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Aneuploidy with loss of entire chromosomes from normal complement disrupts the
balanced genome and is tolerable only by polyploidy plants. In this study, the monosomic
and nullisomic plants losing one or two copies of C2 chromosome from allotetraploid
Brassica napus L. (2n = 38, AACC) were produced and compared for their phenotype
and transcriptome. The monosomics gave a plant phenotype very similar to the original
donor, but the nullisomics had much smaller stature and also shorter growth period.
By the comparative analyses on the global transcript profiles with the euploid donor,
genome-wide alterations in gene expression were revealed in two aneuploids, and their
majority of differentially expressed genes (DEGs) resulted from the trans-acting effects
of the zero and one copy of C2 chromosome. The higher number of up-regulated
genes than down-regulated genes on other chromosomes suggested that the genome
responded to the C2 loss via enhancing the expression of certain genes. Particularly,
more DEGs were detected in the monosomics than nullisomics, contrasting with their
phenotypes. The gene expression of the other chromosomes was differently affected,
and several dysregulated domains in which up- or downregulated genes obviously
clustered were identifiable. But the mean gene expression (MGE) for homoeologous
chromosome A2 reduced with the C2 loss. Some genes and their expressions on C2
were correlated with the phenotype deviations in the aneuploids. These results provided
new insights into the transcriptomic perturbation of the allopolyploid genome elicited by
the loss of individual chromosome.

Keywords: aneuploids, monosomy, nullisomy, transcriptome, Brassica napus

Introduction

The aneuploidy for one species refers to the occurrence of one or more extra or missing
chromosomes in the normal number (2n) in the cells, leading to an unbalanced chromosome
complement. The loss of even one copy of one particular homologous chromosome pair

Abbreviations:DEGs, differentially expressed genes; PMCs, pollen mother cells; FISH, fluorescence in situ hybridization; FC,
fold change; COV, coefficient of variation; GEDDs, gene expression dysregulation domains; HE, homoeologous exchanges.
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(monosomy) is usually lethal for animals and diploid plants,
but the gain of one (trisomy) or two (tetrasomy) copies of
one chromosome is tolerable (Siegel and Amon, 2012). The
exception is the sex chromosomes which show natural variation
in copy number. It is long recognized that plants have better
tolerance to the aneuploidy than animals. The whole set of the
trisomics with one extra copy of each chromosome pair has been
developed for some plants, and Datura trisomic plants display
differing phenotypes depending on the identity of the triplicated
chromosome (Blakeslee, 1922). Particularly, the complete series
of monosomics and even nullisomics with the loss of one
specific chromosome pair have been successfully established in
some important allopolyploid crops, including the allohexaploid
common wheat (Triticum aestivum L.), for the closely related
genomes in the allopolyploid species from different progenitors
can compensate functionally each other (Sears, 1954). The
genetic study of the aneuploids contributes greatly to our
early understanding of genome structure and homoeologous
relationships between the different genomes in allopolyploids
(Sears, 1954) and to the chromosome-based sequencing of the
very large wheat genome (Mayer et al., 2014).

Aneuploidy should adversely affect the various aspects
of normal development, because each chromosome, or
chromosome pair, plays a definite role in the development
of the individual, as pointed out by Boveri (1902) more than
one century ago. All species including plants, animals and
single-celled yeast studied respond to the aneuploidy by showing
abnormalities and defects in phenotype and growth, reduced
fitness and high-risk of mortality (McClintock, 1929; Singh
et al., 1996; Antonarakis et al., 2004; Henry et al., 2010; Siegel
and Amon, 2012). The phenomenon that the severity of growth
defects scaled with the size of the trisomic chromosome was
observed in all organisms studied, and an additional trend
conserved across species is that monosomies (even segmental
monosomies) produce more pronounced phenotype than
trisomies (Siegel and Amon, 2012). Autosomal monosomies
are inviable in human. Besides Down syndrome associated
with Trisomy 21, the more correlations between aneuploidies,
even segmental aneuploidies and many syndromes and diseases
in human were elucidated continuously (Antonarakis et al.,
2004; Morrow, 2010). Furthermore, as Boveri (1902) firstly
proposed aneuploidy as a potential cause of cancer, structural
and numerical chromosome aberrations have been revealed to
be the most obvious and most distinguishing characteristics
of cancer genomes (Gordon et al., 2012), and aneuploidy can
predispose to tumor development (Matzke et al., 2003; Gordon
et al., 2012).

It has been recognized that the aneuploidy for whole
chromosome or even chromosomal segment has a severer impact
on the modulation of gene expressions than the change of
ploidy (Birchler and Newton, 1981; Guo et al., 1996). This might
result from the disruption of strict stoichiometry of all dosage-
sensitive gene products encoded by a chromosome or subset of
chromosomes, proposed by the theory of gene balance (Birchler
et al., 2001; Henry et al., 2006). With the high-throughput
technologies (microarrays and RNA-seq) for studies of global
gene expression in aneuploidy for plants and animals (Huettel

et al., 2008; Zhang et al., 2010; Mäder et al., 2011; Letourneau
et al., 2014), the trans-acting effects across remainder genome
were found to be quite prevalent, rather than the cis-acting
effects of the variant chromosomes, except for a dearth of trans-
acting effects in yeast (Torres et al., 2007). Moreover, after
tactfully eliminating the noise of genetic variation via a pair
of monozygotic twins discordant for trisomy 21 in human,
Letourneau et al. (2014) demonstrated that the differential
expression between the twins was clustered in domains along
all chromosomes, implying that these dysregulated domains
probably involved in some symptoms of trisomy 21.

The whole-chromosome aneuploidy and structural alterations
occur frequently in the nascent autopolyploids and allopolyploids
(Mestiri et al., 2010; Xiong et al., 2011; Chester et al., 2012;
Zhang et al., 2013), while natural species maintains a fixed and
stable chromosome number. The loss and gain of chromosomes
frequently involved homoeologous chromosome replacement
and compensation, and the chromosome numbers at or near
the euploid level were maintained possibly for dosage balance
requirements. Chromosome loss and gain were also unequal
across the different homologous chromosome pairs in Brassica
and wheat (Xiong et al., 2011; Zhang et al., 2013). The important
crop oilseed rape (Brassica napus L., 2n = 38, AACC) is an
allotetraploid species in the Brassicaceae family and was formed
∼7500 years ago by the natural hybridization between B. rapa L.
(2n = 20, AA) and B. oleracea L. (2n = 18, CC) (Chalhoub et al.,
2014). The preferential loss of some C-genome chromosomes
from the complement of B. napus is recurrently induced in its
intergeneric crosses with other crucifers (Chen et al., 2007; Du
et al., 2008; Tu et al., 2010), which makes it feasible to produce
aneuploids missing C-genome chromosome. One nullisomics
(2n = 36) of B. napuswas previously obtained from its mixploidy
hybrid with the crucifer Orychophragmus violaceus (Hua and Li,
2006), but the identity of the chromosome lost was uncertain.
The nullisomics showed the much smaller plant stature and
very earlier flowering than the euploid genotype of B. napus. As
the genomes of B. napus and its two extant progenitors have
been sequenced (Wang et al., 2011b; Chalhoub et al., 2014; Liu
et al., 2014), their genomic data available should facilitate the
transcriptomic analyses of the nullisomics.

