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Properties encompassed by host-pathogen interaction networks have potential to give

valuable insight into the evolution of specialization and coevolutionary dynamics in

host-pathogen interactions. However, network approaches have been rarely utilized in

previous studies of host and pathogen phenotypic variation. Here we applied quantitative

analyses to eight networks derived from spatially and temporally segregated host (Linum

marginale) and pathogen (Melampsora lini) populations. First, we found that resistance

strategies are highly variable within and among networks, corresponding to a spectrum

of specialist and generalist resistance types being maintained within all networks. At

the individual level, specialization was strongly linked to partial resistance, such that

partial resistance was effective against a greater number of pathogens compared to

full resistance. Second, we found that all networks were significantly nested. There

was little support for the hypothesis that temporal evolutionary dynamics may lead

to the development of nestedness in host-pathogen infection networks. Rather, the

common patterns observed in terms of nestedness suggests a universal driver (or

multiple drivers) that may be independent of spatial and temporal structure. Third, we

found that resistance networks were significantly modular in two spatial networks, clearly

reflecting spatial and ecological structure within one of the networks. We conclude that (1)

overall patterns of specialization in the networks we studied mirror evolutionary trade-offs

with the strength of resistance; (2) that specific network architecture can emerge under

different evolutionary scenarios; and (3) network approaches offer great utility as a tool

for probing the evolutionary and ecological genetics of host-pathogen interactions.

Keywords: rust, virulence, avirulence, specialist, generalist, bipartite, temporal, spatial

Introduction

Interactions between wild hosts and their pathogens are typically characterized by high levels
of genetic diversity for partner specificity, such that pathogens vary in their capacity to infect
individual hosts, and hosts are likewise variable in their ability to resist attack by individual
pathogens (Laine et al., 2011; Tack et al., 2012). Furthermore, hosts and pathogens vary not only
in terms of specificity for individual partners, but also in terms of partner range (i.e., breadth of
resistance; pathogen host-range) (Barrett et al., 2009a; Barrett and Heil, 2012). Understanding
the factors that influence the genetic specificity of host-parasite interactions is important as
patterns of association underlie susceptibility to disease, and thus many aspects of disease
dynamics and epidemiology (see Thrall et al. this issue for review). However, the ecological and
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evolutionary factors that determine variation in individual
specialization and partner breadth in host-pathogen interactions
are generally not well understood.

Polymorphisms for resistance and infectivity in wild host–
pathogen interactions are typically measured by performing
pair-wise infections of host lines by pathogens isolated from
natural populations. The results of such pair-wise infections
can be represented as a matrix or bipartite network (see Box 1

for description), where the rows indicate host genotypes, the
columns indicate pathogen genotypes, and the cells within
the matrix indicate whether a given combination results in
resistance or infectivity. Bipartite-network analytical methods
and approaches have been used extensively in observational
studies of mutualistic (e.g., Vázquez et al., 2009; Guimarães
et al., 2011), and host-parasite (e.g., Vázquez et al., 2005; Morris
et al., 2014) networks, but have been only rarely used to
analyse patterns of phenotypic variation in host resistance and
pathogen infectivity (but see Flores et al., 2012; Poisot et al.,
2013). Network approaches are of potential utility for analysing
host-pathogen interactions because the statistical structure of
such networks offers a standardized framework for describing
and quantifying patterns of specialization within host-pathogen
interactions (Blüthgen et al., 2006; Vacher et al., 2008; Weitz
et al., 2013). Specificity can be simply estimated for individuals,
or the network as a whole, based on the number of links
(i.e., resistance or infectivity interactions) an individual has
with its antagonistic partners (Poisot et al., 2013). In addition,
patterns of specialization can be characterized by estimating two
key network properties, nestedness and modularity, within the
infection or resistance matrix. Nestedness is a network property
describing the extent to which specialists interact with a subset of
partners that also interact with generalists, whereas modularity
indicates the extent to which resistance or infectivity interactions
can be partitioned into distinct groups, each of which has many
internal interactions but few with other groups (see Box 1 for a
detailed description of these key statistical properties).

Patterns of specialization can in turn be employed to make
inferences regarding evolutionary dynamics, in that specific
structures in host-pathogen networks may be predicted given
different evolutionary scenarios. For example, modular patterns
of specialization might be expected to emerge in networks where
there is spatial or temporal segregation of host and pathogen
genotypes (e.g., local adaptation; ecotypic divergence; cryptic
speciation). Simply put, spatially or temporally co-occurring
individuals within a network may be predicted to be more likely
to fall within the same module, and the greater the evolutionary,
spatial or temporal separation, the stronger the forces generating
modularity should be. Nested patterns of specialization may
likewise emerge under specific evolutionary conditions. For
example, within a network constructed from a temporal sequence
of interacting hosts and pathogen populations, patterns of
nestedness emerging over time may be consistent with the
classically envisaged stepwise coevolutionary arms race (Beckett
and Williams, 2013) occurring via selective sweeps of novel
resistance and infectivity alleles. Under this simple model in
which pathogens evolve over time to expand their range of
infectivity, and hosts counter-evolve to become more resistant,
the host range of past pathogens should be sequentially nested

within the host range of future pathogens. In other cases,
spatial variation in the distribution of resistance and infectivity
genotypes and fitness trade-offs (Thrall and Burdon, 2003) may
maintain variation in specificity within or among populations,
which may in turn result in promote the nesting of resistance and
infectivity specificities.

