied in an “up-down” fashion in both
species (Figure 6A). Three genes homologous to Arabidopsis
ESK1, CESA8, and MS1, respectively, which were predicted
to be involved in osmotic stress response, were cloned and
experimentally verified by qRT-PCR. The results showed that
in both species, these genes exhibited an “up-down” expression
pattern: the levels of their mRNAs increased during the first
3 h of the pond treatment and then fell rapidly thereafter
(Figure 6B). This pattern was consistent with the variation
of the cellular osmotic potential during the early hours of
the pond treatment in both A. philoxeroides and A. pungens
(Figure 6A). However, the two species subsequently exhibited
very different trends in osmotic potential even though the
expression patterns of related genes remained very similar. A.
philoxeroides seemed able to exert control over the osmotic
potential fluctuation and maintain a constant cellular osmotic
potential during prolonged submergence. In contrast, the
osmotic potential of A. pungens exhibited a sustained increase
(Figure 6A).

DISCUSSION

Time course gene expression profiling revealed the genome
wide transcriptional responses of A. philoxeroides to altered
hydrological conditions. Identification of clusters of genes whose
expression levels simultaneously rise and fall throughout a time
course provided insights into themolecular and cellular processes
underlying the development of plastic traits in A. philoxeroides.
Putatively co-regulated biological processes and candidate genes
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FIGURE 5 | Variations between A. philoxeroides and A. pungens. (A) Variation in internode elongation growth between two species. Quoted values are means +

s.d., n = 15. Plants were subjected to treatments for 15 days. (B) Varied responses to the ethylene treatment. Quoted values are means + s.d., n = 15. (C) Varied

responses to the GA treatment. Quoted values are means + s.d., n = 15. Different lowercase letters on the columns in panels (A–C) indicate statistically significant

differences among treatments in the same species, as judged by t-test (P < 0.05). (D, E) Accumulation patterns of α-expansin (EXPA) transcripts in A. philoxeroides

(D) and A. pungens (E) under the pond, ethylene and GA treatments. Relative expression levels were calculated as log2(treatment/upland control). Quoted values are

means + s.d., n = 3. The corresponding unigene name in the reference transcriptome library of A. philoxeroides is given in parentheses.
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A

B

FIGURE 6 | Variation in cellular osmotic potential following

submergence in A. philoxeroides and A. pungens. (A) Trends in the cell

sap osmotic potential during the pond treatment in both species. Quoted

values are means + s.d., n = 8. (B) Expression patterns of genes involved in

osmotic stress responses during the pond treatment. Relative expression

levels were calculated as log2(pond/upland). Quoted values are means + s.d.,

n = 3. The names of Arabidopsis homologous genes were shown in

parentheses: ESK1, ESKIMO 1; CESA8, cellulose synthase A8; MS1,

methionine synthase 1.

potentially responsible for the plasticity can be identified based
on analyses of reaction norms of gene expression.

“Just-in-Time” Strengthening followed by
Sustained Loosening and Elongation
Growth of Cell Wall
Around 500 genes were transiently up-regulated early in the pond
treatment but returned quickly (CS8; Figure 3C). Within this
cluster, genes linked to secondary wall development and lignin
biosynthesis were significantly enriched (Figure 4). The strong
coordinated regulation of these genes suggested a “Just-in-time”
response of cell wall to submergence. Cell wall thickening and
depositions of lignin and suberin have been observed in the

submerged roots of many species (Seago et al., 1999; Visser et al.,
2000; Vasellati et al., 2001; Ryser et al., 2011). It has been reported
that, upon flooding, plants can develop a barrier in roots by
depositing new materials in cell walls to prevent radial loss of O2

to the soil (Colmer, 2003; Garthwaite et al., 2006; Shiono et al.,
2011). However, such a barrier has never been reported in shoots.
It is unclear whether the induced expression of the genes in CS8
is associated with the formation of the inducible barrier in the
submerged shoots of A. philoxeroides.

Consistent with early up regulation of cell wall strengthening
gene, we also observed increased expression of genes linked to
synthesis of organic osmotic solutes in the first 3 h of the pond
treatment (CS8; Figure 4). Moreover, the transient up-regulation
of genes related to cell wall strengthening and osmotic solute
accumulation coincided with the sharp increase and subsequent
slight decrease of the cellular osmotic potential (Figure 6A),
suggesting that these genesmay jointly contribute to the observed
adjustment and stabilization of osmotic potential. The nature
of the relationship between cell wall strengthening and osmotic
adjustment is unclear. It is notable, however, that the plant cell
wall is a highly dynamic structure and serves many functions
(Dzierzynska, 2006; Geitmann, 2006; Szymanski and Cosgrove,
2009). One of the critical functions is to prevent cell swelling
because of osmotic pressure. The tensile strength of the cell
wall allows plant cells to build up turgor pressure within cells,
to equalize the osmotic pressure and prevent the further water
influx. Normally, the cell wall is thickened and strengthened
after cell elongation ceases. However, early activation of cell
wall strengthening-related gene transcription can be elicited to
prevent an unlimited increase in the cellular osmotic potential
due to an oxygen deficit by increasing the pressure the cell wall
exerts on the protoplast.