In this study, the global gene expressions of the nullisomics
and the monosomics derived were investigated in comparison
with original euploid B. napus, with the aims (1) to determine
the origin of the missing chromosome, (2) to reveal the dosage
effects of different copies of one particular chromosome on the
transcriptomic disturbances, (3) to find the possible chromosome
distribution of dysregulated domains for gene expressions, (4)
to identify the molecular cause of the morphological variations
associated with the chromosome loss. These findings should
provide new insights into the impact of aneuploidy on genome-
wide transcriptomic changes in plant allopolyploids.

Materials and Methods

Plant Materials
One nullisomics (2n = 36) of Brassica napus L. (2n = 38) was
derived from the progenies of one mixoploidy hybrid between B.
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napus L. cv. Oro and another crucifer Orychophragmus violaceus
(L.) O. E. Schulz (2n = 24) as pollen parent, by preferential
elimination of the chromosomes from the latter species (Hua and
Li, 2006). The identity of the lost chromosome pair remained
to clarify. The nullisomics produced mainly the nullisomic
progenies with the same phenotype and chromosome number
(2n = 36) by selfing for several generations. After the euploid
B. napus L. cv. Oro was pollinated by the nullisomics, the seed-
set was good and the monosomic plants (2n = 37) were easily
obtained for study. The plants from the selfed seeds of “Oro” and
the nullisomics and putative monosomic seeds from the crossing
of “Oro” and the nullisomics were established in the experimental
field and greenhouse for cytological and transcriptomic analyses.
The chromosome complement of the nulli-/monosomic plants
was identified by cytological observations before RNA-seq.

Cytology and FISH Analyses
In order to reveal the chromosome complement of the nulli-
monosomics, young ovaries from the flowering plants were
collected and treated with 2mM 8-hydroxyquinoline for 3–4 h at
22◦C, and subsequently fixed in Carnoy’s solution I (3:1 ethanol:
glacial acetic acid, v/v) for 24 h, and stored at−20◦C. For meiotic
analyses, flower buds were fixed in Carnoy’s solution I at room
temperature, transferred to fresh mixture for 3–5 times and
stored at−20◦C. Cytological observation was made according to
the method of Li et al. (1995).

The plasmid DNA of BAC BoB014O06 specific for C-genome
of B. oleracea (provided by Susan J. Armstrong, University
of Birmingham, Birmingham, UK) was labeled with biotin-11-
dCTP by random priming using the BioPrime DNA Labeling
System kit (Invitrogen, Life Technologies) according to the
manufacturer’s protocol (Invitrogen, Life Technologies). The
probe was used to identify the C-genome chromosomes in the
mono-/nullisomics. Slide preparations of chromosome for BAC-
FISHwere carried out mainly according to the methods of Zhong
et al. (1996) and the procedures of BAC-FISH analyses followed
the procedure of Cui et al. (2012). FISH analysis with this probe
demonstrated that 16 and 17 chromosomes were fully labeled in
the somatic cells (Figures S1A–C), and eight bivalents (8II) and
eight bivalents and one univalent (8II+ 1I) in pollenmother cells
(PMCs) (Figures S1D–F) of the nulli-/monosomics, respectively.
So the lost chromosome pair in the nullisomics belonged to the C
genome.

RNA Extraction and Preparation of cDNA
Libraries
The growth order of the leaves on the young plants in greenhouse
were marked, and the newly expanded third leaves without
petioles from six plants of each genotype were collected and
divided into two replicates (three plants per replicate) and
immediately stored in liquid nitrogen for RNA extraction.
Using TRIzol reagent (Invitrogen, Life Technologies) according
the manufacturer’s protocol, total RNA was extracted from
two biological replicates for each genotype. NanoDrop ND
1000 (NanoDrop technologies) was used to initially calculate
the quality and quantity of the extracted RNA, and then the
RNA Integrity Number (RIN) value was assessed by Agilent

Technologies 2100 Bioanalyzer (Agilent). Only when the value of
RIN was higher than 8, the RNA was used to prepare the c-DNA
library according to the TruSeq RNA Sample Prep v2 protocol.
Subsequently, the 100 bp paired-end reads were generated via
Illumina HiSeq™ 2000.

Mapping Reads to the Reference Genome and
Gene Annotations
To generate clean reads, the sequenced data were trimmed
via removing adapters, low-quality sequences or bases and
contaminations or overrepresented sequences. From the
formulation of the sequence information of B. napus (Chalhoub
et al., 2014), the clean reads were directly aligned to the reference
genome (Brassica_napus.annotation_v5.gff3.) using Burrows–
Wheeler Alignment (BWA version: 0.7.5a-r405), allowing up to 1
mismatched base. Then the genes were assembled with Cufflinks
according to a reference-guided method (Trapnell et al., 2010).
The differentially expressed genes (DEGs) in leaf between three
different samples were computed on RNA-seq data by using
CuffDiff2 (Trapnell et al., 2013). Eventually, the GO annotations
for the DEGs in leaf were determined via Blast2GO (E < 1e-6),
then the information of GO classification containing three levels
was downloaded from WEGO (http://wego.genomics.org.cn/),
and the graph was emerged by Orgin Pro (version 8.0).

Gene expression data are available at Gene Expression
Ombinus (GEO), a database affiliated with NCBI and the
accession number was GSE70400.