The underlying genetic architecture of the interaction has
also been predicted to be important in generating patterns of
specificity and hence network structure (Flores et al., 2012;
Moury et al., 2014). Several different models that describe
the genetic nature of host-pathogen interactions have been
proposed, the most important of which are the gene-for-gene
(GFG) and matching allele (MA) models (see Thrall et al.
this issue for review). The GFG model is commonly described
in plant-pathogen associations and is generally well supported
by phenotypic and genetic data as well as by a detailed
mechanistic understanding of genes governing plant immune
responses and pathogen infection (Dodds and Rathjen, 2010). In
GFG systems, resistance is dependent upon plants producing a
specific resistance gene product that recognizes specific pathogen
elicitors (known as Avr genes). Pathogens that do not produce
an elicitor recognized by a given R gene are able to infect. In
contrast, the MA model describes an interaction where infection
is dependent upon the pathogen carrying a gene or allele that
is a specific match to a corresponding host genotype. Hosts
without the recognized allele are resistant (Thrall et al. this issue).
All else being equal, the topology of resistance and infectivity
matrices (i.e., patterns of nestedness and modularity) is likely
to more or less reflect underlying genetic interaction. Under a
GFG model with additive variation in the number of genes or
alleles conferring additional resistance or infectivity specificities,
cross-infectivity, where a parasite with a given genotype is able
to infect hosts with different genotypes, is common (Thrall and
Burdon, 2002). Pathogen mutations conferring new infectivity
do not necessarily result in recognition by an alternative R gene.
The same is true for host resistance. Hence, there is strong
potential for the maintenance of variation in partner breadth
within GFG interactions, and the genetic interaction matrix is
seemingly naturally nested (Thrall et al. this issue). In contrast,
under the MA model, pathogen mutations conferring new
infectivity simultaneously result in the emergence of resistance in
existing host genotypes. Hence, cross-infectivity is rare, and the
interaction matrix is inherently modular (Moury et al., 2014).

The main aim of this paper is to apply network based
approaches to investigate patterns of specialization within
spatial and temporal plant-host fungal-pathogen interaction
(i.e., resistance/infection) networks. Linum marginale is a
perennial herb endemic to southern, temperate areas in
Australia. Melampsora lini is an autoecious, macrocyclic foliar
rust pathogen that is restricted in Australia to L. marginale.
Utilizing existing data from the M. lini-L. marginale interaction,
network structure in resistance and infectivity networks can
be investigated in a relatively extensive, balanced and rigorous
way. Disease outcomes in this system are governed by a GFG
interaction and extensive polymorphisms for host resistance
and pathogen infectivity form the basis for selective changes
in host and pathogen populations (Burdon, 1994; Barrett et al.,
2009b; Thrall et al., 2012). Furthermore, sampling can readily
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BOX 1 | The structure of host-pathogen coevolutionary networks.

A network can be defined as a set of items, called nodes, connected by links if they

interact. In host pathogen interactions, networks have two sets of nodes (each

set representing individual hosts or pathogens) and are therefore termed “bipartite

networks.” Links between nodes represent resistance or infection phenotypes

(depending on the focus of the analysis). In such a network, specificity can be

estimated for individuals or the network as a whole simply based on the number

of links an individual has with its partners. In addition, patterns of specialization are

often characterized by estimating two key network properties commonly known

as nestedness andmodularity (Figure 1). In host-pathogen networks, nestedness

relates to the differentiation of resistance or infectivity specificities along a

contained gradient, within which specialists (individuals with few links) interact with

subsets of the partners interacting with generalists (individuals with many links)

(Flores et al., 2012). For example, in a maximally nested infection network, the

most specialized pathogen can infect only the hosts most susceptible to infection.

The next most specialized pathogen could infect the host most susceptible to

infection as well as one additional host, and so on (Figure 1A). Nestedness is a

commonly encountered property in mutualistic networks (Jordano et al., 2003),

and significant nested structures have been also found in studies of host-parasite

(Vázquez et al., 2005; Vacher et al., 2008) and bacteria-phage (Flores et al., 2012;

Poisot et al., 2013) networks. Modularity indicates the extent to which resistance

or infectivity interactions can be partitioned into groups (referred to as modules:

Figure 1C) with many interactions within groups but few among them (Blüthgen

et al., 2008). In a maximally modular network there would be no cross-infections

between pathogens in one module and hosts in another. Modularity differs from

nestedness in that specificities cannot be simply ranked by increasing range.

Rather, interactions take place among distinct clusters of host and pathogen

individuals, within which distinct patterns of specificity (including nestedness) may

be evident (Flores et al., 2012). Like nestedness, modularity is commonly detected

in species interaction networks (Olesen et al., 2007; Fortuna et al., 2010).

Key Network Properties:

• Nodes: bipartite networks have two sets of nodes with each set representing

individual hosts or pathogens.

