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Conifers, Ginkgo, cycads and gnetophytes comprise the four groups of extant
gymnosperms holding a unique position of sharing common ancestry with the
angiosperms. Comparative studies of gymnosperms and angiosperms are the key to
a better understanding of ancient seed plant morphologies, how they have shifted
over evolution to shape modern day species, and how the genes governing these
morphologies have evolved. However, conifers and other gymnosperms have been
notoriously difficult to study due to their long generation times, inaccessibility to genetic
experimentation and unavailable genome sequences. Now, with three draft genomes
from spruces and pines, rapid advances in next generation sequencing methods for
genome wide expression analyses, and enhanced methods for genetic transformation,
we are much better equipped to address a number of key evolutionary questions
relating to seed plant evolution. In this mini-review we highlight recent progress in
conifer developmental biology relevant to evo-devo questions. We discuss how genome
sequence data and novel techniques might allow us to explore genetic variation and
naturally occurring conifer mutants, approaches to reduce long generation times to allow
for genetic studies in conifers, and other potential upcoming research avenues utilizing
current and emergent techniques. Results from developmental studies of conifers and
other gymnosperms in comparison to those in angiosperms will provide information
to trace core molecular developmental control tool kits of ancestral seed plants, but
foremost they will greatly improve our understanding of the biology of conifers and other
gymnosperms in their own right.

Keywords: gymnosperms, plant developmental biology, plant evo-devo, next-generation sequencing, plant
transformation

CAN WE ESTABLISH A CONIFER MODEL SPECIES
FOR DEVELOPMENTAL STUDIES?
Conifers are of great ecological and economic importance; they dominate the forests of the
northern hemisphere, and comprise two thirds of extant gymnosperms (Wang and Ran, 2014).
Seed plants, constituting gymnosperms and angiosperms, evolved 300–350 million years ago, and
their appearance is defined by the evolution of the ovule. The subsequent evolution of seed plants
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FIGURE 1 | A simplified depiction of land plant phylogeny. The tree is
based on the comprehensive studies of seed plant phylogeny by Wickett
et al. (2014) and Ruhfel et al. (2014). Gymnosperm genera for which genome
and transcriptome sequence data are available are highlighted by⋆ and •
respectively. Genera in which transformation protocols have been established
are indicated by �. Gnetophytes are represented by a dashed line since their
position in the phylogenetic tree remains unresolved.

resulted in the elaboration of reproductive organ morphologies,
including the innovation of the flower and carpel in the
angiosperm lineage, but is also associated with, e.g., variations
in embryo morphologies and water and assimilate conducting
tissues (Taylor et al., 2009). To understand the evolution of novel
morphologies we need to put these traits into a phylogenetic
context. However, the deep branches of the seed plant phylogeny
have been notoriously difficult to resolve, and the relative position
of conifers, gnetophytes, cycads and Ginkgo, remains a focus for
research (Figure 1; Wang and Ran, 2014). Over the last decades
evolutionary developmental biology (evo-devo), has surfaced as
an approach adding to traditional systematic efforts. Evo-devo
studies rely on comparative analyses of the genetic mechanisms
underlying the development of certain morphological traits, as
exemplified by the evolution of reproductive structures in seed
plants, see Mathews and Kramer (2012).

Currently, we have extensive knowledge on developmental
genetic mechanisms mainly from a handful of angiosperm
model species, primarily Arabidopsis thaliana (Arabidopsis).
This is because ideal models typically are small, self-fertile,
have short generation times, small genomes sizes and are
amenable to genetic transformation (The Arabidopsis Genome
Initiative, 2000). Gymnosperms, on the other hand, comprise
long-lived perennial woody species with large population sizes,
high degree of heterozygosis, and huge genomes sizes, and
therefore lack model organism characteristics. The current

phylogenetically narrow focus on selected pines and spruces
has instead largely been the result of geo-economical decisions.
However, recent advances in molecular techniques have laid
the foundation for a knowledge leap toward revealing the
underlying genetic mechanisms controlling important traits
also in species that lack the typical characteristics of model
species.

NEXT GENERATION SEQUENCES AND
GENETIC TRANSFORMATION—CONIFER
DEVELOPMENTAL BIOLOGY STUDIES
MADE POSSIBLE
The development of next-generation sequencing (NGS)
techniques has surfaced as one of the most important
technological breakthrough in current biology (Wang et al.,
2009), making genomes and transcriptomes available from
both model and non-model species. For non-model plants,
such resources include draft sequences of the 20–30 Gigabase
genomes from Picea abies, P. glauca, and Pinus taeda (Figure 1;
Birol et al., 2013; Nystedt et al., 2013; Neale et al., 2014). These
initiatives revealed that although the genomes are huge, largely
owing to accumulation of long-terminal repeat transposable
elements, the numbers of protein-coding sequences are similar
to angiosperms. The draft conifer genome sequences and
accompanying transcriptome data can be found in dedicated,
constantly updated databases, aiming to help researchers navigate
this vast amount of data1,2. These data and corresponding
databases will serve as an essential foundation for future studies.

The development and improvement of single-cell “omics”
will probably drive the next advancement in genetic and
transcriptomic research (Junker and van Oudenaarden, 2014),
and, moreover, methods to retain positional information of
the cell (in situ “omics”) promise to shed light also on the
spatial regulation (Crosetto et al., 2015). Although technology
development in this area still is in its early days and in large
remains to be adapted to plants, this second avenue of NGS
techniques will open up for more fine-tuned systems biology
approaches, allowing computational and mathematical modeling
of, e.g., transcription factor and signaling pathways.