Results

Morphology of Mono-/Nullisomics
In comparison with the euploid B. napus cv. “Oro,” the
nullisomics (2n = 36) which lost one chromosome pair from
C genome presented the phenotypic change and much smaller
plant architecture, including small light-green leaves, smaller
plant size, shorter height, smaller flower, non-apical dominance
(Figure S2). The height of its mature plants was only about
half of “Oro.” Particularly, nullisomic plants flowered about
2 months earlier than “Oro,” for they produced flowers in
November/December, after sown at the beginning of October
in Wuhan, while the plants of “Oro” would flower in February
of next year. The deviation in morphology and flowering
habitat suggested that the missing chromosome pair in the
nullisomics carried the genes controlling the plant height and
vernalization in B. napus. The nullisomic plants produced
short pods with several seeds after selfing, but the number of
seeds in pods increased after hand-assisted pollination. Their
pollen mother cells (PMCs) showed normal chromosome pairing
with 18 bivalents at diakinesis and predominantly equal 18:18
segregations at anaphase I (AI) (Figure S1), and unequal 17:19
segregations at low frequency. Then the nullisomic plants
produced the majority of nullisomic progeny and minority of
others (2n = 37, 38). The nullisomic progeny which still showed
the small plant size were easily distinguishable from those (2n =
37, 38) with much larger stature, and their rates decreased with
the advance of generations. Such plants with 2n = 38 should be
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nulli-tetrasomics of B. napuswith the same chromosome lost and
another duplicated.

The monosomic plants exhibited similar morphology to
normal “Oro,” but they flowered earlier about 10 days (see
Figure S2). Interestingly, their euploid progeny (2n = 38)
from selfing also tended to flower earlier, consistent with the
result that some subtle developmental phenotypes of aneuploid
individuals of Arabidopsis thaliana appeared in the diploid
progeny of aneuploid parents (Henry et al., 2010). This might
support the perspective that long-term phenotypic consequences
of aneuploidy could persist after chromosomal balance restored
(Henry et al., 2010).

Chromosome C2 Loss in the Nullisomics
Detected by RNA-seq
To further determine the identity of the missing chromosome
and to draw a comprehensive picture of the perturbations
of genome-wide gene expression in the nulli-monosomics, we
performed their RNA-seq and compared with the euploid. After
trimmed, 38.8–74.0 million clean reads were generated from
each sample. By the access to the recently released genome data
of B. napus genotype “Darmor-bzh” (Chalhoub et al., 2014),
these clean reads were directly mapped to the reference genome.
Totally, 72.75–76.08% clean reads of per sample, including
27.49–30.38% multiple mapped reads, were mapped to the
reference genome. Detailed information of sequencing data was
summarized in Table S1.

Then we calculated the number of reads per gigabyte along all
chromosomes of three different samples to determine the origin
of themissing chromosome pair (Figure 1A). Notably, compared

with euploid “Oro,” the fold changes of the chromosome C2
were sharply reduced to 0.476 and 0.091 in mono/nullisomics,
respectively, while the values of remainder chromosomes varied
from 0.79 to 1.40 with the average 1.01 in monosomics and
from 0.82 to 1.45 with average 1.06 in nullisomics. Subsequently,
box plots of all expressed genes (FPKM > 0, FPKM: Fragments
per Kilobase of transcript per Million mapped reads) along all
chromosomes of three samples were employed to validate the
expression divergence, which demonstrated that little or nothing
was expressed along C2 in nullisomics (Figure 1B). From the
gene expression specific for each chromosome, it was concluded
that the chromosome pair C2 in B. napus was missing in the
nullisomics.

Global Differentially Expressed Genes between
Aneuploid and Euploid
The values of FPKM of genes were calculated to assess the
transcript expression profiling. To analyze the impact of the
loss of the chromosome C2 on the global genes expressions in
leaves, the CuffDiff 2 was performed to determine the DEGs
(DEGs, q < 0.05) via evaluating the value of log2(fold_change) of
genes. From the comparison Oro vs. monosomics, 14,874 DEGs
including 7528 (50.61%) up-regulated genes and 7436 (49.39%)
down-regulated genes were identified, but the up- and down-
regulated ones were comparable (χ2 test, P > 0.05). In the
comparison Oro vs. nullisomics, 10,431 DEGs included 5038
up-regulated genes (48.30%) and 5393 (51.70%) down-regulated
(Table 1), with a significant bias to the latter (χ2 test, P < 0.05).
The result that more DEGs were detected in the monomsomics
than the nullisomics (14,874 vs. 10,431) when compared with

FIGURE 1 | Gene expression evidences for the loss of chromosome C2. (A) Stack column of relative number of mapping reads along all chromosomes.
(B) Box plot of Log2(FPKM) of the total expressed genes (FPKM > 0) and those along all chromosomes. *Represents the outlier values. 1% extremely high or low
value of gene expression were defined as outlier values in this study.
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TABLE 1 | Summary of up- and down-regulated genes in three discordant
paired comparisons.

Oro vs. mono Oro vs. null Mono vs. null

DEGs Proportion DEGs Proportion DEGs Proportion

(%) (%) (%)

Up-regulated 7528 50.61 5038 48.30 3664 41.14

Down-
regulated

7346 49.39 5393* 51.70 5243** 58.86

Total 14,874 – 10,431 – 8907 –

*Chi-square test, P < 0.05.
**Chi-square test, P < 0.01.

the euploid was out of expectation, for the phenotype of the
monosomics was similar to that of the euploid, but nullisomics
was much more deviated than the monosomics from the euploid.
However, only 579 DEGs (3.89%) in monosomics and 858 DEGs
(8.22%) in nullisomics were directly contributed by the missing
chromosome C2, which demonstrated the dominant trans-acting
effects of the zero and one copy of this chromosome on the
majority of DEGs in the two aneuploidies. The comparison
between monosomics and nullisomics (mono vs. null) found
8907 DEGs (Table 1). From the Venn diagram of DEGs for
two groups (Figure 2A), 7370 common DEGs were identified,
occupying 70.65% of DEGs in Oro vs. mono and 49.55% in Oro
vs. null, respectively. To gain deeper insights into transcriptional
regulation of the common DEGs, we excluded those common
DEGs that presented different expression patterns (up- or down-
regulated) in Oro vs. mono and Oro vs. null, while, they
were accounted for only 1.85% of the common DEGs. The
number of co-upregulated genes was slightly higher than that
of the co-downregulated ones (Figure 2B). These numerous and
well conserved DEGs implied that the response to the absence
of the chromosome C2 was strong in the monosomics and
nullisomics.

Subsequently, we excluded those DEGs along the variant
chromosome C2 and calculated the shares of DEGs at different
extents to reveal a detailed description that the remainder of
the genome responded to zero and one copy of C2 (Table 2).
These data not only showed that the number of up-regulated
genes was slightly higher than down-regulated genes in both
combinations, but also showed that with the increase of the
fold change (FC), the up-regulated genes increasingly occupied
the priority, suggesting that the remaining components of the
genome probably established a mechanism against the deficiency
of C2 via raising the expression of certain genes.

Distinct Impacts of Aneuploidy on Different
Chromosomes
We focused on the issue that whether all retained chromosomes
in the aneuploids showed random contributions of these
DEGs, or certain ones and even some specific regions had
preferential responses. Therefore, we calculated the proportion
of genome-wide expressed genes and DEGs of the remainder
chromosomes in two different paired comparisons (Table 3).