• Links: resistance or infection phenotypes “linking” the nodes

• Nestedness: is a network structure describing a scenario where specialist

individuals or genotypes (e.g., hosts with a very narrow resistance spectrum)

interact with a subset of partners with which generalist individuals or genotypes

(e.g., hosts with a very broad resistance spectrum) also interact (Bascompte

et al., 2006).

• Modularity: A module (sometimes called a compartment) in a network is

formed by a group of genotypes or individuals, which are more connected

to one another than to individuals in other groups (Olesen et al., 2007).

A modular network consists of a series of interconnected modules. In a

host-pathogen network, modularity indicates the extent to which resistance

or infectivity interactions can be partitioned into groups (referred to as

modules: Figure 1C) with many links within groups but few among

them.

• Connectance: is the proportion of links or realized interactions (p) over all

possible interactions (P × H) (C = p/(P × H)).

FIGURE 1 | Network structure properties of host-pathogen

interactions. Two important properties of ecological networks are

nestedness and modularity. Here we show four cartoons representing

different host-pathogen genetic interaction matrices, each with different

levels of nestedness (A, B) and modularity (C, D). For each matrix we show

hosts in columns and pathogens in rows. Black squares in each matrix

represent resistance between a plant and a pathogen genotype and gray

squares represent host susceptibility. In (C), red solid lines define

host-pathogen interaction modules.

be done across a range of defined temporal and spatial scales,
and the system is well characterized from various ecological and
evolutionary perspectives. The pathogen has substantial fitness
effects on the host, with 60–80% reductions in population size
documented during severe epidemics (Jarosz and Burdon, 1992).
Plants recruit via predominantly self-fertilized seed (Burdon
et al., 1999) and the pathogen is almost exclusively clonal
within the region from which all pathogens used in this
study were collected (Barrett et al., 2008). Previous work has
established roles for local adaptation (Thrall et al., 2002), gene-
flow (Barrett et al., 2008), trade-offs (Thrall and Burdon, 2003),
diversifying selection (van der Merwe et al., 2009), and spatio-
temporal dynamics (Thrall et al., 2012) in driving evolutionary
change in interacting host and pathogen populations. The
results of these studies provide clear evidence: (i) of a genetic
basis for race-specific resistance and infectivity; (ii) that there

is variation among individuals for these traits within and
among populations; and (iii) that pathogen attack impairs host
fitness.

To examine how patterns of specialization in infectivity
and resistance develop in the L. marginale-M. lini interaction
we analyzed data networks collected as part of previous
investigations of spatial and temporal evolutionary dynamics.
Specifically, we analyzed data from two spatial (Thrall et al.,
2002; Laine et al., 2014) and six temporal interaction networks
(Thrall et al., 2012). We asked: Do patterns of specificity vary
across different networks within the same interaction? Are
there significant modules and nested structures within different
spatial and temporal networks? Are these related to spatial and
temporal segregation of interacting genotypes? How do patterns
of specificity change across different networks and can drivers of
change be identified?
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Materials and Methods

Datasets
To investigate and compare spatial and temporal variation in
infectivity and resistance in the L. marginale-M. lini interaction
we utilized datasets described in three previously published
papers (Table 1: Thrall et al., 2002, 2012; Laine et al., 2014).
Sampling methodologies and experimental techniques were very
similar across all of these studies. In each case, host and pathogen
materials were collected from spatially discrete populations in
open, subalpine grasslands within Kosciuzko National Park,
NSW (the number of individuals sampled varied depending
on the original study). For each study, host and pathogen
collections were timed to coincide with the peak epidemic period
(January–Febuary, in the year of collection). At each site, host
seed (maternal families) was collected from multiple unique
L. marginale individuals (in this area L. marginale is tightly
inbreeding; Burdon et al., 1999). At the same time, single pustules
of M. lini were sampled haphazardly, each from a single pustule
on a unique infected plant. After collection each pathogen isolate
was purified though a process of single-pustule isolation to
ensure genetic purity. Each sample was then put throughmultiple
rounds of increase on a universally susceptible L. usitatissimum
c.v. Hoshangabad plant, vacuum dried and stored at 5C until the
beginning of the reciprocal inoculation experiments.

To perform reciprocal inoculation experiments, host plants
were propagated (one seed per maternal family) until they
reached a suitable size to provide cuttings. Shoots were then
cut from host plants and placed in water-filled tubs. Each tub
included a cutting of the fully susceptible L. usitatissimum c.v.
Hoshangabad to confirm pathogen viability. Tubs containing
shoots of 14 host lines plus the control were inoculated with
approximately 10mg of spores from a M. lini isolate. The
following day, tubs were transferred to a naturally lit greenhouse
and infection was scored 12–14 days later. Recorded infection
types were: 1 = fully susceptible [large sporulating pustules
(uredia) on all leaves]; 2 = partial resistance (large sporulating
pustules on younger leaves only, with no pustules on the oldest
leaves); 3 = partial resistance (large pustules only on one or two
of the youngest leaves); 4 = partial resistance (no sporulation,
but with necrotic flecks on older leaves); 5= full resistance (fully
incompatible reaction with no macroscopic evidence of damage

TABLE 1 | Summary of datasets used in this study for assessing spatial and temporal patterns of specialization in host-pathogen interaction networks.

