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Department of Plant Ecophysiology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University,
Poznań, Poland

Cadmium (Cd) is a non-essential heavy metal, toxic to all living organisms. The
microtubule (MT) cytoskeleton appears to be one of the main targets of Cd action.
In this study we present, with the use of various immunological approaches, the effect
of Cd at moderate (85 μM) and high (170 μM) concentrations on the structure and
functioning of the MT cytoskeleton in the root cells of soybean seedlings. As the result of
heavy metal action, root growth was significantly diminished and was accompanied by a
reduction in mitotic activity and disturbance in the structure of the MT arrays, including
randomization of the cortical MT arrangement, distorted mitotic arrays and complete
depolymerization of the MTs. Biochemical analysis revealed decreased levels of various
α- and β-tubulin isoforms with a parallel down-regulation of most examined α-tubulin
genes. Simultaneously, Cd treatment led to differentiated changes in the level of tubulin
post-translational modifications, including tyrosination, detyrosination, acetylation, and
polyglutamylation. Decreased tyrosination and polyglutamylation of particular tubulin
isoforms accompanied by increase in the level of specific detyrosinated and acetylated
isoforms implies augmented stability and reduced turnover of the MTs during stress
conditions. Taken together, the obtained results indicate the significant impact of Cd on
gene expression levels and subsequent post-translational processing of tubulin, which
may be related to the impairment of MT cytoskeleton functioning in root cells.

Keywords: root, cadmium, microtubule cytoskeleton, immunocytochemistry, gene expression, immunoblotting,
tubulin isoforms, post-translation modifications

INTRODUCTION

About 25,000 t of cadmium (Cd) per year is released into the environment, mainly through
weathering of rocks, forest fires, volcanoes, and human activity, such as mining, agriculture, sewage
processing, automobiles, and the metal industry (Dalcorso et al., 2013; Tran and Popova, 2013).
Therefore, Cd has become a widespread non-essential heavy metal and one of the most toxic
and dangerous environmental pollutants, with relative high mobility in the soil-plant system and
ability to interfere with plant metabolism. Moreover, the metal accumulated in plant tissues might
be introduced into the food chain, posing concerns for both animal and human nutrition. It is
estimated that approximately 98% of ingested Cd comes from terrestrial foods (Tran and Popova,
2013).
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The roots are well established as a main site of Cd action
leading to numerous disorders, including inhibition of root
growth, alterations in their morphogenesis (Rascio et al., 2008),
interference with mitotic process by induction of chromosome
aberrations (Siddiqui et al., 2009) and cytoskeleton dysfunction
(Fusconi et al., 2007). Although microtubule (MT) cytoskeleton
seems to be one of the main targets of Cd action (Přibyl
et al., 2005; Xu et al., 2009; Malea et al., 2013), its functioning
under heavy metal stress is not well elucidated. The MTs play
crucial functions in the growth and development of plants
and contribute to the highly ordered organization of the most
important cellular processes, including formation of mitotic
spindle, the cell plate, cell growth and elongation or intracellular
transport and cell wall deposition (Horio and Murata, 2014).
During the cell cycle, plant MTs are assembled into four distinct
arrays: the interphase cortical MTs, pre-prophase band, mitotic
spindle and phragmoplast. From a structural point of view,
most MTs consist of 13 protofilaments which form a hollow
cylinder. The protofilaments are polymers of heterodimers
containing one α-tubulin and one β-tubulin subunit, each
with a molecular weight of about 50 kDa (Parrotta et al.,
2014). In spite of their quite simple structure, MTs can be
precisely regulated throughout the cell cycle or cell differentiation
to carry out diverse but specific cellular functions. The MT
cytoskeleton may be controlled at a few different levels, and
the final effect of MTs functioning is resultant of the expression
of distinct tubulin genes (isotypes), tubulin post-translational
modifications (PTMs) and a repertoire of MT-associated proteins
(MAPs). The latter can regulate both the dynamics of MTs
and their association with other cellular components as non-
motor MAPs and MAPs with motor ability (Hamada, 2007).
However, the primary level of tubulin heterogeneity is dependent
on the differential expression of isotypes, which is probably
regulated according to the specific developmental stage of a
plant, the specific tissue or organ, as well as various internal
and external stimuli (Oakley et al., 2007; Radchuk et al.,
2007).

Plants have evolved a large heterogeneity in the number of
α- and β-tubulins genes, and different plants possess diverse
sets of tubulin genes (Parrotta et al., 2014). Presynthesised
tubulin proteins can be next post-translationally modified to
obtain differentiated subpopulations of MTs and to increase the
heterogeneity of tubulin isoforms. The PTMs of tubulin are
evolutionarily conserved and highly dynamic processes, therefore
it is very likely that they play crucial functions in the eukaryotic
cells (Parrotta et al., 2014). So far, several PTMs of tubulin have
been recognized in plants, including tyrosination, detyrosination,
acetylation (Smertenko et al., 1997b; Gilmer et al., 1999a,b;
Nakagawa et al., 2013), phosphorylation (Blume et al., 2008;
Ban et al., 2013), polyglutamylation (Wang et al., 2004), and
transamidation (Del Duca et al., 2009). Most PTMs take place
at the C-terminal tails of both tubulin subunits, and their level
plays an essential role in the properties of MTs themselves as
well as their interaction with associated proteins. Futhermore,
PTMsmay function individually and/or in combination to recruit
specific protein complexes and thus govern the spatial and
temporal regulation of the MT cytoskeleton during the cell cycle.