The ratio [R(DEGs/EGs)] of DEGs to expressed genes (EGs)
and ratio [R(EGs/RGs)] of expressed genes to referenced
genes (RGs) were applied to measure the differences among
chromosomes.

Notably, only 26.08 and 24.40% expressed genes along
C2 were detected in Oro vs. mono and Oro vs. null,
respectively, significantly lower than the percentages along
reminder chromosomes, ranging from 33.58 to 47.52% for Oro
vs. mono and from 33.98 to 47.19% for Oro vs. null (One
sample t text, Po/m = 4.98E-12; Po/n = 8.35E-13). Then, we
assessed the proportion of expressed genes (FPKM > 0) along
all chromosomes in euploid “Oro.” Similarly, the proportion of
expressed genes along C2 was the lowest (P = 2.03E-9), although
C2 harbored a medium gene number (see Table S2). For the fact
that only Trisomy 19, the smallest autosome in mouse, could
evade embryonic lethal (Siegel and Amon, 2012), as well as the
Trisomy 21 in humans (Antonarakis et al., 2004), it seemed
possible that only nullisomic C2 in B. napus was survivable and
stably inherited. In addition, a higher proportion (43.77% vs.
36.11% in Oro vs. mono and 43.43% vs. 35.75% in Oro vs. null) of
expressed genes of A genome than that of C genomewas observed
in both comparisons, possibly because of the fact that muchmore
transposable elements constituted and remolded the C genome
(Zhang andWessler, 2004; Liu et al., 2014). Nevertheless, for two
pairs, no significant difference of ratio of DEGs between A and C
sub-genomes was confirmed (37.59 vs. 37.25% in Oro vs. mono
and 25.46 vs. 27.44% in Oro vs. null), suggesting that both A and
C genome were similarly affected by the loss of C2.

Then, we assessed the value of R(DEGs/EGs)of remainder
individual chromosomes to reveal whether certain chromosomes
had preferential or suppressed contributions. Taking out the
lowest C8 (33.84%) and the highest C6 (42.11%), the proportion
of the DEGs of remainder chromosome showed a narrow
range within 5% (35.68–40%) in Oro vs. mono. However, after
excluding two extreme values, 19.32% for C7 and 32.04% for A7,
the ranges raised up to over 7 (21.11–28.85%) in Oro vs. null.
For the slight distinction of R(DEGs/EGs)value among remainder
chromosomes and the discordance of contribution between two
paired comparisons, it was hard to determine which chromosome
invariably made a consistent contribution to the DEGs in both
aneuploids. Therefore, based on the values of R(DEGs/EGs) of
remainder chromosomes, we divided them into three categories,
low group (the first five), medium group (the intervening eight)
and high group (the last five). According to this strategy, three
chromosomes (C3, C5, and C7) were classified into the low group
for two comparisons, suggesting these chromosomes probably
were less susceptible to aneuploidy. Other three chromosomes
(C1, A7, and C6) were categorized into the high group, and
moreover, they invariably occupied the top three, implying that
they were sensitive to aneuploidy.

More Severe Perturbations of Gene Expressions
in Monosomics than Nullisomics
Another intriguing phenomenon was that substantially more
DEGs were detected in monosomics than nullisomics. We have
demonstrated that it was not the certain chromosomes which
preferentially responded to the burst of DEGs in Oro vs. mono.
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FIGURE 2 | Differentially expressed genes (DEGs) between B. napus euploid and aneuploids. (A,B) DEGs among three comparisons (A) and 7370 common
DEGs (B) between “Oro” vs. mono and “Oro” vs. null were shown in Venn diagram.

TABLE 2 | Summary of up- and down-regulated genes along remainder chromosomes within different fold changes.

FC Oro vs. mono Oro vs. null

Up-
regulated

Ratio (%) Down-
regulated

Ratio (%) Total Ratio (%) Up-
regulated

Ratio (%) Down-
regulated

Ratio (%) Total Ratio (%)

DEGs 7435 52.0 6860 48.0 14,295 – 5027 52.5 4546 47.5 9573 –

FC ≥ 1 6748 53.4 5980 47.4 12,628 88.3 4369 53.6 3788 46.4 8157 85.2

FC ≥ 5 2787 57.6 2049 42.4 4836 33.8 1596 53.9 1363 46.1 2959 30.9

FC ≥ 10 1371 56.5 1056 43.5 2427 17.0 1163 57.5 861 42.5 2024 21.1

Possibly, the whole gene expression of monosomics was more
severely perturbed than in nullisomics. Then the genome-wide
differential expression between the aneuploids and euploid was
assessed, with a view to the distribution of the fold changes of
gene expression along all chromosomes (see Figure S3). For each
remainder chromosome, except some regions of certain ones, the
high fold changes (|FC|> 2) of gene expressions were manifested
more obviously in Oro vs. mono than Oro vs. null. Subsequently,
the Coefficient of Variation (COV) of gene expression per
chromosome was analyzed to compare the dynamic variation of
gene expression among three types. The COV was always higher
in both aneuploids, except for the chromosomes A2, C3, and
A5 which showed slightly lower COV in nullisomics. Compared
to nullisomics, a tendency of higher COV was observed in
monosomics, except for the chromosomes A3, A4, A10, C3, C4,
and the missing C2, however, the difference between them was
negligible for A4 (14.493 vs. 14.496) and C3 (11.445 vs. 11.496)
(Figure 3).

Dysregulated Domains along Certain
Chromosomes
Several dysregulated domains of differential expressions between
the aneuploids and euploid in which up- or downregulated genes
obviously clustered captured our attentions, for these domains
probably responded to the C2 loss. Totally, nine clear domains

along distinct chromosomes (Figure 4) were revealed. These
domains were either up- or downregulated in both pairs or only
in one pair, but the upregulated domains consistently comprised
the majority and the downregulated ones were mainly from the
nullisomics. Among these domains, the minimum covered ∼0.3
Mb region on C5 and the largest one located on A7 extended to
∼7.2 Mb region. Remarkably, differential expressions of genes
were almost up-regulated in several dysregulated domains in
two aneuploids, for example, the proportion of DEGs to EGs
rose to 66.67% in Oro vs. mono and 76% in Oro vs. null for
the upregulated domain along C1, considerably higher than the
mean expression. The detailed information of all the domains was
summarized inTable 4. Interestingly, the top three chromosomes
(A7, C1, and C6) occupying preferential proportion of DEGs
in both paired comparisons contained one large dysregulated
domains, suggesting that these dysregulated domains mainly
energized the boom of DEGs.