Reference Focus Name (abbreviation) Scale Size of Matrix (s) Reciprocity

Thrall et al., 2002 Local adaptation

network

Local Adaptation (LA) Six populations, single timepoint 60 pathogen × 120

host matrix

Fully reciprocal among

all localities

Laine et al., 2014 Local and ecotypic

adaptation network

Bogs-Hills (BH) Two ecotypes, four populations

per ecotype, single timepoint

80 pathogen × 73 host Fully reciprocal among

all localities and

ecotypes.

Thrall et al., 2012 Six networks examining

temporal change and

adaptation

Kiandra (K); N1; N2;

B1; B2; B3

Six populations, four timepoints

within each population

40 pathogen × 60 host

for each of 6 networks

Fully reciprocal among

years within

populations. No among

population testing

or sporulation). Previous genetic studies suggest that both full
and partial resistance reactions are race-specific and likely under
the control of single, dominant genes for resistance in the host
(Burdon, 1994).

The dataset of Thrall et al. (2002) includes hosts and
pathogens collected from six localities and were designed to
test for pathogen local adaptation. The six populations can be
subdivided into three spatial groups; northern (GI, G3) and
southern (SHI, SH2) Kiandra Plain; and Wild Horse Plain
(WHP1, WHP2). The northern and southern population groups
are approximately 10 km apart, and are 6.1 km and 4.6 km from
the group located on Wild Horse Plain, respectively. Within
each group, interpopulation distances average 460 m. Resistance
and infectivity structure of host and pathogen populations was
determined in a fully reciprocal fashion by exposing 20 plant
lines to 10 pathogen isolates for each of the six populations,
giving a total of 7200 individual inoculation tests. This dataset
is subsequently referred to as the LA network.

The dataset of Laine et al. (2014) includes hosts and pathogens
collected from eight localities and were designed to test for local
adaptation and ecotypic divergence. Four of these populations
(CBL Hill, CEM, G3, and SH2) occurred on slopes and are
referred to as hill populations. Four populations (CBL Bog,
G2, P1, and PS) were on flatter bog habitats and are called
bog populations. The plants from these two habitat types can
be distinguished by their morphology and are also genetically
differentiated (Thrall et al., 2001), thus they are considered to
represent different plant ecotypes. The pathogens from the two
habitat types cannot be distinguished morphologically, but are
genetically differentiated and are likewise considered different
ecotypes. The study populations are situated in three areas of the
Kosciuszko region that are separated by some tens of kilometers.
Fully reciprocal inoculation testing involved 10 host lines and 10
pathogen isolates chosen from each of the populations, giving a
total of 6400 individual inoculation tests (in the final analysis, 7
host lines were removed owing to low germination and hence
high levels of missing data). This dataset is subsequently referred
to as the BH network.

The dataset of Thrall et al. (2012) used host and pathogen
materials collected from six localities in the general area of
the Kiandra Plain in the Kosciusko region. The experimental
design in that study was focused on studying temporal change
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within populations. Unlike the two spatial datasets (Thrall et al.,
2002; Laine et al., 2014), no reciprocal inoculation testing was
performed among populations, thus each population is treated as
a separate network here. Fully reciprocal inoculation testing (host
by pathogen by year) within each population was conducted over
three time points for the host (2004, 2006, and 2008) and four
time points for the pathogen (2002, 2004, 2006, and 2008), to give
a total of 2400 pairwise inoculations per population and 14,400
overall.

Data Analyses
Data Transformations
In this manuscript we analyzed data largely from the perspective
of host resistance (as opposed to pathogen infectivity). For
graphical analyses infection type 1 plants were classified as
susceptible; infection type 2 and 3 plants were classified as
partially resistant, and infection type 4 and 5 plants were
classified as fully resistant. For all other analyses, we utilized
only binary information: infection type 1 plants were classified
as susceptible, and all other infection reactions were classified
as resistant. Although the use of binary data resulted in the
loss of information from some networks, the presence of only
single (partial) resistance types in some networksmeant that both
qualitative and quantitativemethods would have been required to
generate nestedness values, run null models analyses and perform
comparative analyses.

Specificity and General Network Structure
For each network, we calculated resistance structure (% full
resistance; % partial resistance; % full susceptible; % resistance
of any kind). Resistance breadth is simply the proportion of
pathogens to which a host displays resistance. The resistance
specificity was summarized for each network by calculating a
resistance specificity (Rs) index:

Rs =
P − r

P − 1
(1)

where P is the number of pathogens to which the host has been
exposed, and r is the sum of the resistance reactions (both full
and partial). Hosts able to resist all pathogens in the network
(generalists) have a value of 0, while hosts able to resist only
a single pathogen (specialists) have a value of 1. To generate a
network level summary statistic this was calculated for each host
in the network and then averaged for all hosts.