Tyrosination is a quite common and predominant
modification because tubulins are normally synthesized
with tyrosine as the last C-terminal amino acid. The
enzymatic removal of C-terminal tyrosine by tubulin-specific
carboxypeptidase generates detyrosinated tubulin (Glu-tubulin),
which in turn can be subject to the opposite process of
tyrosination with the use of specific enzyme tubulin tyrosine
ligase (MacRae, 1997). It is assumed that the process of tubulin
detyrosination is associated with increased MT stability, which
is considered to protect MTs from depolymerisation (Peris et al.,
2009). In acetylated tubulin isoforms, the acetyl group is attached
to the α-amino group of lysine 40, and this PTM is detected
in most cells in stable MTs (Piperno et al., 1987), but the exact
function and significance of acetylated MTs in plants remain to
be elucidated. Polyglutamylation is an abundant modification,
which leads to the addition of glutamate side chains of variable
length to the C-terminal tails of either α- or β-tubulin. In
opposition to tyrosination, it is not processed on soluble tubulin
subunits, but takes place, like detyrosination, on MTs (Parrotta
et al., 2014).

Despite the importance of PTMs to proper MTs functioning,
limited information is available concerning environmental
stresses, including heavy metals treatment (Eleftheriou et al.,
2013, 2015). In this report we documented the impact of Cd in
moderate and high concentrations on the PTMs levels in the
root tips of soybean. To our best knowledge this is the first
report showing that Cd stress causes changes in the population
of tyrosinated, detyrosinated, acetylated, and polyglutamylated
isoforms of tubulin in plant cells. The proteomic approach
based on a set of specific antibodies implies increased
stability of MT fibers under stress conditions. Additionally,
immunocytochemistry and ultrastructural observations proved
clear impact of Cd on MTs functioning.

MATERIALS AND METHODS

Plant Material, Growth Conditions and
Treatment Procedures
Soybean seeds (Glycine max L. cv. Nawiko, kindly supplied by
the Department of Genetics and Plant Breeding, University of
Life Sciences, Poznań, Poland) were sterilized in 70% ethanol
for 5 min and in 20% Clorox (1% sodium hypochlorite) for
10 min, rinsed with distilled water and imbibed for 4 h in distilled
water (dH2O). The seeds were then germinated for 2 days in
plastic dishes lined with filter paper moistened with dH2O.
Seedlings with primary roots approximately 10 mm in length
were transferred to Petri dishes (10 seedlings per dish) containing
4 ml of dH2O (control) or aqueous solutions of CdCl2x2.5H2O at
different concentrations of the metal: 20, 80, 140, and 200 μM.
The cultivation was carried out for 48 h in the dark at 22◦C.
Based on root measurements and tolerance index calculations
(Wilkins, 1957) two concentrations of Cd were determined.
As a result, the Cd concentration at which root growth was
limited by approximately 50% (moderate stress conditions) was
estimated at 85 μM and the higher concentration of the metal
was set at a value double the first (i.e., 170 μM). Both selected
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concentrations of Cd were used in all immunocytochemistry,
molecular, biochemical and ultrastructure experiments.

Immunocytochemical Localization of
Tubulin
Excised root fragments consisting of meristematic and elongation
zones were immediately fixed for 3 h in a MT stabilizing
buffer (MTSB: 50 mM Pipes pH 7.0, 5 mM MgSO4, 5 mM
EGTA) containing 4% freshly prepared paraformaldehyde. The
fragments were then dehydrated in a series of ethanol solutions
and embedded in Steedman’s wax (Vitha et al., 2000). Samples
were sectioned at a thickness of 7 μm with a rotary microtome.
After dewaxing, sections were treated overnight at 4◦C with
primary anti-α-tubulin antibody (clone B-5-1-2, Sigma T5168)
diluted 1:800 with PBS/1% BSA. Subsequently, the sections were
rinsed six times in PBS and then incubated at 37◦C for 2 h with
FITC-conjugated anti-mouse secondary antibody (Sigma F5262)
diluted 1:400 with PBS/1% BSA. After rinsing with PBS, the
material was treated with a solution of propidium iodide (Sigma
P4170) at a concentration of 1 μg/ml for 5 min, rinsed again and
mounted in antifadent solution (Citifluor Ltd) on glass slides.
Sections were observed with an LSM 510 confocal microscope
(Carl Zeiss, Jena, Germany). On average, five different roots were
investigated.

RNA Isolation and Reverse Transcription
RNA isolation was carried out with the use of TriReagent (Sigma
T9424) according to the manufacturer’s instructions. For reverse
transcription, 1 μg RNA from each experimental variant was
purified with the use of a Deoxyribonuclease Kit (Sigma AMPD1)
and transcribed into cDNA using a ReverseTranscription Kit
(Thermo Scientific Fermentas #K1622). For real-time PCR
reactions, the obtained cDNA was diluted five times.

Measurements of Gene Expression
The expression pattern was analyzed for seven genes encoding
α-tubulin. The gene sequences for tubulins were derived from
the Phytozome database1, and the primers, listed in Table 1,
were designed using primer3 software2. Real-time PCR reactions
were performed on a Rotor-Gene 6000 Thermocycler (Corbett)
in 20 μl of reaction mixture containing 0.1 μM of each primer,
1 μl of diluted cDNA, 10 μl of Power SYBR Green PCR Master

1http://www.phytozome.net
2http://bioinfo.ut.ee/primer3-0.4.0

Mix (Applied Biosystems 4368577) and DEPC treated water.
The real-time PCR reaction started with initial denaturation
at 95◦C for 5 min, followed by 45 cycles consisting of 10 s
at 95◦C, 20 s at 45◦C and 30 s at 72◦C and finalized by
denaturation at a temperature rising from 72 to 95◦C by one
degree every 5 s. The Ct (cycle threshold) values were determined
using a real-time PCR Miner (Zhao and Fernald, 2005), and
relative gene expression was calculated according to the Pfaffl
equation (Pfaffl, 2001) in relation to a reference gene – ubiquitin.
Earlier studies showed that out of three potential tested reference
genes (encoding ubiquitin, 18S rRNA, CDK-A), a ubiquitin gene
exhibits the most stable expression in response to Cd and it
has been used as reference gene in other studies concerning
the impact of Cd on gene expression in soybean seedlings
(Chmielowska-Bąk et al., 2013). Measurements were performed
on samples from three independent experimental repetitions,
with each sample consisting of a pool of at least 20 root tips (6 mm
long).