Functional studies are crucial to test hypotheses of biochemical
activity and forward genetic screens have therefore been
imperative in identifying novel key developmental regulators
in angiosperms. Previously, this relied on mapping using
recombinant mapping populations, but NGS now allows
sequencing of entire genomes, thus dramatically speeding up
cloning of the causal mutation in model systems, and potentially
making forward genetic screens possible in non-model systems
(Schneeberger, 2014). Techniques that allow for NGS of particular
genomic regions or transcribed loci, i.e., exome sequencing, may
also help to overcome problems of genome complexity and SNP
discovery in non-model systems (Neves et al., 2014).

Assessments of gene function require the generation ofmutants
or transgenes with altered gene activity, caused by knock-out,

1http://dendrome.ucdavis.edu/
2http://congenie.org/
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FIGURE 2 | Emerging tools for conifer functional studies: Embryogenic cultures and the rapid cycling P. abies acrocona mutant. (A) Schematic
representation of somatic embryogenesis in P. abies: Embryogenic cultures are routinely established from zygotic embryo explants via the addition of auxin and
cytokinin to culture media. Proliferating cultures consist of proembryogenic masses (PEMs), a mixture of densely cytoplasmic meristematic cells and large vacuolated
cells. Withdrawal of auxin and cytokinin stimulates differentiation of early somatic embryos (SE) from PEMs. Early somatic embryos consist of apically located
meristematic cells of the embryo proper, embryonal tube cells in the central region and a tier of terminally differentiated suspensor cells. Further embryo development
and maturation requires the addition of abscisic acid. During late embryogeny apical meristems are formed and the suspensor cells undergo programmed cell death.
Mature cotyledonary embryos are formed after 4–8 weeks on maturation medium. Image after Filonova et al. (2000). (B) Early cone setting in an inbred acrocona
plant after three growth cycles (1 year) (Uddenberg et al., 2013). (C) Massive cone production in an older inbred acrocona plant. (D) Acrocona vegetative branch
transitioning into female reproductive state. Needles gradually converts into bracts and ovuliferous scales appear in their axils. This transition is accompanied by the
onset of a number of putative key reproductive developmental regulators (Carlsbecker et al., 2013).

knock-down, or over-expression of specific loci. In species with
long life cycles such as gymnosperms genetic transformation
over seed generations is not possible. However, this can be
circumvented by utilizing somatic embryogenesis, in which
proliferating embryogenic tissue is transformed by direct DNA
delivery or via bacteria-mediated horizontal gene transfer. This
method has been employed to generate transgenic conifer tissues
for many years (Figure 2A; Tang and Newton, 2003). Some
conifer and gymnosperm species are more recalcitrant to genetic
transformation; however, the efficacy of transformation has
greatly improved, mainly by using hypervirulent Agrobacterium
strains and improved protocols, now facilitating the generation
of stably transformed plants from many conifer species (Levee
et al., 1997; Wenck et al., 1999; Klimaszewska et al., 2001; Le
et al., 2001; Alvarez and Ordás, 2013). The use of embryo explants
during transformation, followed by selective tissue culture and

plant regeneration, provide an alternative for recalcitrant species
(Tang et al., 2014).

CONIFER SOMATIC EMBRYOS ENABLE
FUNCTIONAL EVOLUTIONARY
DEVELOPMENTAL BIOLOGY
Somatic embryogenesis is used in certain conifer species as a
method for large-scale clonal propagation, facilitating long-term
storage of germplasm, and as a tool in breeding programs. This
technique also offers an efficient and versatile tool to study
the morphology and underlying molecular regulation of conifer
embryonal traits. Somatic embryo systems allow closer studies
of the establishment of the plant basal body plan, including
apical-basal specification, formation of the apical meristems
and patterning of the dermal, ground and procambial tissues
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(Smertenko and Bozhkov, 2014). Studies in Arabidopsis have
shown that these processes depend on distinct spatio-temporal
action of certain transcription factors and local biosynthesis and
polar transport of the plant hormone auxin (Ten Hove et al.,
2015). Studies on the effect of chemical inhibition of polar auxin
transport during somatic embryo development of P. abies show
increased levels of endogenous auxin, decreased programmed
cell death (PCD) activity and abnormal suspensor differentiation
during early stages of embryogenesis. Later stages treated with
the chemical display both basal and apical aberrations, including
fused cotyledons and unorganized meristems (Larsson et al.,
2007; Hakman et al., 2009), suggesting a conserved role for auxin
in basic embryo formation in seed plants. Comparative studies
of homologs to angiosperm key factors for embryo patterning
and polarity such asWUSCHEL-RELATEDHOMEOBOX (WOX)
genes and class I KNOTTED1-like homeobox (KNOX1) genes,
using transgenic conifer somatic embryos, suggest considerable
conservation but also functional divergence (Belmonte et al.,
2007; Zhu et al., 2014; Alvarez et al., 2015). Potentially, Less
biased methods such as global gene expression analyses during
both somatic and zygotic embryogenesis indicate a significant
overlap in transcript profiles of developmental regulators between
conifers and angiosperms, but also reveal many genes of unknown
function active during embryogenesis, emphasizing the need for
future comparative functional studies (Vestman et al., 2011; de
Vega-Bartol et al., 2013).

Interestingly, the first plant metacaspase involved in PCD was
originally discovered in P. abies. Functional studies suppressing
the type II metacaspase, mcII-Pa, in somatic embryos of P. abies
showed that it is an essential component of vacuolar cell death,
required for normal development and degradation of suspensors
during early embryogenesis (Suárez et al., 2004) and that it
acts via an autophagy-related pathway (Minina et al., 2013).
Further studies, initiated in P. abies have also demonstrated that
plant PCD share common genetic components with PCD in
animals and humans (Sundström et al., 2009). Hence, conifer
somatic embryogenesis provides an excellent system, not only
for comparative studies, but also to identify novel regulators of
general developmental processes.