During the plastic development of A. philoxeroides, the cell
wall system performs seemingly contradictory roles. On the one
hand, it must be rigid enough to allow turgor pressure to build
up, while on the other, it needs to be loosened in some way
to permit cell enlargement during growth. Unlike the impulse
patterns of cell wall-strengthening genes, genes encoding cell
wall-loosening enzyme EXPAs, exhibited sustained up-regulation
in A. philoxeroides following the pond treatment (CS2; Figure 4,
Supplementary Figure 6). It has been suggested that expansins
from the α-expansin subfamily are the most active cell wall
loosening enzymes in dicots (Cosgrove, 2000; Lee et al., 2001).
The enhanced expression of EXPAs under pond conditions
agreed well with the increased growth of submerged internodes
in A. philoxeroides.

Active Elongation Growth Accompanied by
Programmed Cell Death
A. philoxeroides exhibited a remarkable plasticity in internode
elongation, which enables it to escape submergence and survive
in pond habitats (Geng et al., 2007; Gao et al., 2010). Clustered
gene expression profiles pointed to the joint contribution of
groups of genes to the relevant cellular processes. Cell expansion
during growth requires both cell wall loosening and rapid
water influxes (Ooume et al., 2009). EXPAs involved in cell-
wall loosening were strongly up-regulated under pond conditions
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(CS2; Figure 4, Supplementary Figure 6). PIP and TIP genes were
also up-regulated following submergence (CS2; Supplementary
Table 6 and Supplementary Figure 7). Previous studies have
shown that PIPs are associated with elongation growth in higher
plants by facilitating growth-associated water uptake into cells
(O’Brien et al., 2002; Tyerman et al., 2002; Hachez et al., 2008;
Muto et al., 2011). It has also been demonstrated that TIP
expression directly promotes increases in vacuolar volume, which
is tightly correlated with cell expansion (Ludevid et al., 1992;
Chaumont et al., 1998; Reisen et al., 2003; Okubo-Kurihara et al.,
2009). In addition, the accelerated water influx via PIPs and TIPs
indirectly affects the accumulation of O2, CO2, micronutrients,
and osmotic substances in the cell and thereby supplies the
materials required for rapid plant growth (Tyerman et al., 2002;
Reisen et al., 2003; Ma et al., 2004; Katsuhara and Hanba, 2008).
Plasma membrane H+-ATPase genes were also up-regulated
in the internodes of A. philoxeroides under pond conditions
(Supplementary Figure 8), thatmight contribute to cell expansion
during internode elongation in A. philoxeroides by generating a
proton electrochemical gradient to provide a driving force for
active transport of ions, metabolites and water (Fricke et al., 1997;
Fricke and Flowers, 1998; Sze et al., 1999), or to facilitate the
activity of EXPs and XTHs by providing the acidic pH (Frías et al.,
1996; Shieh and Cosgrove, 1998).

In company with the induced high-level expression of genes
related to elongation growth, genes associated with calcium-
signaling and ROSmetabolism, which involved in cell death, were
also significantly differentially expressed between two habitats.
Submergence induced the expression of H2O2 biosynthesis genes
while reduced the expression of CAT genes (Supplementary
Figure 9). The coordinated gene expression changes related
to hydrogen peroxide metabolism can lead to greater H2O2

accumulation, which may subsequently activate cell death
and lysis. Genes encoding FMOs, metacaspase and homologs
of Arabidopsis MYB30 were also strongly induced following
submergence (Supplementary Figure 9). Given that all of these
genes are known to promote programmed cell death (Feys et al.,
2001; Suarez et al., 2004; Olszak et al., 2006), their simultaneous
up-regulation strongly implies that they all contributed to the
formation of lysigenous aerenchyma during the extension of pith
cavity in submerged A. philoxeroides shoots. The enlarged cavity
may facilitate the efficient movement of gases (such as O2, CO2,
and ethylene) within the plant, which is crucial for survival while
submerged (Carr et al., 1995; Tao et al., 2009).

Integration and Coordination of Enteral
Cues and Endogenous Signals in
Regulating Plastic Development
The pond treatment led to increased internode elongation in A.
philoxeroides. Concomitantly, altered expressions of genes linked
to hormone and calcium-mediated signaling were detected
between treatments (Supplementary Figures 12, 13). Ethylene
has been long recognized as an essential signaling molecule for
triggering downstream signaling pathways in response to oxygen
deprivation, especially for regulating aerenchyma formation and
elongation growth during long-term adaptation (He et al., 1996;

Drew et al., 2000; Hattori et al., 2009). In consistent with the
postulated role of ethylene as an upstream trigger for target
gene expression, many genes implicated in ethylene signaling
were induced within 1 h under the pond condition with their
expression gradually returning to basal levels (CS4; Figure 4,
Supplementary Figure 13). Genes implicated in gibberellin
signaling exhibited a late and sustained induction pattern under
the pond treatment, which has been reported to be essential
for elongation growth in response to anoxia (Rijnders et al.,
1997; Hattori et al., 2009). The enhanced elongation observed
in submerged plants could be reproduced by treatment with
ethylene or GA (Figures 5B,C).