Protein Extraction and 2D Gel
Electrophoresis
Excised root tips (6 mm long) were ground in liquid nitrogen to
a fine powder, and proteins were precipitated with cold TCA-
2ME-acetone solution for at least 1 h at −20◦C according to
the procedure of Méchin et al. (2007). Protein solubilization
was carried out with the use of DeStreak Rehydratation Solution
(GE HealthCare), supplemented with 20 mM DTT and 0.2%
Bio-Lyte buffer (BioRad). The protein concentration in the
final samples was calculated using a commercial 2-D Quant
Kit (GE HealthCare). The assay was executed according to the
manufacturer’s instruction using BSA as a standard, and each
sample was analyzed at least three times. Finally, approximately
100 μg of proteins were loaded onto 7 cm IPG strips with 4.7–5.9
pH gradient (BioRad). After overnight rehydratation, the strips
were subjected to isoelectrofocusing (IEF) using Multiphor II
(GE HealthCare) and a run was carried out as follows: 300 V
(2 h), 1500 V (1.5 h), and 3500 V (8 h). After IEF separation,
the strips were stored at −80◦C. Prior to SDS-PAGE, the strips
were equilibrated 2 × 15 min in an equilibration buffer (50 mM
Tris-HCl, pH 8.8, 6 M urea, 30% glycerol, 2% SDS, 0.002%
bromophenol blue), first containing 65 mMDTT, followed by an
equilibration buffer with 135 mM iodoacetamide. For the second
dimension separation, the strips were applied to 10% precast
polyacrylamide gels (BioRad) and run in a Mini-PROTEAN
Tetra Cell (BioRad) at a constant current (20 mA per gel) with a

TABLE 1 | The names of analyzed genes, their accession numbers in Phytozome database and the designed primers.

Gene name Number in Phytozome databse Left primer Right primer

Tubα1 Glyma04g09350 CCGAGTCTGGTGATGGAGAT ACCACACATGTCCGACAGAA

Tubα2 Glyma05g23230 TGTCCTGCTCGACAATGAAG GCACAAGGTTGGTCTGGAAT

Tubα3 Glyma06g09500 CTCCGTTGACTACGGGAAAA CAACATCGGTGTGTTCAAGG

Tubα4 Glyma08g12140 TGAGGTGTTCTCTCGCATTG AGCCCCAACCTCCTCATAGT

Tubα5 Glyma10g40150 CCAACCTCAACCGTCTTGTT GGAGGAAAGCATGAAATGGA

Tubα6 Glyma17g16831 GTTTGATGGTGCATTGAACG ACAACATCACCCCGGTACAT

Tubα7 Glyma20g27280 ATTGAGCGTCCCACCTACAC GGAGGAAAGCATGAAATGGA

Frontiers in Plant Science | www.frontiersin.org 3 November 2015 | Volume 6 | Article 937

http://www.phytozome.net
http://bioinfo.ut.ee/primer3-0.4.0
http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive


Gzyl et al. Cadmium affects tubulin post-translational modifications

Prestained Protein Ladder (Thermo Scientific). After separation,
the proteins were blotted onto PVDF membranes.

Antibodies
The following antibodies were used in the detection of tubulin
subunits: mouse monoclonal antibody B-5-1-2 (IgG1; Sigma
T5168; diluted 1:5,000) was used to recognize an epitope
located in the C-terminal end of the α-tubulin isoforms;
mouse monoclonal antibody TU-01 (IgG1; Novus Biologicals
NB500-333; diluted 1:2,000) was directed against the N-terminal
structural domain (epitope aa 65–97) of the α-tubulin; and
mouse monoclonal antibody TU-06 (IgM; Novus Biologicals
NB120-7792; diluted 1:2,000) was directed against the N-terminal
structural domain of β-tubulin and reacted with all charge
variants of tubulin. Post-translationally modified tubulins were
detected with the following antibodies: mouse monoclonal
anti-tyrosine tubulin antibody TUB-1A2 (IgG3; Sigma T9028;
diluted 1:5,000), which is non-reactive with cells that have been
treated with pancreatic carboxypeptidase A under conditions
which remove only the C-terminal tyrosine; monoclonal anti-
acetylated antibody 6-11B-1 (IgG2b; Sigma T6793; diluted
1:2,000), which recognizes an epitope located on the α3 isoform
of Chlamydomonas axonemal α-tubulin, within four residues of
Lys-40 when this amino acid is acetylated; mouse monoclonal
antibody GT335 (IgG1; Enzo Life Sciences ALX-804-885; diluted
1:2,000), which recognizes most forms of polyglutamylated
tubulin and other polyglutamylated proteins, independent of the
length of the glutamate side chains; and, finally, rabbit polyclonal
antibody against detyrosinated tubulin (IgG; Millipore AB3201;
diluted 1:1,000), which specifically recognizes the detyrosinated
form of the tubulin α-chain (Glu tubulin). All used primary
antibodies were highly specific against particular modifications of
tubulins with an exception of GT335 which might recognize also
other glutamylated proteins. Secondary anti-mouse or anti-rabbit
antibodies conjugated with horseradish peroxidase (HRP) were
provided by Agrisera (AS11 1772, diluted 1:20,000; AS09 602,
diluted 1:30,000) or Santa Cruz Biotechnology (sc-2064, diluted
1:10,000).