Nestedness
We assessed the nestedness of each individual network visually
and by using the Nestedness based on Overlap and Decreasing
Fill index (NODF) (Almeida-Neto et al., 2008). In the context
of resistance, NODF measures the extent to which hosts
resist a subset of the pathogens resisted by another more
widely resistant host; NODF values of 100 indicates the matrix
is perfectly nested and a value of 0 means that it is not
nested at all. NODF is sensitive to the connectance (i.e., total
number of links or resistance reactions) of the input matrix
(Almeida-Neto et al., 2008). Because connectance is variable
among networks (Table 2), this makes direct comparison among

networks problematic. Observed values of nestedness therefore
need to be interpreted in the context of expected values of
nestedness derived from a null distribution of matrices generated
by more or less randomly rearranging the parent matrix (Ulrich
et al., 2009). NODF values were calculated, and null model
comparisons were performed using the R package bipartite
(Dormann et al., 2009). For comparison among all networks,
matrices were sorted to maximize nestedness prior to NODF
being calculated. We generated 10,000 null models for each
network using the mgen method for binary matrices (Dormann
et al., 2009; Vázquez et al., 2009). The mgen model returns a
random web based on the number of links in the parent network
and is otherwise unconstrained (i.e., all pairwise interactions
have the same probability of occurrence). Z scores were used
to compare among NODF values calculated for the observed
network vs. the distributions of values calculated for the null
models. In addition, for the temporal networks, we calculated
NODF values for each matrix with the ordering of rows and
columns reflecting temporal ordering (as opposed to sorting to
maximize nestedness in the previous analyses). This facilitates a
test of the hypothesis that nested resistance structures arise as a
consequence of temporal coevolutionary dynamics (Ulrich et al.,
2009).

Modularity
A modular network consists of interconnected modules. Each
module is formed by a group of genotypes or individuals, which
are more connected (i.e., have similar resistance phenotypes)
to one another than to individuals in other groups (Olesen
et al., 2007). We used the simulated annealing algorithm (SA)
(Guimera and Amaral, 2005) to estimate the level of modularity
(M). Basically,M is a measure of the extent to which individuals
have more links within their modules than expected if linkage is
random. The SA algorithm identifies the modules present in the
networks, whose nodes have most of their links (or interactions)
inside their own module (Guimera and Amaral, 2005). Almost
all nodes are unambiguously assigned to a module, except
extreme connector nodes, i.e., individuals equally connected to
several modules. For each network, SA calculates an index of
modularityM:

M =

NM
∑

s= 1

(

IS

I
−

(

KS

2I

)2
)

(2)

where Nm is the number of modules in the network, Is is the
number of links between hosts and pathogens within module
s, I is the number of links in the network, and ks is the sum
of degrees of all individuals in s. For each empirical network,
we did an SA analysis of 100 random networks with the same
nodes degree distribution as the empirical one, and examined
whether the empirical network was significantly more modular
than the random ones (Guimera et al., 2004). Thus, we calculated
a z-score value and its significance (α = 0.05) to estimate
whether a network was significantly modular or not. In addition,
to test if modularity was influenced by sampling location or year
we used log-linear models to analyse count data according to

Frontiers in Plant Science | www.frontiersin.org 5 September 2015 | Volume 6 | Article 761

http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive


Barrett et al. Specialization in plant-pathogen networks

TABLE 2 | General properties of the Linum marginale-Melampsora lini spatial and temporal networks.

Properties Spatial networks Temporal networks

LA BH K N1 N2 B1 B2 B3

Number hosts 120 73 60 60 60 60 60 66

Number pathogens 60 80 40 40 40 40 40 40

Network size 7200 5840 2400 2400 2400 2400 2400 2640

% full resistance 10.2 6.3 11.8 0 0 0 0 3.5

% partial resistance 14.8 25.8 17.2 42 45.5 78 42.4 37

Connectance 0.25 0.32 0.29 0.58 0.46 0.78 0.42 0.4

% full susceptible 75 67.8 71 58 54.5 22 57.6 59.5

Resistance specificity 0.763 0.69 0.73 0.43 0.56 0.22 0.59 0.61

Proportional susceptibility 0.90 0.94 0.88 1 1 1 1 0.96

See Table 1 for additional information on study design. Network properties are defined in text in the M&M.

assigned module and sampling location/time using the glm()
function in R.

Results

We analyzed resistance data from a total of 8 host-pathogen
networks comprising: (1) two host-pathogen networks (LA, BH)
based on spatial variation (i.e., fully reciprocal testing among
populations) and (2) six host-pathogen networks based on
temporal variation (i.e., fully reciprocal testing among years but
only within local populations).

Resistance Specificity and General Network
Properties
General properties of the host-pathogen networks are shown
in Table 2. All networks were highly variable for resistance
patterns among individual hosts, both for full and partial
resistance types. Considering all resistance types, resistance
networks were moderately connected but skewed toward full
susceptibility (Table 2). For all eight networks, we observed a
continuum of individual strategies with regards to the breadth
of resistance (Figures 2–4), ranging from fully susceptible (i.e.,
no resistance) though to full or partial resistance to the large
majority of pathogens in the network. In terms of pathogen
infection (i.e., both partially resistant and fully susceptible hosts),
individual hosts on average were susceptible to infection from
a very high proportion of pathogens in the network (88–100%:
Table 2).