GYMNOSPERM REPRODUCTIVE
DEVELOPMENT THROUGH A GENOMIC
LENS: ABC OR ONLY BC?
The evolution of the flower remains a major unresolved question
in biology, since transition forms have not been reliably identified
in the fossil record and extant gymnosperms are only distantly
related to the angiosperms (Frohlich and Chase, 2007). While
the angiosperms and gymnosperms are united by the feature
of producing ovules, their reproductive organs are distinct: In
contrast to the hermaphroditic angiosperm flower with the
stamens and carpels surrounded by a sterile perianth of sepals
and petals, the reproductive organs in gymnosperms are formed
from separate meristems. Furthermore, the gymnosperm organs
carrying the ovules have very distinct morphologies compared
to the angiosperm carpel, preventing reliable inferences of
organ homologies based on their morphology. However, despite

morphological diversity, evo-devo-studies show that molecular
mechanisms controlling the development of the reproductive
organs of angiosperms and gymnosperms are at least partially
conserved (Melzer et al., 2010; Mathews and Kramer, 2012).

The identities of the flower organs are based on conserved
key regulatory transcription factors, and were summarized in
the ABC-model: A-function specify sepals, A together with B
specifying petals, B and C specify stamens, whereas C alone
specifies the carpel (Coen and Meyerowitz, 1991). The ABC-
model was based on studies in Arabidopsis and has at least in
part, been shown valid for most angiosperms, although the A-
function have been assigned to floral meristem identity rather
than to sepal identity in some angiosperms (Litt and Irish, 2003).
Support for conserved molecular mechanisms for reproductive
organ identity determinations among the seed plants came with
the identification of putative orthologs to B- and C-genes in
several gymnosperm species, along with the finding that both
the B- and C-homologs are active specifically in developing male
cones (Mouradov et al., 1999; Sundström et al., 1999;Winter et al.,
1999) whereas C-function homologs also are active during the
formation of the ovule bearing organs of the female cones (Tandre
et al., 1995, 1998; Rutledge et al., 1998), leading to the hypothesis
that B and C together specifies male reproductive identity, and C
alone female reproductive identity in all seed plants.

Most gymnosperm female cones have a compound
architecture, with ovule-bearing structures subtended by
bracts, and neither female nor male cones have structures with
apparent homology to the sterile perianth (sepals and petals). In
line with this, PCR-based methods, aimed at identifying a broad
range of MADS-box genes, failed to identify gymnosperm genes
orthologous to the A-type MADS-box genes (Shindo et al., 1999;
Winter et al., 1999; Carlsbecker et al., 2013). For a long time,
it was considered an established fact that gymnosperms lacked
both perianth-like organs and associated regulatory genes. In
the first analysis of the P. abies genome, however, Nystedt et al.
(2013) observed a remarkable expansion of the MADS-box gene
family. Among the staggering 249 Type II MADS-box genes in
the P. abies genome at least one gene group in a clade including
both angiosperm A-function and FLOWERING LOCUS C-genes
(Gramzow et al., 2014), calling for a reexamination of a potential
A-function in conifers.

TEENS FOR DECADES—CAN WE
OVERCOME THE LONG GENERATION
TIME OF GYMNOSPERMS TO FACILITATE
DEVELOPMENTAL GENETIC STUDIES?
Gymnosperms are in general perennial trees, or shrubs, and most
take decades until they enter the reproductive phase. Therefore,
all functional evidence of any gene active in reproductive
development in gymnosperms comes from testing their effect
on the development of rapid cycling angiosperms (e.g., Tandre
et al., 1998; Winter et al., 2002; Karlgren et al., 2011). Thus,
there is a great need to better understand the molecular control
of juvenile–adult and vegetative–reproductive transitions in
gymnosperms, and if possible establish a more rapidly cycling
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model (Uddenberg et al., 2013). Currently, most knowledge
of developmental transitions comes from the annual plant
Arabidopsis, although studies of perennial angiosperm trees,
in particular poplar, promise to add important knowledge for
comparative analyses with gymnosperms (Böhlenius et al., 2006;
Wang et al., 2011). Not surprisingly, transitions may be controlled
by distinct mechanisms in annuals and perennials, and in
angiosperms and gymnosperms. In angiosperms, key regulators of
the transition from vegetative to reproductive phase are orthologs
of FLOWERING LOCUS T (FT) from Arabidopsis (Wigge et al.,
2005). Although conifers possess FT homologs, studies inNorway
spruce indicated that they lack FT orthologs (Karlgren et al., 2011;
Klintenäs et al., 2012), a notion confirmed with the sequencing
of the spruce genome (Nystedt et al., 2013). Another conserved
angiosperm key regulator acting upstream of the ABC-genes is
LEAFY (LFY; Moyroud et al., 2010). While gymnosperms do
have an apparent LFY ortholog they also have a paralogous
gene, called NEEDLY (Mellerowicz et al., 1998; Mouradov et al.,
1998; Vazquez-Lobo et al., 2007). Currently available data is not
informative to reveal if these genes may confer similar functions
as their angiosperm counterpart.