Protein Blotting and Immunostaining
Proteins were blotted onto PVDF membranes (Millipore) with
the use of a TE22 Mighty Small Transfer Tank (Hoefer) in
CAPS buffer (10 mM CAPS, 10% methanol, 0.01% SDS) for
1 h at a constant current of 1 mA per 1 cm2 of membrane
(70 mA). The quality of transfer was evaluated by staining gels
with CBB-R250 and checking the correct blotting of pre-stained
molecular mass standards (Thermo Scientific). Membranes were
stained with freshly prepared Ponceau S [0.1% Ponceau S (w/v)
in 5% acetic acid] to verify equal protein loading, and then
blocked overnight with 5% BSA in a TBST buffer (10 mM
Tris pH 8.0, 150 mM NaCl, 0.05% Tween 20) followed by
incubation with different primary antibodies diluted in a TBST
buffer. After five extensive washes in the TBST buffer, the
membranes were incubated with the appropriate secondary
antibodies and after extensively washing with the TBST buffer,
the immunological reaction was visualized by the use of Lumi-
Light Western Blotting Substrate according to the manufacturer’s

instructions (Roche). The chemiluminescent signal was captured
on X-ray film (Fuji), and protein spots’ level of intensity was
analyzed by means of MultiGauge (release 2.2) Fuji software.
The quantitative results were calculated as a ratio of pixel
intensity values to area of spots, and the data were presented
considering control or 170 μM Cd as a reference point (100%).
At least three independent blots from different experiments
were analyzed. Some blots were stripped with a harsh stripping
solution (62.5 mM Tris-HCl, pH 6.8, 2% SDS, 100 mM 2-
ME) for 30 min at 70◦C and reprobed again to check cross
reactivity with other antibodies against tubulin applied in the
study.

Transmission Electron Microscopy
Excised root tip fragments (3 mm long) were immediately
fixed in a mixture of 2% (v/v) paraformaldehyde and 2% (v/v)
glutaraldehyde in 0.05 M cacodylate buffer, pH 6.8, for 3 h at
room temperature. After three washes in a cacodylate buffer,
10 min per wash, cells were postfixed with 1% OsO4 in the
same buffer overnight at 4◦C. The roots were then dehydrated
in a graded ethanol series with 1% uranyl acetate prestaining
at the 70% alcohol step (overnight at room temperature). The
material was embedded in LR white resin (Sigma 62662), and
polymerized at 60◦C for 24 h. The roots were cut into ultrathin
sections (70 nm) using a Reichert Ultracut S (Leica, Austria)
microtome. Sections for TEM were stained with an aqueous
solution of 9% uranyl acetate followed by 0.5% lead citrate.
The ultrastructure of cells was examined under a Jem 1200
EX II (Jeol Co., Japan) transmission electron microscope at
80 kV. Sections of three different roots were prepared and
viewed.

RESULTS

Root Growth Under Cadmium Stress
The effect of Cd on the root growth was examined 48 h after the
incubation of seedlings in Cd solutions with Cd at concentrations
of 20, 80, 140, and 200 μM. It was found that Cd limited root
growth proportionally to the concentration of the metal in the
solution (Figure 1A). The measurements allowed tolerance index
to be calculated for root growth. Determined concentrations for
moderate stress (85 μM) and high stress (170 μM) conditions
were tested again in terms of root growth inhibition and a
significant and gradual reduction in root growth was observed
(Figure 1B). In addition to significant root growth inhibition,
Cd also altered the morphology of roots, which became brownish
(Figure 1C) and more brittle than the control roots.

Cadmium Effects on Microtubule
Organization in Root Cells
The double-label staining of longitudinal root tip sections
with anti-α-tubulin antibody and DNA-binding dye (propidium
iodide) revealed differentiated MT signal intensity (green
immunofluorescence) under Cd treatment (Figure 2). The
most pronounced fluorescence was observed in sections of
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FIGURE 1 | Effect of different Cd concentrations on the primary root growth of 2 days old soybean seedlings (A). Effect of moderate (85 μM Cd) and high
(170 μM Cd) cadmium stress on root length (B) and morphology of seedlings (C). The results represent the mean with standard deviation of three independent
experiments after 48 h treatment.

control roots (Figure 2A). At a moderate concentration of the
metal (85 μM), the main fluorescence signal was observed in
procambium cells (Figure 2B), whereas at a high Cd treatment
(170 μM), a faint staining was observed limited mostly to the
procambium area (Figure 2C). Moreover, higher magnification
of the control sections revealed many cells at different stages
of division (Figure 2D), while under moderate Cd stress a
significant reduction in mitotic activity (approximately 60%) was
observed (Figure 2E). No cell divisions were observed in the
root sections of seedlings treated with a high Cd concentration
(Figure 2F). The highest magnification of control cells made
it possible to observe a detailed picture of the stained MT
cytoskeleton at different stages of the cell cycle, including
cortical MTs (Figures 2G–I), preprophase band (Figure 3A)
and perinuclear MTs (Figure 3B), mitotic spindle (Figure 3C)
and phragmoplast (Figure 3D). The cortical MTs in control
cells of soybean roots formed a fine, subtle and dense network
orientated perpendicular to the long axis of the cells in the
procambium and cortex area (Figure 2G). On the other hand,
in the cells of seedlings treated with Cd the structure pattern
of cortical MTs was significantly deformed in the cortex tissue,
and included a decrease in the number of cortical MT bundles,
randomization of the microtubular network, thickenings on
individual MT fibers (dot-like staining) and discontinuous wavy
MT bundles (Figure 2H). Finally, a complete disassembly and
depolymerization of the MTs occurred, evidenced by short
MT fragments and amorphous clusters of fluorescence signal,
especially pronounced in the external cells of cortex tissue

(Figure 2I). In contrast to the cortex area, the procambium
cells of Cd-treated seedlings showed no or much less evident
changes in their MT structures. The dividing cells observed at a
moderate concentration of Cd also displayed a distorted structure
of the MT cytoskeleton, such as arrays without MT bunches
(Figures 3E,H) or with MT fibers outside the main body of the
array (Figures 3F,G). In control experiments, neither the primary
antibody B-5-1-2, nor the FITC-conjugated secondary antibody
alone gave any specific staining.