Total and relative levels of full and partial resistance varied
widely among networks (Table 2). Four of the temporal networks
displayed no full resistance reactions at all (i.e., all resistance
was partial: N1, N2, B1, B2), while a fifth (B3) displayed a
relatively low ratio of full vs. partial resistant plants compared
to the remaining temporal (K) and spatial networks (LA, BH).
Resistance specificity also varied markedly between networks
(Table 2). We explored the relationship between specificity and
the incidence of full and partial resistance at both the individual
and whole network levels. For individual hosts, we counted the
number of pathogens targeted by full vs. partial resistance. At
this individual level, full resistance was triggered by a relatively

small number of pathogens in the network), while the range of
pathogens targeted by individuals with partial resistance spanned
a wider and more even spectrum (Figure 2). For example, on
average, the full resistance carried by any individual host plant
was effective against 14.2% of pathogens, while partial resistance
was effective against 37.3%.

Nestedness
When matrices were sorted to maximize nestedness, values
of NODF were significantly higher than expected by chance
for all networks (Table 3) and all networks visually appeared
to be nested (Figures 3–5). This indicates that for all 8
networks, resistance specificities displayed by hosts with a wide
range of resistance (generalists) tended to encompass resistance
specificities displayed by hosts with a narrow range of resistance
(specialists). In addition, we note that in networks with full
resistance types, generalist hosts tended to carry relatively high
levels of full resistance (Figures 3, 4; although this pattern is less
evident in the BH network).

With regards to evolutionary drivers of nestedness, when
temporal matrices were ordered according to year of sampling
(rather than re-ordered to maximize nestedness), the K and
B3 networks displayed significantly higher values of nestedness
(z = 4.27 and 2.71, respectively) than those calculated for
corresponding unsorted null model matrices (Table 4). However,
visually it would seem that specialist and generalist hosts were
not distributed through time in any predictable or clustered
way (Figure 5), and values of NODF were much lower than
those calculated for network and null model matrices sorted to
maximize nestedness (Tables 3, 4). For the spatial networks, there
was an obvious spatial component to patterns of nestedness and
resistance breadth (Figure 3). In other words, and as noted in
previous studies (Thrall and Burdon, 2003; Laine et al., 2014)
specialist and generalist types were not randomly distributed
among populations. For example, for the LA network, the 10
most generalist hosts were all sampled from local population
G3 (known to be highly resistant from previous studies; Thrall
et al., 2002), while 10 of the 20 most specialized hosts were
sampled from the generally susceptible population SH1 (data not
shown).
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FIGURE 2 | Frequency distribution of full and partial resistance specificities for individual host lines for all Linum-Melampsora networks (i.e. merged

datasets). For example, a value of 0.5 for full resistance means that an individual host displays full resistance to 50% of pathogens to which it was exposed. This

figure demonstrates that generalist hosts are more likely to express partial resistance.

Modularity
All eight networks (six from the temporal variation data set and
two from local adaptation data sets) were analyzed separately.
For the temporal variation networks only one (Kiandra) was
significantly modular. In contrast, the resistance networks from
both spatial datasets (LA and BH) showed significant levels of
modularity (see Table 5) and the same number of modules (n =

4). Module size (number of hosts and pathogens comprising
the module) also did not vary greatly (Figures 3, 4), with the
exception of one module within the LA network which had
only three nodes (Figure 3). In terms of number of links within
modules, we found high levels of variation among modules
within the LA network where some modules had high within-
module connectivity and other modules had more links with
other modules (thus serving as connectors). In the BH dataset,
all modules had a similar number of links within modules as well
as connections to other modules (data not shown).

With regards to evolutionary drivers of modularity, for the
spatial networks we hypothesized that modules would comprise
hosts and pathogens sourced from either the same geographical
location (or ecological habitat in the case of the BH network).
As predicted for the BH dataset, ecological habitat (GLM;
p < 0.0001) was an important predictor of host modularity
(Table 6; Figure 2). We found three modules mainly composed
of host individuals occurring in populations of the hills ecotype
(Modules 1, 2, and 4) and one other module largely comprising
individuals collected from populations within bog habitats
(Module 3). More specifically, modules 1 and 2 largely (although
not exclusively) comprised hosts with a hills origin (75 and
87%, respectively) with specific resistance to a subset of bog
pathogens (73 and 100%, respectively); module 3 in contrast

comprised individuals collected from bog habitats with more
specific resistance to a group comprising largely hills pathogens
(86%); and module 4 comprised a highly resistant set of hills
hosts interacting with a mixture of otherwise highly infective
pathogens (55% hills origin). Furthermore, the distribution
of hosts assigned to different modules was also significantly
influenced by population within ecotype (GLM; p < 0.01).
For example, half of the individuals assigned to module 2
were collected from the CBL Hill population (Table 6). In the
LA network, while the frequency of individuals assigned to
different modules was variable among sampling sites, modules
were mostly composed of a mix of individuals sourced from
different cohorts (data not shown), and we found no significant
support for the hypothesis that modules comprise individuals
from specific populations or sets of populations (GLM; p >

0.05). For the temporal dataset, only one (Kiandra, M = 0.23)
out of six networks had a significantly modular host-pathogen
resistance network. We found four modules in the Kiandra
network and each module was mostly composed of a mix of hosts
and pathogens sampled from different time points (results not
shown).