Conspicuous Decline of Mean Gene Expression
for Homoeologous A2
As the chromosomes A2 and C2 in B. napus were highly
homoeologous chromosome pairs and were syntenic along their
entire length (Parkin et al., 2005), it was fascinating how the
gene expression for A2 was affected by the loss of C2, reduced
or enhanced for dosage compensation? To reveal the expression
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FIGURE 3 | More severe dynamic variation of gene expression in monosomics. Coefficient of Variation (COV) of gene expression per chromosome is
calculated to measure the gene expression deviation. Red panel represents for “Oro,” blue panel for monosomics, and green panel for nullisomics.

FIGURE 4 | Dysregulated domains of gene expressions on different chromosomes. Log2 fold change of gene expression is performed to measure the
expression deviation. Chromosomes A4, A7, A9, C1, C4, C6, and C9 harbor one domain in both comparisons, and C5 and C8 have one only in “Oro” vs. nullisomics
comparison. The change between “Oro” and monosomics is shown in blue dot and change between “Oro” and nullisomics in red dot.

differences among chromosomes, the fold changes of mean gene
expression (MGE) of individual chromosomes except the absent
C2 were compared between two aneuploids and euploid. The
tendency of fold changes between two pairs (Figure 5) was
comparatively similar (Correlation test, R = 0.91), consistent
with above result of distributions of gene expressions, which
implied a similar mechanism responding to the absence of C2
in both mon-/nullisomics again. But contrary to the expectation,
the fold change of A2 turned out to be the lowest one in both
pairs (1.16 in Oro vs. mono and 0.85 in Oro vs. null), and was
significantly different from others of remainder chromosomes

in both pairs (Po/m = 1.17E-05, Po/n = 1.68E-07). So the gene
expression from A2 was reduced, not improved in the two
aneuploids.

However, it should be pointed out that, although only
uniquely mapped reads were used for analyses, some transcript
profiling belonging to one chromosome were very likely assigned
to its homoeolog because of sequence similarity between
homoeologous pairs and the challenge for RNA-seq to completely
discriminate contributions from the homoeologous transcripts.
For instance, a handful of genes along C2 were detected to slightly
express in nullisomics. Whether the reduction in gene expression
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TABLE 4 | Summary of location, size, biased regulation and proportion of dysregulated domains.

Chro Location of domains Size of domains (Mb) Biased regulation Proportion of DEGs of EGs

Oro vs. mono Oro vs. null Oro vs. mono (%) Oro vs. null (%)

A4 16.9–19.1 2.2 Up Up 35.6 42.5

A7 16.8–24.0 7.2 Up Up 44.5 41.7

A9 32.2–33.8 1.6 Up Severely Up 41.0 32.6

C1 31.9–34.8 2.9 Almost up Almost up 66.7 76.0

C4 45.6–48.9 3.3 Down Almost down 45.0 67.5

C5 39.7–40.0 0.3 – Down 50.0 55.6

C6 20.3–27.1 6.8 Up Up 47.3 33.8

C8 36.4–38.4 2.0 – Down 35.6 55.2

C9 4.6–6.8 2.2 Almost up Almost up 71.1 74.4

FIGURE 5 | The trends of fold change (FC) for mean genes expression along individual chromosome between “Oro” and aneuploidies. The fold change
between “Oro” and monosomics [FC(mono/Oro)] is shown in blue solid line and the fold change between “Oro” and nullisomics [FC(null/Oro)] in red solid line. Both of
modified fold change (MFC) of A2 are shown in dotted line.

of A2 was chiefly attributed to insufficient contributions from
homoeologous C2 or to decreased expression per se should
be taken into considerations. To eliminate the interference of
insufficiency of C2, we assumed that the homoeologous genes
along A2/C2 made equal contributions to each other and the
transcripts profiling of C2 in nullisomics completely derived
from A2 and then we introduced an adjusted value � to modify
the MGE of A2 in deficient types. The � was calculated by the
following formula:

�= NC2

NA2
MC2

NC2 and NA2 represented for the number of expressed genes of
C2 and A2 in “Oro,” respectively, and MC2 for the MGE of C2
in nullisomics. After adding Δ to MGE of A2 in nullisomics and
�/2 toMGE of A2 in monosomics, the fold change of MGE of A2
was still significantly lower than others in both pairs (see dotted
line in Figure 5, Po/m = 1.22E-05, Po/n = 5.75E-07). Altogether,
our findings suggested that the deficiency of C2 resulted in the
decreased MGE of homoeologous A2 per se, which implied a

molecular basis for chromosomal dosage balance in B. napus
(Xiong et al., 2011).

Gene Ontology (GO) Classification Of DEGs
By applying the tool of Blast2GO to determine GO annotations
and to predict the functions of DEGs by classifying them into
various biological processes, 14,310 (96.2%) and 9872 (94.6%)
DEGs were totally annotated in Oro vs. mono and Oro vs. null,
respectively. Both groups of DEGs were categorized into 52 s GO
terms, except for “synapse part” and “synapse” terms, including
only one same gene particularly annotated in Oro vs. null (see
Table S3).

Among these GO terms, “cell” and “cell part,” “catalytic
activity” and “binding,” “metabolic process” and “cellular
process” invariably occupied the majority for both paired
comparisons, in “cellular component,” “molecular function”
and “biological process,” respectively. And several terms merely
contained sparse genes for both pairs, such as “protein tag” in
“cellular component” and “cell killing” in “molecular function”
(Figure 6). It was noteworthy that the term of “structural

Frontiers in Plant Science | www.frontiersin.org 9 September 2015 | Volume 6 | Article 763

http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive


Zhu et al. Transcriptome in Brassica aneuploids

FIGURE 6 | GO assignment of annotated DEGs in “Oro vs. mono” and “Oro vs. null.” DEGs are annotated by three categories: cellular component, molecular
functions, and biological process. The left and right of x-axis represent the up-regulated (Red for “Oro vs. mono” and blue for “Oro vs. null”) and down-regulated genes
(Green for “Oro vs. mono” and cyan for “Oro vs. null”).

molecule activity” was significantly overrepresented by the up-
regulated genes for both pairs (χ2 test, P < 0.01), which
probably supported the view that the structure of genome was

undergoing a period of instability in aneuploidy (Huettel et al.,
2008; Zhu et al., 2012). Another finding for both pairs was that the
downregulated genes was dominant in the term of “transcription
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regulator activity” (χ2 test, P < 0.01), consistent with the
fact of a priority of downregulated gene expression. However,
in term of “translation regulator activity,” the upregulated
genes manifested booming (χ2 test, P < 0.01), strengthening
the idea that some transcript expression profilings would be
adjusted at the process of translation (Stingele et al., 2012).
It seemed likely that the sophisticated mechanisms responding
to deficiency of C2 not only functioned at the beginning of
transcription but also threaded throughout the process of gene
expression. Subsequently, the GO annotation of common DEGs
was performed to manifest the divergence of gene expression
between transcription and translation again. We noticed that
despite immense gulf of DEGs number between two pairs, the
proportions of DEGs of GO terms were exceedingly similar
for both pairs (Correlation test, R = 0.9997), considering
a comparatively high proportion of common DEGs and an
extremely similar variation tendency of fold change of each
chromosome, which further highlighted the speculation that a
similar mechanism emerged to respond to the missing of C2 for
both aneuploids.