Much of what we know about reproductive development
in angiosperms is based on functional analysis of individual
genes using mutants, either in forward or reverse genetic
approaches. Interestingly, several varieties of conifers with
peculiar reproductive structures or other phenotypes are available
in arboretums (Rudall et al., 2011), and natural variants are
alternatives to classic forward genetic screens (Dosmann and
Groover, 2012). A naturally occurring mutant of P. abies,
called acrocona, produces cones frequently, even in years when
surrounding trees rarely set cones (Figures 2B–D). Inbred crosses
show that a quarter of the segregating siblings initiate cones
extremely early, already during their second growth season
(Figure 2B; Uddenberg et al., 2013), and a single locus of
importance for the cone setting phenotype has been mapped to a
specific chromosome (Achere et al., 2004). Hence, the segregation
pattern suggests that the early cone setting phenotype is caused
by a monogenic loci and further analyses of its phenotype that
it is likely semidominant (Uddenberg et al., 2013). NGS of
acrocona transcriptomes (RNA-seq) identified a candidate gene
related to the angiosperm floral integrator SUPPRESSOR OF THE
OVEREXPRESSION OF CONSTANS 1 (SOC 1; Lee and Lee,
2010) that may be involved in the early cone-setting phenotype
(Uddenberg et al., 2013).

In addition to the early and frequent cone-setting, the acrocona
mutant produces vegetative shoots transformed into reproductive
cones, by initiation of ovuliferous scales in the axil of needles
(Figures 2C,D). Detailed expression analysis using mRNA in
situ hybridization have been used to study regulatory genes with
putative functions in reproductive initiation, organ identity and
pattern formation in wild type, male and female cones as well as in
the acrocona transition shoots, as a means of testing of hypotheses
of function by assessing gene expression correlation with the
initiation and formation of ectopic female structures (Carlsbecker
et al., 2013). Hence, already now, without knowing the nature of
the causal mutation, acrocona allows further studies of putative
reproductive development genes. These may include MADS-box

genes hypothesized to control phase transitions (Carlsbecker et al.,
2003, 2004), or the newly identified putative A-class homolog
(Gramzow et al., 2014). Like their angiosperm homologs (Litt and
Irish, 2003), these genes may initiate reproduction in P. abies, and
their activity can be analyzed in the mutant background. NGS of
dissected tissues in various developmental phases in wild types
and mutants will allow detailing such studies further.

FEEDING CONIFER DEVELOPMENTAL
BIOLOGY INTO BREEDING PROGRAMS
In addition to the key evolutionary position occupied by the
gymnosperms, a strong driving force to further our knowledge
about their development, reflected in the two Picea and
one Pinus species chosen for full genome sequences, is the
economic importance of conifer wood. Wood is formed from
the vascular meristem, the cambium. Although its activity is
essential for all tree species, determining growth rate, wood
formation and quality, it is amongmeristems the least understood.
Most of our understanding of cambium activity and wood
formation comes from studies of Arabidopsis and Poplar. These
studies have revealed transcriptional and hormonal control
mechanisms for cambium and wood formation as well as the
biosynthesis pathways for cellulose, hemicellulose, and lignin
(Lucas et al., 2013). Promisingly, comparative studies of genomes
and transcriptomes have revealed a substantial conservation
of regulatory mechanisms for cambium and wood formation
between angiosperms and conifers (Li et al., 2010; Carvalho
et al., 2013). Now, systems biology approaches will likely rapidly
enhance our knowledge of conifer wood formation, beyond
a mere comparison with more tractable angiosperm models.
These approaches include co-expression analyses, transcription
factor–promoter and protein–protein interaction analyses (Duval
et al., 2014), in combination with assessments of transgenic
seedlings with perturbed putative key regulators (Bomal et al.,
2008). In addition, analyses of naturally occurring mutants,
such as the cinnamyl alcohol dehydrogenase mutant defective
in lignin formation (Ralph et al., 1997), will be important to
connect wood properties and growth parameters. Knowledge
gained could be used to generate computational models for
vascular development, increase our understanding of specific
features distinguishing angiosperm and gymnosperm secondary
development and improve early stage identification of desirable
traits important for breeding of economically important conifer
species.

OUTLOOK
As costs for current sequencing methods decrease and third and
fourth generation techniques such as nanopore sequencing are
taken into general use (Feng et al., 2015), we can envision a
more diversified sampling of sequenced organisms within the
gymnosperm lineage, together with the assembly of high quality
genomes. Better sequence information can be used to develop
denser maps of short nucleotide polymorphisms (SNPs), enabling
genome-wide marker-based selection and allowing more efficient
breeding, as well as utilization of natural variation in studies
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of developmental control mechanisms. Emerging quality
updates on reference genomes will also most likely facilitate
the establishment of methods such as CRISPR/Cas9 (Belhaj
et al., 2015), greatly increasing the possibility to generate single
and multiple mutants. A continued development of efficient
techniques to generate inducible genes, the development of strong
fluorescent reporters coupled with better detection techniques
will likely revolutionize functional studies of at least early stages
of conifer development.

The long generation time of most gymnosperms makes any
attempt to perform functional studies of adult characters or even
simple breeding efforts a time-consuming endeavor. Once the
causing mutation of the early cone-setting phenotype of the
acrocona mutant is known, it will be a potentially powerful tool
to generate rapid cycling lines not only in P. abies, but perhaps
also in other transformable conifers and gymnosperms. This

would enable functional studies of regulatory genes implicated in
juvenile–adult transition, as well as reproductive initiations and
reproduction organ specification. It may also allow the transfer
of introduced traits from primary transformants to consecutive
generations. Hence, new and emerging technologies promise a
blooming future for conifer developmental biology, as well as for
evo-devo studies in gymnosperms.