Discussion

Summary of Major Results
Genetic variation for resistance and infectivity are ubiquitous
in wild populations of plants and their associated pathogens
(Laine et al., 2011; Tack et al., 2012). However, many questions
remain regarding the ecological and evolutionary processes that
generate and maintain such variation. In this study we used
a network analytical approach to examine the architecture of
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FIGURE 3 | Bipartite spatial networks for the Linum-Melampsora local adaptation dataset. Black squares indicate full resistance, gray squares indicate

partial resistance, and white squares indicate full susceptibility. Hosts are represented on the Y-axis and pathogens on the X. All panels are formed from the same base

dataset but sorted in different ways so as to facilitate visually testing different network hypotheses: (A) sorted by population of origin. Host and pathogen interactions

corresponding to the same population are indicated by red squares; (B) sorted to maximize nestedness; and (C) sorted to maximize modularity. The network is

significantly nested (NODF; P < 0.001). For the modularity sorting, discrete modules are shown in different colors (blue, red, green, black). Four modules could be

identified in this network with the P-value for observed modularity less than 0.0001.

FIGURE 4 | Bipartite spatial networks for the for the Linum-Melampsora BH network. Black squares indicate full resistance, gray squares indicate partial

resistance, and white squares indicate full susceptibility. All panels are formed from the same base dataset but sorted in different ways so as to test different network

hypotheses: (A) sorted by population and ecotype of origin. Host and pathogen interactions corresponding to the same population are indicated by red squares while

the ecotypes are shown by the blue squares; (B) sorted to maximize nestedness; and (C) sorted to maximize modularity. For nestedness, the network is significantly

nested (NODF; P < 0.001). For the modularity sorting, discrete modules are shown in different colors (blue, red, green, black). Four modules could be identified in this

network with the P-value for observed modularity less than 0.0001.

host-pathogen interactions through space and time using several
extensive datasets from a longstanding wild plant-pathogen
system. We found consistent, and in some cases, strong patterns
in the data. First, we found that a spectrum of specialist
and generalist resistance (or infectivity) types are consistently
maintained within these networks and that partially resistant
host are more likely to have a broad resistance spectrum.
Second, we found that all networks were significantly nested.
Third, we found that resistance networks were significantly

modular in both spatial networks, but in only one of the six
temporal networks. These results demonstrate that network
approaches have potential to complement more commonly
used approaches to analysing population and temporal-based
sampling by placing a more explicit focus on individual variation
in patterns of specificity, and revealing structure (i.e., nestedness
and modularity) in the data that are independent of common
a priori hypotheses (e.g., local adaption). Below, we discuss
how the topology of L. marginale-M. lini interaction networks
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FIGURE 5 | Bipartite networks for the Linum-Melampsora temporal datasets. Black squares indicate full resistance, gray squares indicate partial resistance,

and white squares indicate full susceptibility. Each pair of panels represents a separate population/temporal network (labeled Kiandra, N1, etc.). The two columns for

each population pair are formed from the same base dataset but sorted in different ways so as to facilitate visually testing different evolutionary hypotheses. The left

panels have been sorted according to sampling period (i.e., temporally), while the panels to the right have been sorted to maximize nestedness. For the temporally

sorted networks, the red line demarks contemporary host and pathogens, such that an interactions above and to the left of the red line indicate hosts interacting with

past pathogens (year of sampling is shown in the bottom left panel). The expectation under an arms race hypothesis is that there should be a nested pattern emerging

over time, such that more resistance reactions occur above and to the left of the red line. All networks were significantly nested when sorted to maximize nestedness

(Table 3: NODF; P < 0.05), but none were significantly nested under the temporal arrangement.

has the potential to provide novel insight into the evolution of
genetic interactions that underpin disease outcomes within this
host-pathogen association.

Spatial Dynamics and Network Structure
Spatial evolutionary processes (e.g., local adaptation of pathogens
to their hosts) have been demonstrated to be important drivers
of genetic structure and specialization in several plant host–
pathogen interactions (see Barrett et al., 2009a for review).
Here we investigated the idea that patterns of modularity
within networks have potential to reveal the strength, scale,
and direction of spatial (co)evolutionary processes. In particular,
given small, geographically, and genetically differentiated L.
marginale andM. lini populations (e.g., Barrett et al., 2008; Nemri
et al., 2012; Thrall et al., 2012), and previously reported patterns

of local adaptation in this system (Thrall et al., 2002; Laine
et al., 2014) we hypothesized that modularity should be apparent
in the two spatial networks (i.e., LA and BH) and that there
should be clear links between population structure and patterns
of modularity.

For the BH network, ecotype emerged as a strong predictor
of modularity. In particular, for the four modules detected, one
module almost exclusively comprised bog hosts resistant to hill
pathogens, while the three remaining modules comprised mostly
hill hosts resistant to bog pathogens. At the population level
(i.e., within each ecotype), the locality from which individuals
were collected was also a significant predictor of modularity,
although divisions were not as clear as for ecotype. These results
are consistent with Laine et al. (2014) who demonstrated using
the same dataset that hosts were more likely to be resistant
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TABLE 3 | Nestedness metrics (NODF index) as compared to null model

distributions for Linum marginale-Melampsora lini networks sorted to

maximize their nested structure.