Gene Expressions Related to Morphology in
Aneuploids
Considering the shorter height/non-apical dominance and earlier
flowering in the aneuploids, we focused on the expression
changes of those genes involved in plant hormones and signaling
pathways because of its crucial role in coordination with many
growth and behavioral processes in the plant life cycle, meanwhile
those genes speculated to regulate the flowering time were
considered as well. With the BrassicaDatabase (http://brassicadb.
org) and the sequencing information of B. napus (Chalhoub et al.,
2014), 450 genes and 212 (see Table S4) genes (see Table S5)
were identified for auxin and flowering time, respectively. Among
the predicted genes for auxin, the gene BnaC02g47640D on C2
that was orthologous to PIN4 and encoded a putative auxin
efflux carrier and essential for auxin distribution in Arabidopsis
thaliana (Weijers et al., 2005) was significantly suppressed in the
nullisomics, for its expression was 4.48, 3.76, and 0 in “Oro,”
mon-/ nullisomics, respectively. But no expressed genes on C2
were found for GA (GA1-GA5) synthesis and receptors (GID1a,
GID1b, GID1c, and GAI) in “Oro,” mon-/ nullisomics. For those
related genes on other chromosomes, the expression levels within
each gene showed no significant and constant differences among
three samples, except for rare one. This might suggest that the
expression of these genes at early stage of plant growth was not
decisive for these traits.

As the key genes responsible for flowering were FLOWERING
LOCUS C (FLC), FRIGIDA (FRI), and FLOWERING LOCUS T
(FT), the expression variation of these genes between aneuploids
and euploid was compared, with the detection of 8 FLC, 4 FRI,
and 7 FT paralogs in B. napus corresponding to their orthologs
of A. thaliana, respectively. The FLC paralogs located on A2,
A3, A10, C2, C3, C9 chromosomes and had two copies on A3
and C3, and their average expression was invariably maintained
at comparatively low level (FPKM < 1) in three distinct types
(Table 5), probably attributing to the essential condition of long
daylight exposure for the accumulation of FLC proteins (Turck

TABLE 5 | Gene expression of FLOWERING LOCUS T (FT) and
FLOWERING LOCUS C (FLC).

Genes Gene_ID Gene expression (FPKM)

Oro Mono Null

FT BnaA07g33120D 11.04 13.46 2.63

BnaA02g12130D 0.61 1.20 13.63

BnaA06g21490D 0.00 0.19 0.00

BnaA07g25310D 0.00 0.48 16.99

BnaC02g45250D 0.47 0.00 1.59

BnaC03g52010D 0.88 0.56 44.99

BnaC06g27090D 0.00 1.00 14.29

Total 12.99 16.88 94.13

Fold change − 1.30 7.24

BnaA02g00370D 3.82 2.38 2.57

FLC BnaA03g02820D 0.00 0.40 0.33

BnaA03g13630D 1.50 0.41 0.27

BnaA10g22080D 0.00 0.00 0.00

BnaC02g00490D 0.00 0.00 0.00

BnaC03g04170D 0.92 0.20 3.65

BnaC03g16530D 0.19 0.00 0.11

BnaC09g46500D 0.48 0.84 0.54

Total 6.90 4.24 7.47

Fold change − 0.61 1.08

et al., 2008). The FRI paralogs distributed on A3, C3, A10,
C9, but showed similar expression levels among three samples.
Seven FT paralogs appeared on A2, A6, A7, C2, C3, C6, with
two on A7. Interestingly, three FT paralogs (one on A7, C3,
and C6) were sharply upregulated and another one on A7
markedly downregulated and the fold change of total expression
of FT paralogs rose to 1.3 in monosomics and spectacularly
to 7.2 in nullisomics (Table 5), but the other showed no or
low expression. These results gave a rational explanation for
the different extents of earlier flowering in mono-/nullisomics
than euploid. Taken together, despite the inescapable reality of
temporality and spatiality of gene expression, the expression
alterations of the specific genes provided molecular mechanisms
behind the respective morphological deviations associated with
the loss of the chromosome C2.

Discussion

Global Perturbation of Gene Expression in
Aneuploids
Transcriptional changes caused by aneuploidy must be described
in terms of chromosomes and/or chromosome regions with
numerical changes and whether alterations in expression are
in cis or trans regions, to detect whether transcriptional and
protein expression changes is in direct proportion to the copy
number alteration of the DNA or whether the cell minimizes
the effects of aneuploidy through dosage compensation (Huettel
et al., 2008; Gordon et al., 2012). In yeast and mammals, gene
expression appears to correlate well with gene copy number,
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but the case in Drosophila and plants is some different. The
study of gene expression in aneuploid Arabidopsis and maize
has shown that aneuploidy alters the expression levels of
several genes dispersed across the genome (Huettel et al., 2008;
Makarevitch and Harris, 2010). Thus, mechanisms exist in some
organisms that dampen the gene dosage imbalances caused by
aneuploidy. The phenotypes associated with changes in gene
copy number can not only be the result of the deregulation of
the affected gene(s), but may also reflect trans-acting effects on
other chromosomal loci or even more global alterations of the
entire regulatory system (Prestel et al., 2010). In Arabidopsis
trisomy 5, the alterations in gene expression were detected on
all five chromosomes, though higher expression reflecting a
dosage effect occurred on the triplicated chromosome 5 (Huettel
et al., 2008). Consistently, the gene expression across every
chromosome, not just chromosome 21 was revealed to be altered
in human Trisomy 21, which provided molecular mechanisms
behind Down’s syndrome (Letourneau et al., 2014; Pope and
Gilbert, 2014).