Expression of Genes Encoding α-tubulin
Cadmium treatment also had detrimental effects on the
expression of the vast majority of analyzed genes encoding
α-tubulin (Figure 4). A significant decrease (generally over 50%)
in the expression of all estimated genes was observed in moderate
(85 μM) and high (170 μM) Cd treatments. A weak increase in
expression of one gene Tubα3 was found at a high concentration
of Cd compared to control seedlings. Moreover, in the case of
three genes – Tubα1, Tubα5, and Tubα7 – the decrease in genes
expression was more pronounced in response to moderate than
to high Cd concentration.

Accumulation of Tubulin Isoforms Under
Cadmium Stress
Protein extracts were separated by means of two-dimensional
electrophoresis and after western blot, probed with a set of
different monoclonal antibodies against tubulin. In the IEF
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FIGURE 2 | Median longitudinal sections of soybean root apices treated with Cd indicating fluorescence signal strength, mitotic activity, and cortical
MTs structure. The sections were double-labeled with anti-α-tubulin antibody (B-5-1-2) and DNA-binding dye (propidium iodide). An overview of untreated control
roots (A,D,G) and the roots of seedlings treated with 85 μM (B,E,H) or 170 μM Cd (C,F,I). Exposure to Cd results in a differentiated MT immunofluorescence signal,
a strong reduction in the number of proliferating cells (red arrows indicate cells in different stages of mitosis) and different stages of cortical MTs structure disorders in
cells of cortex tissue (yellow arrows). Bar = 100 μm (A–F), 10 μm (G–I).

dimension, a very narrow pH gradient (4.7–5.9) of IPG strips
were used, and a second dimension was carried out with
precast SDS gels in order to improve the resolution and
reproducibility of the tubulin isoforms. No cross-reaction with
other proteins was observed and the secondary antibody alone
gave no immunostaining signal. Moreover, the used antibodies
stained all typical MT arrays appearing in plant cells during
the cell cycle, including cortical MT, mitotic spindle and
phragmoplast.

The most abundant electrophoretic pattern was found
in control roots examined with antibody B-5-1-2, where
six different isoforms of α-tubulin were identified (α1–
α6), which have been numbered according to their position
from acidic to basic pH (Figure 5A). The immunodetected
isotubulins possess an average molecular mass of around
50 kDa and differ in their isoelectric points (pIs) ranging
from approximately 5.1–5.3. After Cd treatment, the level of

identified spots progressively decreased, and under high stress
(170 μM Cd) the less pronounced α1 and α6 isotubulins were
hardly detectable. The observed tendencies were verified by
immunoblotting with other specific antibodies against α-tubulin
(TU-01, Figure 5B) and β-tubulin (TU-06, Figure 5C). The
first antibody recognized five distinct isoforms of α-tubulin,
which in terms of pIs and molecular masses corresponded
to isotubulins α2, α3, α4, α5, and α6 detected with B-5-1-2
antibody. In turn, the anti-β-tubulin antibody immunostaining
made it possible to visualize four isoforms (β1–β4), which
were focused in a distinct single cluster. The β-isotubulins
were slightly more acidic in the IEF first dimension, and
their pI values were in the approximate range 5.0–5.2. Similar
to B-5-1-2 and TU-01 antibodies, the accumulation level of
β-tubulin isoforms, recognized with TU-06 antibody, decreased
significantly after Cd treatment, especially at high concentration
of the metal.
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FIGURE 3 | Images showing the effects of moderate Cd (85 μM) treatment on the mitotic MT arrays of soybean root apical cells. Merged images of
immunofluorescence-labeled MTs and propidium iodide-stained nuclei. Cells of control roots displaying preprophase band (A), perinuclear spindle (B), mitotic
spindle (C) and phragmoplast (D). Different mitotic arrays disorders (arrows) under Cd stress (E–H). Bar = 10 μm.

FIGURE 4 | Relative expression of gene encoding α-tubulin isotypes.
Fold change evaluated through real time PCR after moderate (85 μM Cd) and
high (170 μM Cd) metal treatment. Values shown in the histogram are
represented as a log2 fold change compared to the control sample average of
0 (untreated seedlings). The results represent the mean (+SE) of three
separate experiments.

Post-Translational Modifications of
Tubulin Under Cadmium Stress
Post-translational modifications were examined with the
set of different specific antibodies recognizing tyrosinated,
detyrosinated, acetylated, and polyglutamylated isoforms of
tubulin (Figure 6). The use of the antibody TUB-1A2, which
recognizes a peptide containing the carboxy terminal amino
acid tyrosine of α-tubulin, enabled detection of 11 isoforms
(αT1–αT11, Figure 6A). The distinguished isoforms were
focused in two distinct clusters of spots. The first cluster
consisted of four more acidic isoforms (αT1–αT4) with a

molecular mass of about 50 kDa and pIs at the range 5.1–
5.3. The isoforms in the first cluster were identical in terms
of molecular mass and pI values, with tubulin spots α2–α5
recognized with B-5-1-2 antibody. After Cd treatment, the
intensity of the spots progressively decreased and under high
stress (170 μM) the more acidic isoforms (αT1 and αT2) were
hardly detectable (Figure 6A). The second cluster of spots
(αT5–αT11) migrated more slowly in the SDS-PAGE second
dimension than in the first one, and the tubulin isoforms
were slightly less acidic. The most abundant isoforms αT8–
αT11 were relatively stable after Cd treatment. In contrast,
spots αT5–αT7, which were weakly recognized in the control
roots, became more abundant in roots treated with the metal
(Figure 6A).