ACKNOWLEDGMENTS
Research on conifer developmental biology in the groups of
Carlsbecker and Sundström is supported by grants from the
Swedish Research Council FORMAS. We acknowledge that due
to the condensed format of this mini-review not all original
papers have been cited; when relevant we have referred to recent
comprehensive reviews.

REFERENCES

Achere, V., Faivre-Rampant, P., and Jeandroz, S. (2004). A full saturated linkage
map of Picea abies including AFLP, SSR, ESTP, 5S rDNA and morphological
markers. Theor. Appl. Genet. 108, 1602–1613. doi: 10.1007/s00122-004-
1587-y

Alvarez, J. M., and Ordás, R. J. (2013). Stable Agrobacterium-mediated
transformation of maritime pine based on kanamycin selection.
ScientificWorldJournal 2013, 681792. doi: 10.1155/2013/681792

Alvarez, J. M., Sohlberg, J., Engström, P., Zhu, T., Englund, M., Moschou, P. N., et
al. (2015). The WUSCHEL-RELATED HOMEOBOX 3 gene PaWOX3 regulates
lateral organ formation in Norway spruce. New Phytol. doi: 10.1111/nph.13536
[Epub ahead of print].

Belhaj, K., Chaparro-Garcia, A., Kamoun, S., Patron, N. J., and Nekrasov, V. (2015).
Editing plant genomes with CRISPR/Cas9. Curr. Opin. Biotechnol. 32, 76–84.
doi: 10.1016/j.copbio.2014.11.007

Belmonte, M. F., Tahir, M., Schroeder, D., and Stasolla, C. (2007). Overexpression
of HBK3, a class I KNOX homeobox gene, improves the development of
Norway spruce (Picea abies) somatic embryos. J. Exp. Bot. 58, 2851–2861. doi:
10.1093/jxb/erm099

Birol, I., Raymond, A., Jackman, S. D., Pleasance, S., Coope, R., Taylor, G. A., et
al. (2013). Assembling the 20 Gb white spruce (Picea glauca) genome from
whole-genome shotgun sequencing data. Bioinformatics 29, 1492–1497. doi:
10.1093/bioinformatics/btt178

Bomal, C., Bedon, F., Caron, S., Mansfield, S. D., Levasseur, C., Cooke, J. E. K.,
et al. (2008). Involvement of Pinus taedaMYB1 and MYB8 in phenylpropanoid
metabolism and secondary cell wall biogenesis: a comparative in planta analysis.
J. Exp. Bot. 59, 3925–3939. doi: 10.1093/jxb/ern234

Böhlenius, H., Huang, T., Charbonnel-Campaa, L., Brunner, A. M., Jansson, S.,
Strauss, S. H., et al. (2006). CO/FT regulatory module controls timing of
flowering and seasonal growth cessation in trees. Science 312, 1040–1043. doi:
10.1126/science.1126038

Carlsbecker, A., Sundström, J. F., Englund, M., Uddenberg, D., Izquierdo, L.,
Kvarnheden, A., et al. (2013). Molecular control of normal and acroconamutant
seed cone development in Norway spruce (Picea abies) and the evolution of
conifer ovule-bearing organs.NewPhytol. 200, 261–275. doi: 10.1111/nph.12360

Carlsbecker, A., Sundström, J., Tandre, K., Englund, M., Kvarnheden, A., Johanson,
U., et al. (2003). The DAL10 gene from Norway spruce (Picea abies) belongs
to a potentially gymnosperm-specific subclass of MADS-box genes and is
specifically active in seed cones and pollen cones. Evol. Dev. 5, 551–561. doi:
10.1046/j.1525-142X.2003.03060.x

Carlsbecker, A., Tandre, K., Johanson, U., Englund, M., and Engström, P.
(2004). The MADS-box gene DAL1 is a potential mediator of the juvenile-
to-adult transition in Norway spruce (Picea abies). Plant J. 40, 546–557. doi:
10.1111/j.1365-313X.2004.02226.x

Carvalho, A., Paiva, J., Louzada, J., and Lima-Brito, J. (2013). The transcriptomics of
secondary growth and wood formation in conifers.Mol. Biol. Int. 2013, 974324.
doi: 10.1155/2013/974324

Coen, E. S., and Meyerowitz, E. M. (1991). The war of the whorls—genetic
interactions controlling flower development. Nature 353, 31–37. doi:
10.1038/353031a0

Crosetto, N., Bienko, M., and van Oudenaarden, A. (2015). Spatially resolved
transcriptomics and beyond. Nat. Rev. Genet. 16, 57–66. doi: 10.1038/
nrg3832

de Vega-Bartol, J. J., Simões, M., Lorenz, W. W., Rodrigues, A. S., Alba, R.,
Dean, J. F., et al. (2013). Transcriptomic analysis highlights epigenetic and
transcriptional regulation during zygotic embryo development of Pinus pinaster.
BMC Plant Biol. 13:123. doi: 10.1186/1471-2229-13-123

Dosmann, M., and Groover, A. (2012). The importance of living botanical
collections for plant biology and the “next generation” of evo-devo research.
Front. Plant Sci. 3:137. doi: 10.3389/fpls.2012.00137

Duval, I., Lachance, D., Giguère, I., Bomal, C., Morency, M.-J., Pelletier, G., et al.
(2014). Large-scale screening of transcription factor–promoter interactions in
spruce reveals a transcriptional network involved in vascular development. J.
Exp. Bot. 65, 2319–2333. doi: 10.1093/jxb/eru116

Feng, Y., Zhang, Y., Ying, C., Wang, D., and Du, C. (2015). Nanopore-based fourth-
generation DNA sequencing technology. Genomics Proteomics Bioinformatics
13, 4–16. doi: 10.1016/j.gpb.2015.01.009