Transcriptomic change in B. napus aneuploidy via powerful
RNA-seq technology not only determined the origin of missing
chromosome, but revealed strong impact of missing copies of one
chromosome on global gene expression, consistent with the other
results of genome-wide perturbations of gene expression from
Arabidopsis, fruit fly and human (Huettel et al., 2008; Malone
et al., 2012; Letourneau et al., 2014). The detection of the much
higher number of DEGs caused by monosomy than nullisomy
(14,874 vs. 10,431) in B. napus was some unexpected and
discordant with the phenotype performance. Subsequently, more
severe perturbation of global gene expression was confirmed in
monosomic individuals. These interesting results echoed with
the conclusion that variable copies of individual chromosomes
or chromosome segment had more detrimental effects on the
phenotype than the altering of complete set chromosomes, as
well as more modulation of gene expression (Birchler and Veitia,
2007).

As the A and C genomes in B. napus descended from a
common ancestor and underwent a recent event of genome
triplication special to Brassica genus (Paterson et al., 2004;
Wang et al., 2011b; Cheng et al., 2013; Liu et al., 2014),
the highly duplicated nature of the ancestral genomes should
further reinforce the genomic and gene expression plasticity
in the derived allotetraploid (Jackson and Chen, 2010) and
led to the formation of more complex gene expression and
regulatory networks in B. napus. According to the hypothesis
of gene balance, haploinsufficiency of the whole chromosome
C2 could result in a perturbation of stoichiometric relationships
between gene products and disturb the regulatory networks
of gene expression, giving rise to severe genomic imbalance.
However, it was conceivable that a multitude of homeologous
genes independently contributed to the biological functions
and to the viability of the nullisomcs. Therefore, when the
C2 was lost completely, some regulatory interactions and gene
expression networks involved by the genes along C2 was likely
to replace by the available substitutes, due to independent
function on biological progress of homoeologs. Then the
genomic incompleteness of the nullisomics would be recovered

to some extent. So we thought the hypothesis of genomic balance
elucidating the distinction between chromosome variation and
ploidy change (Birchler and Veitia, 2007) appeared to be valid for
the explanation of the present results.

Compensatory Upregulation of Certain Genes of
Remainder Genome
We noted that, after taking out expressed genes (FPKM > 0)
along variant C2, the number of expressed genes of remainder
genome significantly increased with the reduction on C2 and
the trend was much stronger in monosomics (Figure 7A).
Different coverage of sequencing between “Oro” (7.0) and
monosomics (10.4) potentially accounted for their gap for
the fact that some rare transcripts need higher depth to be
detected (Tarazona et al., 2011), however, it loosely explained
the difference between monosomics and nullisomics (10.6).
Alternatively, the elevated expressed genes in deficient types
compensated for the insufficiency of gene expression along C2.
Consistent with this notion was that the distributions of relative
frequency (Figure 7B) and cumulative frequency (Figure 7C) of
gene expressions (FPKM > 0) were statistically indistinguishable
for the three types (Kolmogorov–Smirnov test, the P-value were
always approximate 1). Although the average of gene expression
of remainder genome was compensatory upregulation in both
aneuploids (the fold change was 1.53 in monosomics and 1.16 in
nullisomics), the downregulated genes were dominant (11,914 vs.
18,581 in Oro vs. mono, 19,720 vs. 18,504 in Oro vs. null; χ2 test,
P < 0.01), suggesting a higher variable extents of upregulated
genes. To determine the bias of up- or down-regulated genes,
the genes of remainder genome were classified into the low
(0 < FPKM < 10), medium (10 < FPKM < 100) or high
(FPKM > 100) expression levels, in comparison with those of
“Oro.” For the low expression level, the upregulated genes were
significantly more than downregulated genes in both pairs (χ2

test, P < 0.01). For the medium and high levels, the skew
changed to downregulated genes (χ2 test, P < 0.01), but the
average gene expression within the two levels were still higher
in both aneuploids. All together, these evidences suggested that
a compensatory mechanism by upregulation of certain genes of
remainder genome formed to respond to the C2 loss at RNA level
in aneuploids.

Dysregulated Domains as a General Feature of
Aneuploidy
Down’s syndrome has been presumed for decades to be
mainly caused by an overabundance of the products of
chromosome 21 genes. But a recent comparison of identical
human twins, only one of whom has Down’s syndrome, revealed
the altered gene expression across every chromosome, not
just chromosome 21, suggesting that an extra copy of any
chromosome could disrupt general gene regulation (Letourneau
et al., 2014; Pope and Gilbert, 2014). Significantly, the increased
and decreased gene-expression levels alternated consistently
across large chromosomal segments, called gene expression
dysregulation domains (GEDDs). Furthermore, GEDDs with
increased expression corresponded to otherwise repressed
genomic domains, whereas GEDDs with decreased expression
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FIGURE 7 | Gene expression compensation of remainder chromosomes in aneuploides. (A) The number of expressed genes (FPKM > 0) along remainder
chromosomes. (B,C) Cumulative frequency (B) and relative frequency (C) for expressed genes [log2(FPKM)] are calculated by dividing gene expression into 26
expression bins.

corresponded to domains normally characterized by active
transcription. So the difference between expressed and repressed
genes was diminished in people with Down’s syndrome, leading
to the genome-wide flattening of gene-expression levels. With
a smoothing function to define the domain borders, a total of
337 GEDDs were identified in the trisomy 21 discordant twins.
The sizes of these domains were from 9 kilobases (kb) to 114
megabases (Mb), with median size of 3.2 Mb. However, no
such domains were elucidated from the transcriptome analysis
by microarrays for trisomy 5 in A. thaliana, though substantial
changes in gene expression occurred, primarily on the triplicated
chromosome 5 but also on the four non-triplicated chromosomes
(Huettel et al., 2008). In particular, most genes on chromosome
5 showed higher expression reflecting a dosage effect, but cases
of apparent dosage compensation and even down-regulation
were also observed. The percentage of up-regulated genes across
other chromosomes was generally higher than that of the
downregulated. The possible reasons for no detection of GEDDs
inArabidopsiswere that the less sensitiveness of microarrays than
RNA-seq would probably mask the actual differences of some
genes between controls and testing materials (Wang et al., 2010;
Mäder et al., 2011), or that themethod of smoothing function was
used for the data analysis of Trisomy 21 in human.

As we lacked the knowledge of the smoothing function,
but defined the obviously dysregulated domains by scanning
the distribution of gene expression fold changes along the
chromosomes, only nine domains of up- or down-regulation
were revealed on different chromosomes, and then it was
impossible to find the constant pattern of domain distribution,
as in down’ syndrome. The GEDDs in human were speculated
to be the result of extra chromosomal materials, and the similar
effect on the dysregulation of gene expression of other trisomy
would uphold this hypothesis. Although these discrete and
independent dysregulated domains in plant and human appeared
to be quite different at organizational form, we reasoned that
they were likely to be a feature of transcriptome of aneuploidy.
These dysregulated domains probably attributed to the more
tolerance to the adverse effects of aneuploidy in plants (Siegel
and Amon, 2012). Further works are needed to undermine
the transcriptional changes in terms of chromosomes and/or

chromosome regions in plant aneuploids. If feasible, the cell and
tissue-type difference in gene expression as done in human and
animal should give more information for the change pattern in
plant aneuploids.

