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Understanding Plant Desiccation Tolerance – A Global

Perspective

One of the most exciting and gratifying privileges of having edited this research topic on
plant desiccation tolerance is that we received papers and reviews on resurrection plant species
(particularly angiosperms) covering five continents, almost six, although unfortunately we did not
quite get there.We were certainly incredibly fortunate for the kind responses of colleagues in Africa
(Berjak and Pammenter, 2013, 2014), South America (Suguiyama et al., 2014), Asia (Mitra et al.,
2013), Europe (Benina et al., 2013; Rakic et al., 2014), and Australia (Griffiths et al., 2014); for
providing us with papers dealing with their own (favorite) particular resurrection plant species and
the recent discoveries that they have made. It is with this in mind that we are moving toward a
more global understanding of resurrection plants, and angiosperm species in particular, although
often referred to as being particularly rich in diversity in southern Africa (Moore et al., 2009).
We have noted that more and more studies are being made of resurrection species around the
globe, as species are being uncovered in China such as Boea hygrometrica (this research topic,
Mitra et al., 2013) and Paraboea rufescens (Huang et al., 2012) both in the Gesneriaceae and in
South America Also in Brazil specifically, with Barbacenia purpurea (this research topic, Suguiyama
et al., 2014) in the Velloziaeace. It is with this in mind that we are realizing more and more
that plant desiccation tolerance in angiosperms is far less uncommon than previously suspected,
and certainly has re-evolved as an adaptive feature on all continents (except for the South Pole,
but this may well be provisional). We start off our quest for understanding plant desiccation
tolerance with the green algae; here we are grateful for the first comprehensive review on this
under-studied area, with a contribution from Holzinger and Karstens (2013). It is clear that algal
cells were obviously the first “plants” to experience desiccation during land plant evolution. Far
from following a simple single strategy, Holzinger and Karstens (2013) show that a variety of
strategies appear to be employed to mitigate desiccation in both the Streptophyta and Chlorophyta
lineages. We were hoping to include lichens and bryophytes (mosses), but these have been
adequately covered in Moore et al. (2009). Our shift into the angiosperms, starts with an unlikely
species, Arabidopsis thaliana (Djafi et al., 2013), however much is inferred, developed, tested
using the Arabidopsis genetic model. In this case, an important area of angiosperm desiccation
tolerance involves signaling (Moore et al., 2009), and Djafi et al. (2013) in their study focus on the
phospoholipase C genes/proteins that are known to be triggered in response to dehydration. Djafi
et al. (2013) have performed a thorough transcriptome study in A. thaliana using the presence of
inhibitors that identified a set of DREB2 (Dehyration Response Element Binding) regulatory genes
involved in dehydration stress responses. Moving into resurrection plants we were fortunate to
have received such a comprehensive review by Dinakar and Bartels (2013) of the various—omics
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studies (i.e., transcriptome, proteome, and metabolome) that
has been performed on a variety of resurrection plants.
Dinakar and Bartels (2013) have done an admirable effort to
cover the variety of species evaluated at the molecular level;
including Craterostigma plantagineum, Haberlea rhodopensis,
Xerophyta viscosa, B. hygrometrica, Sporobolus stapfianus, and
Selaginella stapfianus. A more specific review of the emerging
model resurrection plant species B. hygrometrica from China
was provided by Mitra et al. (2013). The authors conclude
with a number of molecular factors that play a role in
desiccation tolerance of B. hygrometrica before discussing future
perspectives. We received two papers on resurrection plant
species from the Balkan peninsula of Europe one on the genus
Ramonda (Rakic et al., 2014) and the other on the species H.
rhodopensis (Benina et al., 2013). The study by Rakic et al.
(2014) focusses on the genus Ramonda and discusses aspects
of their physiology, cytogenetics and biogeography. Benina
et al. (2013) performed a comparative metabolic profiling study
on H. rhodopensis, Thellungiella halophyla, and A. thaliana
under cold stress showing that sugars, polyols, and organic
acids accumulate as the main metabolites in the resurrection
plant. Suguiyama et al. (2014) show that summer plants of
B. purpurea are primed for desiccation, while winter plants
show a two time-dependent response, involving metabolite
accumulation, particularly the production of caffeoyl-quinic
acids.

The Evolution of Angiosperm Resurrection

Plants – The Secret in the Seeds?

Farrant and Moore (2011) proposed that angiosperm
resurrection plants acquired tolerance by re-activating their
innate seed specific genetic elements in their vegetative tissues.

Again we were fortunate to receive an excellent review on
the lack of desiccation tolerance in recalcitrant (vs. orthodox)
seeds by Berjak and Pammenter (2013). We were delighted
to receive a novel study on the “seed desiccome” of Medicago
truncatula, a seed model system, by Terrasson et al. (2013). This
work identified 48 transcription factors involved in flowering
transition, which the authors suggest were involved in co-opting
the existing pathways during the evolution of desiccation
tolerance in angiosperms. Given that programmed cell death is
involved in seed physiology (Bewley et al., 2013) and processes
such as senescence, it was therefore most satisfying to receive
a review by Griffiths et al. (2014) on the role of senescence
in resurrection plants. This topic has not been investigated
in any depth, the authors draw on their own studies on S.
stapfianus, to buttress their hypotheses on how senescence may
be differentially activated and suppressed in resurrection plant
evolution. The first sequenced genome of a resurrection plant,
the Chinese B. hygrometrica (reviewed here by Mitra et al., 2013)
was published this year by Xiao et al. (2015). This will pave
the way for more functional genomic studies to elucidate the
mechanisms underpinning desiccation tolerance in this as well
as other species. It would seem we are only “at the end of the

beginning” in our quest to understand the remarkable biological
secrets of these fascinating plants.
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