Filonova, L. H., Bozhkov, P. V., and Arnold, von, S. (2000). Developmental pathway
of somatic embryogenesis in Picea abies as revealed by time-lapse tracking. J.
Exp. Bot. 51, 249–264. doi: 10.1093/jexbot/51.343.249

Frohlich, M. W., and Chase, M. W. (2007). After a dozen years of progress the
origin of angiosperms is still a great mystery. Nature 450, 1184–1189. doi:
10.1038/nature06393

Gramzow, L., Weilandt, L., and Theissen, G. (2014). MADS goes genomic in
conifers: towards determining the ancestral set of MADS-box genes in seed
plants. Ann. Bot. 114, 1407–1429. doi: 10.1093/aob/mcu066

Hakman, I., Hallberg, H., and Palovaara, J. (2009). The polar auxin transport
inhibitor NPA impairs embryo morphology and increases the expression
of an auxin efflux facilitator protein PIN during Picea abies somatic
embryo development. Tree Physiol. 29, 483–496. doi: 10.1093/treephys/
tpn048

Junker, J. P., and van Oudenaarden, A. (2014). Every cell is special: genome-
wide studies add a new dimension to single-cell biology. Cell 157, 8–11. doi:
10.1016/j.cell.2014.02.010

Karlgren, A., Gyllenstrand, N., Kallman, T., Sundström, J. F., Moore, D., Lascoux,
M., et al. (2011). Evolution of the PEBP gene family in plants: functional
diversification in seed plant evolution. Plant Physiol. 156, 1967–1977. doi:
10.1104/pp.111.176206

Klimaszewska, K., Lachance, D., Pelletier, G., Lelu, M. A., and Séguin, A.
(2001). Regeneration of transgenic Picea glauca, P. mariana, and P. abies
after cocultivation of embryogenic tissue with Agrobacterium tumefaciens.
In. Vitro Cell. Dev. Biol. Plant 37, 748–755. doi: 10.1007/s11627-001-
0124-9

Klintenäs, M., Pin, P. A., Benlloch, R., Ingvarsson, P. K., and Nilsson, O. (2012).
Analysis of conifer FLOWERING LOCUS T/TERMINAL FLOWER1-like genes

Frontiers in Plant Science | www.frontiersin.org November 2015 | Volume 6 | Article 9706

http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive


Uddenberg et al. Emerging technologies for conifer evo-devo

provides evidence for dramatic biochemical evolution in the angiosperm FT
lineage. New Phytol. 196, 1260–1273. doi: 10.1111/j.1469-8137.2012.04332.x

Larsson, E., Sitbon, F., Ljung, K., and Arnold, von, S. (2007). Inhibited polar
auxin transport results in aberrant embryo development in Norway spruce.New
Phytol. 177, 356–366. doi: 10.1111/j.1469-8137.2007.02289.x

Lee, J., and Lee, I. (2010). Regulation and function of SOC1, a flowering pathway
integrator. J. Exp. Bot. 61, 2247–2254. doi: 10.1093/jxb/erq098

Levee, V., Lelu, M. A., Jouanin, L., Cornu, D., and Pilate, G. (1997). Agrobacterium
tumefaciens-mediated transformation of hybrid larch (Larix kaempferi × L.
decidua) and transgenic plant regeneration. Plant Cell Rep. 16, 680–685.

Le, V. Q., Belles-Isles, J., Dusabenyagasani, M., and Tremblay, F. M. (2001). An
improved procedure for production of white spruce (Picea glauca) transgenic
plants using Agrobacterium tumefaciens. J. Exp. Bot. 52, 2089–2095. doi:
10.1093/jexbot/52.364.2089

Li, X., Wu, H. X., and Southerton, S. G. (2010). Comparative genomics reveals
conservative evolution of the xylem transcriptome in vascular plants. BMC Evol.
Biol. 10:190. doi: 10.1186/1471-2148-10-190

Litt, A., and Irish, V. (2003). Duplication and diversification in the
APETALA1/FRUITFULL floral homeotic gene lineage: implications for
the evolution of floral development. Genetics 165, 821–833.

Lucas, W. J., Groover, A., Lichtenberger, R., Furuta, K., Yadav, S. R., Helariutta, Y.,
et al. (2013). The plant vascular system: evolution, development and functions.
J. Int. Plant Biol. 55, 294–388. doi: 10.1111/jipb.12041

Mathews, S., and Kramer, E. M. (2012). The evolution of reproductive structures
in seed plants: a re-examination based on insights from developmental genetics.
New Phytol. 194, 910–923. doi: 10.1111/j.1469-8137.2012.04091.x

Mellerowicz, E. J., Horgan, K., Walden, A., Coker, A., and Walter, C. (1998).
PRFLL—a Pinus radiata homologue of FLORICAULA and LEAFY is expressed
in buds containing vegetative shoot and undifferentiated male cone primordia.
Planta 206, 619–629.

Melzer, R.,Wang, Y.-Q., and Theissen, G. (2010). The naked and the dead: the ABCs
of gymnosperm reproduction and the origin of the angiosperm flower. Semin.
Cell Dev. Biol. 21, 118–128. doi: 10.1016/j.semcdb.2009.11.015

Minina, E. A., Filonova, L. H., Fukada, K., Savenkov, E. I., Gogvadze, V., Clapham,
D., et al. (2013). Autophagy and metacaspase determine the mode of cell death
in plants. J. Cell Biol. 203, 917–927. doi: 10.1083/jcb.201307082

Mouradov, A., Glassick, T., Hamdorf, B., Murphy, L., Fowler, B., Marla, S., et al.
(1998). NEEDLY, a Pinus radiata ortholog of FLORICAULA/LEAFY genes,
expressed in both reproductive and vegetative meristems. Proc. Natl. Acad. Sci.
U.S.A. 95, 6537–6542.