The co-regulated genes exhibiting strong induction at the
early stage of the pond treatment were also significantly enriched
in genes related to calcium-mediated signaling (CS3; Figure 4).
Ca2+ is widely recognized as a second messenger in signal
transduction pathways associated with response to anoxia (Tsuji
et al., 2000; Baxter-Burrell et al., 2002), and proposed to be
essential promoter of apoptosis in aerenchyma development (He
et al., 1996; Drew et al., 2000; Rajhi et al., 2011).

To date, the actual signals generated by submergence and
the mechanisms by which the environmental cues are sensed,
integrated and transformed into a plastic response remain
elusive. It has been proposed that ROS changes, pH changes,
metabolic changes, and changes in the availability of nutrients
could serve as signals (Dat et al., 2004; Stamm and Kumar,
2010). Decline in O2 level due to flooding is majorly responsible
for triggering the plant response (Dat et al., 2004; Voesenek
and Sasidharan, 2013). In fact, the first event that takes place
while flooding is the increased presence of H2O, which would
detrimentally affect the water flux, sap osmotic potential, and
turgor pressure of submerged organs, as shown in this study
(Figure 6A). It has been revealed that cells of bacteria and yeast
use several cellular indicators of water availability (e.g., changes in
turgor and changes in cell wall–plasma membrane connections)
as potential signaling agents (Dat et al., 2004). A transmembrane
hybrid-type histidine kinase has also been found in Arabidopsis
to function as a putative osmosensor (Urao et al., 1999).
Such osmosensors could rapidly perceive and transmit changes
in cell water homeostasis and trigger an adaptive response.
Therefore, although plants may not directly sense changes in
surrounding H2O levels, they may perceive signals of flooding
through changes in cellular water homeostasis. In this way,
the physical stress (flooding) is converted into a physiological
signal, triggering a signaling cascade which includes a network
of hormones and other common secondary signaling molecules
and eventually leading to morphological changes.

Implications of Varied Plastic Responses in
A. philoxeroides and A. pungens
Plant survival and growth require the maintenance of an
appropriate cellular osmotic potential. The similar expression
patterns of three osmostress response genes and trends in the
cellular osmotic potential observed at the early stage of the pond
treatment in both A. philoxeroides and A. pungens (Figure 6)
suggest that Altemanthera species share some common pathways
for regulating cellular osmotic potential during the early “stress
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response” to submergence, which may be valuable for mitigating
the impact of sudden unexpected changes in habitat. However,
cellular osmotic adjustment during the early response to the pond
treatment may NOT be a “prerequisite” for the internode growth
plasticity.

Comparative analysis betweenA. philoxeroides andA. pungens
showed that submergence and ethylene and GA treatments could
induce significant internode elongation in A. philoxeroides but
not in A. pungens (Figures 5A–C). In addition, the expression of
EXPA genes exhibited a higher environmental-sensitive pattern
in A. philoxeroides than in A. pungens (Figures 5D,E). These
results indicate that the interspecific variation in plasticity
between A. philoxeroides and A. pungens is not due to
environmentally-mediated changes in hormone levels but to
variations in the type and relative abundance of different
signal transducers and receptors expressed in the target tissue.
To approach hormone-mediated plasticity in an ecologically
relevant context, it seems necessary to think beyond just
environmental alteration of hormone production, and begin
considering how environment conditions affect the network of
components that comprise a hormone signaling pathway (Lema
and Kitano, 2013).

CONCLUSIONS

Plants ofA. philoxeroides retained a high level of growth plasticity
for adapting to diverse habitats with varying water availability.
This adaptability was reliant on genome-wide transcriptional
plasticity in response to environmental fluctuations. Previous
conceptual and theoretical work predicted two kinds of
genetic mechanisms responsible for phenotypic plasticity: (i)
plasticity caused by shifts in the amount of transcripts from
environmentally sensitive loci and (ii) plasticity caused by
regulatory loci that exert environmentally dependent control
over structural gene expression (Schlichting and Pigliucci, 1993,
1995; Via et al., 1995; Nijhout, 1999). The phenotypically plastic
changes in A. philoxeroides seem to be under the control of
both types of genetic mechanisms, with multiple transcription
factor genes and genes related to ethylene and calcium signaling
being induced at the early stage of the pond treatment while
plenty of structural genes being up-regulated later or sustainably

up-regulated during the entire period of treatment. Monitoring
the change in expression patterns based on the clustering of
genes with similar expression patterns throughout time provided
the possibility for querying biological processes that range from
various responses of cells to external signals and identifying the
complete set of activated genes involved in a biological process.
Gene expression plasticity may have alleviated the constraints
by genetic impoverishment in A. philoxeroides, and promoted
its distribution across multiple ecological contexts, enhancing its
ecological breadth.
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