A differential signal was also detected in the recognition
of detyrosinated isoforms of α-tubulin (Glu-tubulin), where a
population of 10 distinct spots (αG1–αG10) was distinguished
(Figure 6B). The molecular mass of spots was around 50 kDa,
but their pI values extended over the range of approximately
5.1–5.5. The relative level of most recognized spots significantly
decreased in comparison to the control roots, especially under
high Cd stress (170 μM), where some spots (αG1, αG2)
were not detectable. On the other hand, the accumulation
of three tubulin isoforms: αG3, αG5, and αG6 significantly
increased in Cd-treated roots (Figure 6B). Additionally, spots
αG4, αG7, and αG8 corresponded in terms of molecular mass
and pI values to isoforms α4 (Figure 5A), αT9 and αT10
(Figure 6A), recognized with B-5-1-2 or TUB-1A2 antibodies,
respectively.

To identify the isoforms post-translationally modified by
acetylation, the antibody 6-11B-1 was used, and nine spots of
acetylated α-tubulins (αA1–αA9) were recognized (Figure 6C).
The molecular masses of spots were approximately 50 kDa and
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FIGURE 5 | Representative immunoblots probed with different antibodies against α-tubulin (A,B) and β-tubulin isoforms (C). Individual tubulin isoforms
are denoted by arrows marked α1–α6 for α-tubulin and β1–β4 for β-tubulin. The quantitative results for α-tubulin (antibody B-5-1-2) were calculated as a ratio of pixel
intensity values to area of spots and data were presented considering the control as a reference point (100%). The values represent the average of three independent
measurements with a standard deviation.

their pI values extended between 5.1 and 5.9. The level of less-
pronounced spots αA4–αA9 significantly decreased under high
Cd stress compared to control and moderate stress (85 μM
Cd) levels. A quite opposite situation was observed in the case
of more acidic and more pronounced isoforms αA2 and αA3,
where a progressive increase in their accumulation occurred
(Figure 6C). Moreover, spots αA3, αA4, αA5, and αA6 were
identical in regard to their pI values and molecular masses with
isoforms α4 (Figure 5A), αT9, αT10 (Figure 6A) and αG10
(Figure 6B), identified with B-5-1-2, TUB-1A2 and anti-Glu-
tubulin (6-11B-1) antibodies, respectively.

In the next set of experiments the polyglutamylation of
proteins with GT335 antibody was examined. A pattern of 14
polypeptides (I-XIV) with glutamate side chains was recognized
(Figure 6D). The isoelectric points and molecular masses of the
distinguished spots were in the range of 5.2–5.7 and 45–50 kDa,
respectively. The level of detected peptides under Cd stress
changed differentially. On the one hand, the accumulation of
polypeptides I, III, V, VIII, IX, X, and XII progressively decreased
under moderate and high stress (Figure 6D). On the other hand,
the level of spots II, IV, VI, VII, and XIV distinctively increased
after Cd treatment. Moreover, the polypeptides I, III, VIII, X, and
XII were identical in terms of pI values andmolecular masseswith
tubulin isoforms α4, α5 (Figure 5A), αT9, αT10 (Figure 6A) and
αA6 (Figure 6C), respectively.

Cadmium Effects on the Ultrastructure
of Root Cells
At the ultrastructural level, the cells of control roots displayed
thin cell walls and dense cytoplasm filled with numerous
organelles and structures including mitochondria, endoplasmic
reticulum, and dictyosomes (Figure 7A). In the presence of Cd,
distinct changes in the ultrastructure were observed, the most
prominent of which included development of one central located
vacuole (Figure 7B) and irregular deposition of callose, especially
in high Cd treatment (Figure 7C).

DISCUSSION

The plant MT cytoskeleton promptly rebuilds its arrangement in
response to various intracellular and external stimuli, including
abiotic stresses (Smertenko et al., 1997c; Schwarzerová et al.,
2002; Shoji et al., 2006; Lü et al., 2007; Liu et al., 2009; Xu
et al., 2009). The results presented in this study confirmed that
both root growth and structure of MTs are very sensitive to
Cd treatment. Previous studies performed in our department
revealed that soybean seedlings respond to Cd in the range of the
applied concentrations differentially in the terms of antioxidant
response (Pawlak et al., 2009), activation of phenylpropanoid
pathway (Pawlak-Sprada et al., 2011) and expression of signaling
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FIGURE 6 | Representative immunoblots probed with a set of different antibodies against tyrosinated α-tubulin (A), detyrosinated α-tubulin (B),
acetylated α-tubulin (C) and polyglutamylated proteins (D). Individual tubulin isoforms (spots) are denoted by arrows marked: αT1–αT11 (tyrosinated isoforms),
αG1–αG10 (detyrosinated isoforms), αA1–αA9 (acetylated isoforms) and I–XIV (polyglutamylated proteins). The quantitative results were calculated as a ratio of pixel
intensity values to the area of spots, and the data were presented considering the control or 170 μM Cd as a reference point (100%). Values represent the average
of three independent measurements with a standard deviation.
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FIGURE 7 | Electron micrographs of the root tip cells of control seedlings (A) and plants treated with moderate (B) or high (C) Cd concentrations (85
or 170 μM Cd, respectively). M, mitochondrion; N, nucleus; V, vacuole; ER, endoplasmic reticulum; D, dictyosome; CW, cell wall. Black arrows indicate irregular
deposition of callose in the root cells of Cd-treated seedlings. Bar = 500 nm.