Mouradov, A., Hamdorf, B., Teasdale, R., Kim, J., Winter, K., and Theissen, G.
(1999). A DEF/GLO-like MADS-Box gene from a gymnosperm: pinus radiata
contains an ortholog angiosperm B class floral homeotic genes. Dev. Genet. 25,
245–252.

Moyroud, E., Kusters, E., Monniaux, M., Koes, R., and Parcy, F. (2010). LEAFY
blossoms. Trends Plant Sci. 15, 346–352. doi: 10.1016/j.tplants.2010.03.007

Neale, D. B., Wegrzyn, J. L., Stevens, K. A., Zimin, A. V., Puiu, D., Crepeau, M.
W., et al. (2014). Decoding the massive genome of loblolly pine using haploid
DNAandnovel assembly strategies.GenomeBiol. 15, R59. doi: 10.1186/gb-2014-
15-3-r59

Neves, L. G., Davis, J. M., Barbazuk, W. B., and Kirst, M. (2014). A high-density
gene map of loblolly pine (Pinus taeda L.) based on exome sequence capture
genotyping. G3 (Bethesda) 4, 29–37. doi: 10.1534/g3.113.008714

Nystedt, B., Street, N. R., Wetterbom, A., Zuccolo, A., Lin, Y.-C., Scofield, D. G., et
al. (2013). The Norway spruce genome sequence and conifer genome evolution.
Nature 497, 579–584. doi: 10.1038/nature12211

Ralph, J., MacKay, J. J., Hatfield, R. D., OMalley, D. M., Whetten, R. W., and
Sederoff, R. R. (1997). Abnormal lignin in a loblolly pine mutant. Science 277,
235–239.

Rudall, P. J., Hilton, J., Vergara-Silva, F., and Bateman, R. M. (2011). Recurrent
abnormalities in conifer cones and the evolutionary origins of flower-
like structures. Trends Plant Sci. 16, 151–159. doi: 10.1016/j.tplants.2010.
11.002

Ruhfel, B. R., Gitzendanner, M. A., Soltis, P. S., Soltis, D. E., and Burleigh,
J. G. (2014). From algae to angiosperms-inferring the phylogeny of green
plants (Viridiplantae) from 360 plastid genomes. BMC Evol. Biol. 14:23. doi:
10.1186/1471-2148-14-23

Rutledge, R., Regan, S., Nicolas, O., Fobert, P., Côté, C., Bosnich, W., et al. (1998).
Characterization of an AGAMOUS homologue from the conifer black spruce

(Picea mariana) that produces floral homeotic conversions when expressed in
Arabidopsis. Plant J. 15, 625–634.

Schneeberger, K. (2014). Using next-generation sequencing to isolate mutant
genes from forward genetic screens. Nat. Rev. Genet. 15, 662–676. doi:
10.1038/nrg3745

Shindo, S., Ito, M., Ueda, K., Kato, M., and Hasebe, M. (1999). Characterization of
MADS genes in the gymnosperm Gnetum parvifolium and its implication on
the evolution of reproductive organs in seed plants. Evol. Dev. 1, 180–190. doi:
10.1046/j.1525-142x.1999.99024.x

Smertenko, A., and Bozhkov, P. V. (2014). Somatic embryogenesis: life and
death processes during apical-basal patterning. J. Exp. Bot. 65, 1343–1360. doi:
10.1093/jxb/eru005

Suárez, M. F., Filonova, L. H., Smertenko, A., Savenkov, E. I., Clapham, D.
H., Arnold, von, S., et al. (2004). Metacaspase-dependent programmed cell
death is essential for plant embryogenesis. Curr. Biol. 14, R339–R340. doi:
10.1016/j.cub.2004.04.019

Sundström, J., Carlsbecker, A., Svensson, M., Svenson, M., Johanson, U., Theissen,
G., et al. (1999). MADS-box genes active in developing pollen cones of Norway
spruce (Picea abies) are homologous to the B-class floral homeotic genes in
angiosperms. Dev. Genet. 25, 253–266.

Sundström, J. F., Vaculova, A., Smertenko, A. P., Savenkov, E. I., Golovko, A.,
Minina, E., et al. (2009). Tudor staphylococcal nuclease is an evolutionarily
conserved component of the programmed cell death degradome. Nat. Cell Biol.
11, 1347–1354. doi: 10.1038/ncb1979

Tandre, K., Albert, V., and Sundås, A. (1995). Conifer homologues to genes that
control floral development in angiosperms. Plant Mol. Biol. 27, 69–78.

Tandre, K., Svenson, M., Svensson, M., and Engström, P. (1998). Conservation of
gene structure and activity in the regulation of reproductive organ development
of conifers and angiosperms. Plant J. 15, 615–623.

Tang, W., and Newton, R. J. (2003). Genetic transformation of conifers and
its application in forest biotechnology. Plant Cell Rep. 22, 1–15. doi:
10.1007/s00299-003-0670-1

Tang, W., Xiao, B., and Fei, Y. (2014). Slash pine genetic transformation through
embryo cocultivation with A. tumefaciens and transgenic plant regeneration. In.
Vitro Cell. Dev. Biol. Plant 50, 199–209. doi: 10.1007/s11627-013-9551-7

Taylor, T. N., Taylor, E. L., and Krings, M. (2009). Paleobotany: The Biology and
Evolution of Fossil Plants, 2nd Edn. San Diego, CA: Academic Press.