Chromosomal Location of Genes and Traits by
Nullisomics
Traditionally, the complete set of aneuploids established for
one species was used to chromosomally locate the certain traits
controlled by single gene or a few genes. The chromosome
mapping of one trait was conveniently deduced by its
simultaneous disappearance with one chromosome in one
nullisomics. But the aneuploid syndromes associated with the
complex relationships of trait development made the direct
location difficult. From the smaller plant stature, short height
and earlier flowering shown by the B. napus nullisomics,
the chromosome C2 lost was assumed to harbor the gene(s)
responsible for the plant height and flowering habitat. The
dwarfism was often caused by the mutations in genes controlling
the biosynthesis or signaling pathway of the plant hormones
including auxin, brassinosteroids (BRs), and gibberellins (GAs).
The dwarf genes, sd1 in rice and Rht-B1b and Rht-D1b in
wheat, crucial for the Green Revolution were involved in the GA
biosynthesis and signaling pathways, respectively (Peng et al.,
1999; Sasaki et al., 2002). The dwarf mutants in B. rapa and
B. napus were caused by the mutations in a DELLA protein
which functioned as the GA signaling repressor, and the gene
related was located on the chromosome A6 (Muangprom et al.,
2005; Liu et al., 2010). As the formation of apical dominance was
regulated by the polar auxin transport (PAT)mediated by carrier-
type auxin influx and efflux proteins, auxin should affect the plant
height. Two types of membrane proteins in plants were involved
in cellular auxin efflux: the PIN-FORMED (PIN) family and
the PGP (P-glycoproteins) sub-family of ABC transporters. In
Arabidopsis eight PIN-related sequences have been characterized
(Vieten et al., 2005), PIN4 encoded a putative auxin efflux carrier
and was essential for auxin distribution (Weijers et al., 2005). As
the gene BnaC02g47640D onC2 chromosomewas orthologous to
PIN4, its subsequent suppression of expression likely contributed
to the reduced plant height of the nullisomics, while the
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comparable expression level in the monosomics to the euploid
which was recovered by the single copy of this chromosome was
partly responsible for the nearly normal stature.

The key genes controlling the vernalization and photoperiod
responses were FLC, FRI, and FT (Johanson et al., 2000; Wigge
et al., 2005). The gene FLC has only one copy in A. thaliana. In
the ancestral Brassica genome prior to triplication, the genomic
regions harboring FLC and FRI on two chromosomes were
brought together through block rearrangements in ancestral
karyotype, which were represented three times on A2, A3, and
A10 in B. rapa (Trick et al., 2009). The paralogous regions of
B. oleracea were on C2, C3, and C9. Thus, in B. oleracea, FRI
mapped quite closely toVERNALIZATION INSENTIVE 3 (VIN3)
(in the same block as FRI and required for vernalization), as
well as its major target FLC. As the genomes of Brassica diploids
experienced the triplication event after they diverged from A.
thaliana, FLC was expanded from one copy in A. thaliana to
four or five in B. rapa and B. oleracea and nine or more in
B. napus (Tadege et al., 2001; Schranz et al., 2002; Okazaki
et al., 2007; Chalhoub et al., 2014). The QTL associated with
flowering time variation in B. napus were localized on only some
of these predicted chromosomes (A2, A3, C2, C3), and also on
other chromosomes (Raman et al., 2013). Some of these QTLs
were clustered in genomic regions on chromosomes A2, A3,
C2, and C3, and one on C2 had significant effect in delaying
flowering. The largest QTL for flowering time corresponding
to BoFLC2 in B. oleracea was also detected in the same region
of C2 chromosome (Okazaki et al., 2007). So the loss of C2
chromosome in B. napus should result in the earlier flowering.

Two B. oleracea FRI orthologs (BoFRIa and BoFRIb) were
identified and mapped to chromosomes C3 and C9, respectively,
while the third FRI appeared to have been lost from C2 during
evolution in the genotypes studied (Irwin et al., 2012). BoFRIb
was highly conserved between the three sequenced genotypes, but
BoFRIa contained polymorphic region. Among the six BoFRIa
alleles found in diverse genotypes of B. oleracea, two common
ones were over-represented in vegetable types with a winter
annual or biennial habit. Specially, BnaX.FRI.d from one B.
napus winter variety which was confirmed to be homolog of
BoFRIa in B. napus had both of the deletions identified in
one of the common alleles. BnaX.FRI.d is also present in the
European winter type and Chinese semi-winter type parental
lines of one mapping population (Wang et al., 2011a). As the
chromosome C2 of the cultivated B. oleracea germplasm analyzed
carried no functional FRI alleles, its loss seemed not responsible
for the earlier flowering in the nullisomics. But the precise
parents of the natural B. napus which was formed ∼7500 years
ago were unknown, and the genetic differentiations between
the present cultivated types and the ancient types certainly
occurred. Homoeologous exchanges (HEs) in diverse B. napus
genotypes were most frequent between chromosomes An1-Cn1,
An2-Cn2, and An9-Cn9, and contributed to the diversification

of winter, spring, and Asian types of oilseed rape (Chalhoub
et al., 2014). In other side, the existence of the FLC on C2
with major effect suggested that it was functional in regulating
the flowering or interacted with other FLC and FRI loci.
Because of the temporality and spatiality of gene expression
and the association between the plant height and flowering, the
expression alterations of the specific genes behind the respective
morphological deviations should be studied at more growth
stages and conditions.

Finally, aneuploids of one species can be used for the
chromosome-based genome sequencing to effectively reduce the
complexity of a highly redundant genome (Mayer et al., 2014). As
the assembled sequences only cover 79% of the whole genome in
B. napus including two highly homologous genomes (Chalhoub
et al., 2014), the nullisomics should assist in discriminating the
homoeologous set A2/C2 with extreme similarity.
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respectively, Bar: 5µm.

Figure S2 | Morphology of B. napus monosomics and nullisomics. (A1–A3)
Flowering plants of “Oro,” monosomics and nullisomics (from left to right). Bar:
20cm. (B1–B3) Flowers of “Oro,” monosomics and nullisomics. Bar: 1cm.

Figure S3 | Distribution of differential gene expression changes between
two aneuploidies and “Oro” along all chromosomes. Log2 fold change of
gene expression is performed to measure the expression deviation. The change
between “Oro” and monosomics is shown in blue dot and change between “Oro”
and nullisomics in red dot.
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