associated genes (Chmielowska-Bąk et al., 2013). Moreover, this
study demonstrates that root tips in high Cd stress (170 μM),
contrary to moderate stress (85 μM), were distinguished by
the lack of dividing cells (Figure 2) and more advanced callose
deposition (Figure 7C). It can be concluded that increasing
concentrations of the metal and resulting reduction in root
growth were strongly correlated with a drop in the number of
mitotic cells and an increase in abnormalities in MT structure
(Figures 2 and 3). A similar pattern of MT dysfunction under
short-term Cd treatment (0.5–24 h) was observed in the root
tips of garlic (Xu et al., 2009), pea (Fusconi et al., 2007), and
onion (Dovgalyuk et al., 2003) treated with very low (0.25 or
10 μM) to relatively high concentrations of the metal (50–
250 μM). A significant reduction in the number of mitotic cells
is in line with other studies showing that exposure to Cd arrests
the entrance of the cells into a division cycle (Fusconi et al., 2006;
Amirthalingam et al., 2013; Arya and Mukherjee, 2014; Shi et al.,
2014). Thus, it seems to be well established that regardless of
the plant species or experimental setup, a general feature of Cd
toxicity is the rapid and sensitive response of theMT cytoskeleton
connected with a decrease in the mitotic index. As yet, the
exact mechanism of noxious Cd action toward MTs is not well
understood. There are a few possibilities which include indirect
Cd influence on MTs functioning by effecting the expression
of tubulin genes, PTMs of the expressed proteins, and MAPs
dysfunction. On the other hand, the direct interaction of the
metal with the sulfhydryl groups of MTs, which are essential for
MT polymerization, cannot be excluded (Wallin and Hartley-
Asp, 1993).

In our study 7 genes for α-tubulin were examined. Most of
the examined genes were down regulated after Cd treatment
with the exception of Tubα3, which under high metal stress was
slightly up-regulated (Figure 4). It is assumed that each plant
species has evolved diverse sets of tubulin genes, which generate
significant heterogeneity in the number of α- and β-tubulin
isotypes. Consequently, isotypes of tubulin are differentially
expressed in relation to the specific organ/tissue, developmental

stage or changed environmental conditions (Breviario et al.,
2013). Thus, in the context of the high heterogeneity of plant
tubulin genes, one cannot exclude the participation of particular
isotypes in specific processes. There are, for example, several
premises that specific tubulin isotypes are associated with the
synthesis of secondary cell wall layers. In Eucalyptus grandis
expression pattern of specific β-tubulin gene was correlated with
the deposition of the cell wall (Spokevicius et al., 2007).Moreover,
in Populus increase in cellulose synthesis was accompanied by
elevated expression of some β-tubulin isotypes (Oakley et al.,
2007). In the present study, ultrastructure analysis of soybean
root cells revealed that after high Cd treatment (170 μM), a
noticeable deposition of callose occurred (Figure 7C), which
may be considered as a cellular defense reaction by modification
of cell wall properties to prevent metal uptake or enable its
immobilization in cell walls (Krzesłowska, 2011; Eleftheriou
et al., 2012; Piršelová et al., 2012). This result together with
the observed induction of Tubα3 gene in response to high Cd
concentration might suggest that expression of at least some
tubulin genes is also process-specific – induction of specific
isotypes might be advantageous in stress conditions (Breviario
and Nick, 2000). However, the majority of examined genes were
significantly down-regulated after Cd treatment (Figure 4), but
there was no differences in transcript level between moderate
and high Cd concentrations. At the same time, the western blot
analyses demonstrated reduction in the accumulation of tubulin
isoforms in the concentration dependent manner (Figure 5). The
observed discrepancy might result from modulation of various
post-transcriptional and post-translational mechanisms (Maier
et al., 2009; Vélez-Bermúdez and Schmidt, 2014). For example,
translation efficiency might be impaired by miRNAs, changes
in mRNA structure or hampered assembly of ribosome-mRNA
complexes. Additionally, it can not be excluded that different
Cd concentrations might have distinct impact on the lifetime of
synthesized proteins.

The disturbance observed in MTs functioning was
accompanied not only by lower accumulations of α- and
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β-tubulin isoforms, but also by significant changes in the level
of their PTMs. In our experimental approach we used the set
of commercial antibodies against PTMs, which have been used
successfully in other plant species (Smertenko et al., 1997a; Wang
et al., 2004; Parrotta et al., 2010; Nakagawa et al., 2013). Based on
animal and human cell models it is well documented that PTMs
can modify interactions with MAPs (Verhey and Gaertig, 2007).
A good example are plus-end tracking proteins (+TIPs), a highly
diverse group of MAPs, which help control MT interactions by
dynamic accumulation at the distal, highly tyrosinated ends of
growing MTs (Akhmanova and Hoogenraad, 2005; Hammond
et al., 2008). In this way, tyrosination of MTs guides +TIPs
localization and influences their function. It is assumed that
stable MTs exhibiting less dynamic behavior are enriched in
detyrosinated tubulin subunits, while dynamic MTs include
tyrosinated tubulin subunits (Webster et al., 1987; Bulinski and
Gundersen, 1991). The results presented in this paper imply that
Cd contributes to stabilization of the MTs because the level of a
quite large part of tyrosinated tubulin isoforms (e.g., αT1–αT4)
significantly decreased in a metal-concentration dependent
manner (Figure 6A). Moreover, the tyrosinated isoforms (αT1–
αT4) were also identical in terms of their pIs and molecular
masses to down-regulated tubulin isoforms (α2–α5) recognized
with B-5-1-2 and TU-01 antibodies (Figure 5). Simultaneously,
the general level of the most pronouncedly detyrosinated
isoforms increased (Figure 6B); however, the pattern of this
modification was not unequivocal. Although, detyrosination of
one of the α-tubulin isoform (αG4) was markedly diminished
under stress conditions, at the same time, a significant increase
of other isoforms (αG3, αG5, and αG6) occurred.