Ten Hove, C. A., Lu, K.-J., and Weijers, D. (2015). Building a plant: cell fate
specification in the early Arabidopsis embryo. Development 142, 420–430. doi:
10.1242/dev.111500

The Arabidopsis Genome Initiative. (2000). Analysis of the genome sequence
of the flowering plant Arabidopsis thaliana. Nature 408, 796–815. doi:
10.1038/35048692

Uddenberg, D., Reimegård, J., Clapham, D., Almqvist, C., Arnold, von, S.,
Emanuelsson, O., et al. (2013). Early cone setting in Picea abies acrocona is
associated with increased transcriptional activity of a MADS box transcription
factor. Plant Physiol. 161, 813–823. doi: 10.1104/pp.112.207746

Vazquez-Lobo, A., Carlsbecker, A., Vergara-Silva, F., Alvarez-Buylla, E. R., Pinero,
D., and Engström, P. (2007). Characterization of the expression patterns of
LEAFY/FLORICAULA and NEEDLY orthologs in female and male cones of
the conifer genera Picea, Podocarpus, and Taxus: implications for current evo-
devo hypotheses for gymnosperms. Evol. Dev. 9, 446–459. doi: 10.1111/j.1525-
142X.2007.00182.x

Vestman, D., Larsson, E., Uddenberg, D., Cairney, J., Clapham, D., Sundberg, E.,
et al. (2011). Important processes during differentiation and early development
of somatic embryos of Norway spruce as revealed by changes in global
gene expression. Tree Genet Genomes 7, 347–362. doi: 10.1007/s11295-010-
0336-4

Wang, J.-W., Park, M. Y., Wang, L.-J., Koo, Y., Chen, X.-Y., Weigel, D., et al. (2011).
miRNA control of vegetative phase change in trees. PLoS Genet. 7:e1002012. doi:
10.1371/journal.pgen.1002012

Wang, X.-Q., and Ran, J.-H. (2014). Evolution and biogeography of gymnosperms.
Mol. Phylogenet. Evol. 75, 24–40. doi: 10.1016/j.ympev.2014.02.005

Wang, Z., Gerstein, M., and Snyder, M. (2009). RNA-Seq: a revolutionary tool for
transcriptomics. Nat. Rev. Genet. 10, 57–63. doi: 10.1038/nrg2484

Wenck, A. R., Quinn, M., Whetten, R. W., Pullman, G., and Sederoff, R. (1999).
High-efficiency Agrobacterium-mediated transformation of Norway spruce
(Picea abies) and loblolly pine (Pinus taeda). Plant Mol. Biol. 39, 407–416. doi:
10.1023/A:1006126609534

Frontiers in Plant Science | www.frontiersin.org November 2015 | Volume 6 | Article 9707

http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive


Uddenberg et al. Emerging technologies for conifer evo-devo

Wickett, N. J., Mirarab, S., Nguyen, N., Warnow, T., Carpenter, E., Matasci,
N., et al. (2014). Phylotranscriptomic analysis of the origin and early
diversification of land plants. Proc. Natl. Acad. Sci. U.S.A. 111, E4859–E4868.
doi: 10.1073/pnas.1323926111

Wigge, P. A., Kim, M. C., Jaeger, K. E., Busch, W., Schmid, M., Lohmann,
J. U., et al. (2005). Integration of spatial and temporal information during
floral induction in Arabidopsis. Science 309, 1056–1059. doi:10.1126/science.
1114358

Winter, K. U., Becker, A., Munster, T., Kim, J. T., Saedler, H., and Theissen, G.
(1999). MADS-box genes reveal that gnetophytes are more closely related to
conifers than to flowering plants. Proc. Natl. Acad. Sci. U.S.A. 96, 7342–7347.

Winter, K.-U., Saedler, H., and Theissen, G. (2002). On the origin of class B floral
homeotic genes: functional substitution and dominant inhibition in Arabidopsis
by expression of an orthologue from the gymnosperm Gnetum. Plant J. 31,
457–475. doi: 10.1046/j.1365-313X.2002.01375.x

Zhu, T., Moschou, P. N., Alvarez, J. M., Sohlberg, J. J., and Arnold, von,
S. (2014). Wuschel-related homeobox 8/9 is important for proper embryo
patterning in the gymnosperm Norway spruce. J. Exp. Bot. 65, 6543–6552. doi:
10.1093/jxb/eru371

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2015 Uddenberg, Akhter, Ramachandran, Sundström and Carlsbecker.
This is an open-access article distributed under the terms of the Creative Commons
Attribution License (CC BY). The use, distribution or reproduction in other forums is
permitted, provided the original author(s) or licensor are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice. No
use, distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Plant Science | www.frontiersin.org November 2015 | Volume 6 | Article 9708

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive

	Sequenced genomes and rapidly emerging technologies pave the way for conifer evolutionary developmental biology
	Can we Establish a Conifer Model Species for Developmental Studies?
	Next Generation Sequences and Genetic Transformation—Conifer Developmental Biology Studies Made Possible
	Conifer Somatic Embryos Enable Functional Evolutionary Developmental Biology
	Gymnosperm Reproductive Development Through a Genomic Lens: ABC or only BC?
	Teens for Decades—Can we Overcome the Long Generation Time of Gymnosperms to Facilitate Developmental Genetic Studies?
	Feeding Conifer Developmental Biology into Breeding Programs
	Outlook
	Acknowledgments
	References