A similar situation was observed in the case of acetylated
isoforms, where the most pronounced isotubulins αA2 and
αA3 significantly increased under stress conditions (Figure 6C).
Acetylation of tubulin is mainly considered a marker of
stable MTs resistant to turnover (Webster and Borisy, 1989),
albeit tubulin acetylation has been also discovered on dynamic
MTs (Perdiz et al., 2011). The function of acetylated MTs
still remains unclear, and most suggestions concern human
cells functioning. It is proposed that acetylation, similar to
tyrosination/detyrosination modifications, can influence the
transport and binding of MAPs to selected MTs (Gardiner
et al., 2007). However, most interactions between MAPs and
MTs take place on the outer surface of MTs, and it remains
a mystery how acetylated tubulin serves as a guide for MAPs
because the primary site of tubulin acetylation Lys40 is orientated
toward the MT lumen. However, the use of a proteomic
approach allowed recognition of some new sites of tubulin
acetylation, some of which are exposed on the outer surface
of MTs (Choudhary et al., 2009). Therefore, a plant-specific
site of tubulin acetylation on the outer surface of the MT can
also not be excluded. A similar pattern in tubulin PTMs was
observed in the sponge Clathrina clathrus, where exposure to
a sublethal concentration of Cd for 24 h reduced the level of
tyrosinated α-tubulin and simultaneously enhanced the level
of detyrosinated and acetylated α-tubulin (Ledda et al., 2013).
The predominance of our study is the higher resolution of
tubulin electrophoretic separation due to the application of

2D technique enabling gaining insight into the population of
particular tubulin isoforms. We have shown that among the
tubulin isoforms, in some the level of modifications increased
(e.g., αT5–αT7), but at the same time, the other detected
isotubulins exhibited a lower level of modifications compared
to control variants (e.g., αT1–αT4). The obtained results draw
attention to the fact that apart from the general level of PTMs,
their great significance under stress or altered environmental
conditions might be associated with increased modification of
particular tubulin isoforms, which in turn might be derived from
specific isotypes of tubulin. Nonetheless, it has been shown that
evolutionarily distant organisms such as sponge and soybean
exhibited a similar pattern of response to Cd stress. The over-
accumulation of detyrosinated and acetylated α-tubulins with a
concurrent depletion of tyrosinated tubulin might be a general
mechanism involved in maintaining the efficient structural and
functional integrity of the MT cytoskeleton under Cd stress.
This assumption might be strengthened by the observations of
MT cytoskeleton functioning under other heavy metal stress
like hexavalent chromium. The studies of different Fabaceae
species indicate on MTs stabilization by increased acetylation of
α-tubulin in a time- and concentration-dependent manner under
chromium stress (Eleftheriou et al., 2013, 2015).

The putative increase in stability of the MT structure after
Cd treatment seems to be in line with changes observed in the
accumulation of polyglutamylated isoforms. In our study we
recognized a population of 14 spots which were modified by
the addition of one or more glutamate residues, but only five of
them (I, III, VIII, X, and XII) have identical properties in terms
of pIs and molecular masses with tubulin isoforms recognized
with B-5-1-2, 6-11B-1, and TUB-1A2 antibodies (Figures 5 and
6). However, one should bear in mind that the antibody GT335,
conversely to other antibodies applied here, might recognize
some other proteins modified by glutamylation. Thus, the rest
of the spots might not be related to tubulin proteins or, due to
the right pI and molecular masses, might be associated, in at
least some cases, with β-tubulin isoforms or γ-tubulin proteins.
In our study the highest levels of polyglutamylated tubulin
isoforms were recognized in control roots, and significantly
decreased after Cd treatment, especially at high concentration
of the metal, where some of them (VIII and X) were almost
undetectable (Figure 6D). The exact function and significance of
tubulin polyglutamylation is elusive and hypothetical, especially
in plant cells. However, studies on human cells demonstrated that
glutamylation, and in particular the generation of long glutamate
side chains, promotes the severing of MTs and in this way
provides a novel mechanism for controlling the mass and stability
ofMTs (Lacroix et al., 2010). By analogy, if the samemechanism is
functioning in plant cells, the decreased level of polyglutamylated
isotubulins revealed in Cd-treated seedlings would restrict the
MT-severing activity and prevent disassembles of stable MTs.
This would be consistent with the results obtained with the use
of antibodies against detyrosinated and acetylated isoforms of
tubulin, which seems to indicate the increased stability of MTs
after Cd treatment.

Taken together, the results obtained in this study confirmed
that the MT cytoskeleton is one of the cellular structures most
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sensitive to Cd stress. The vast majority of examined α-tubulin
genes together with most of recognized α- and β-tubulin isoforms
were down-regulated. However, for the first time in plants,
changes in PTMs level of tubulin isoforms after Cd treatment
were demonstrated. The immunological approach with the use
of a set of antibodies against different PTMs of tubulin imply
the increased stability and reduced turnover of MTs during
stress conditions. The stability of MTs in Cd-treated seedlings
might be associated with a general increase in the levels of
some detyrosinated and acetylated isoforms. On the other hand,
the level of some tyrosinated and polyglutamylated tubulin
isoforms, which are assumed to favor the dynamic turnover
of MT fibers, decreased. A shift in MT dynamics to more
stable MT fibers would enable preferential transport and cell
wall modification, e.g., callose deposition, which prevent Cd
uptake or enable its immobilization in cell walls. The stable
MTs enable the molecular motors to reach their destination,

avoiding an unfavorable situation in which the MT track falls
apart.
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