Network Type NODF z-score p-value

LA Spatial 49.68 6.36 < 0.0001

BH Spatial 44.1 3.58 0.00034

K Temporal 51.02 5.86 < 0.0001

N1 Temporal 72.44 6.27 < 0.0001

N2 Temporal 58.30 2.79 0.00527

B1 Temporal 84.20 7.41 < 0.0001

B2 Temporal 54.10 2.09 0.03662

B3 Temporal 63.00 5.93 < 0.0001

In all cases NODF values were higher than expected by chance. P-values lower than 0.05

were interpreted as indicating that observed nestedness was greater than expected by

chance.

TABLE 4 | Nestedness metrics (NODF) as compared to null model

distributions for temporal Linum marginale-Melampsora lini networks

sorted by year of sampling.

Network NODF z-score unsorted z-score 2 sorted

K 26.11 4.28 −14.5

N1 40.73 1.82 not calculated

N2 24.9 −0.32 not calculated

B1 32.7 −0.10 not calculated

B2 30.8 1.03 not calculated

B3 31.8 2.71 −24.93

For K and B3 networks, Z-scores are higher than expected by chance in unsorted

matrices. However, they are significantly less nested then expected by chance when

random matrices are sorted to maximize nestedness (z-score 2).

to pathogens from a different host-ecotype, and conclude that
habitat type is a strong driver of evolutionary divergence among
both hosts and pathogens. The results also support those of
Flores et al. (2012) found that modularity in a bacteria-phage
network was driven in part by geographic structure, suggesting
that geography may be an important determinant of modularity
generally. However, it should be noted that resistance across
habitat types was also observed frequently (e.g., generalist hosts
with wide ranging resistance), and modules typically contained
hosts and pathogens from both habitats. In contrast to the BH
network, there was no obvious geographic signal in the LA
network. Rather, modules were mostly composed of individuals
sourced from a mix of different populations (geographical
locations) despite the strong evidence for local adaptation (Thrall
et al., 2002). Hence, while our results are consistent with
the idea that spatial evolutionary dynamics may result in the
emergence of modularity, with regards to our data it seems that
spatial structure may only be sufficient under some conditions.
For example, the ecotypic differentiation among hill and bog
environments may well result in stronger barriers to gene flow
and stronger local spatial selection gradients than in the LA
network which included populations within the hill ecotype only.
Local geographic separation (as is the case for the LA network)
may not be enough to drive the evolution (or maintenance) of

TABLE 5 | Modularity analysis statistics based on n = 100 randomizations

for all networks studied (α = 0.05).

Network Modularity z-score p-value

LA M = 0.275 Z = 38.62 < 0.0001

BH M = 0.297 Z = 25.29 < 0.0001

B1 M = 0.065 Z = −17.9 < 0.0001 (significantly less modular)

B2 M = 0.15 Z = −4.16 < 0.05 (significantly less modular)

B3 M = 0.15 Z = −0.88 > 0.05

Kiandra M = 0.23 Z = 7.61 < 0.05

N1 M = 0.089 Z = −13.4 < 0.05 (significantly less modular)

N2 M = 0.143 Z = −3.1 < 0.05 (significantly less modular)

Negative z-score values indicate that the mean modularity of randomized matrices was

higher than the observed modularity, and some of these were significantly less modular

than randomized networks.

TABLE 6 | Number of host individuals from different ecotypes and

populations assigned to resistance modules in Bogs-Hills network.

Ecotype Population Module1 Module2 Module3 Module4

Hill Cemetery 5 2 0 3

G3 4 0 0 5

CBL Hill 0 8 1 1

SH2 6 3 0 0

Bog G2 2 0 7 1

P1 3 0 5 1

CBL Bog 0 2 6 0

PS 0 0 8 0

See Laine et al. (2014) for a map showing relative locations of these populations.

significant modularity at the local metapopulation scale where
ecological barriers to gene flow are weak or non-existent and
other selective forces are at play (e.g., Thrall and Burdon, 2003).

Temporal Dynamics and Network Structure
Temporal coevolutionary processes have been widely
hypothesized and in some cases demonstrated to be important
drivers of genetic structure and specialization in host–pathogen
interactions (Decaestecker et al., 2007). We investigated whether
networks constructed from temporal sequences of interacting
host and pathogen populations displayed patterns of change in
nestedness or modularity over time (Beckett andWilliams, 2013).
We found little evidence for consistent temporal changes in
either metric, despite findings supporting reciprocal coevolution
in a previous study (Thrall et al., 2012). Significant modularity
was evident in only one of the six temporal networks, and
different modules in the Kiandra network were composed
of various individuals collected from a mixture of different
time-points. In addition, while we found significant patterns of
nestedness in all temporal networks, there was little evidence
to support the hypothesis that temporal patterns of genetic
change were responsible for generating them. In particular, no
patterns of increasing nestedness or even generality over time
were evident in the data (e.g., with respect to host resistance to
pathogens sampled from previous time points). This suggests

Frontiers in Plant Science | www.frontiersin.org 10 September 2015 | Volume 6 | Article 761

http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive


Barrett et al. Specialization in plant-pathogen networks

that temporal evolutionary processes, at least over the time-
frames, within which we sampled, are insufficient for generating
clear patterns of either nestedness or modularity within the
host-pathogen networks sampled in this study. However, it
should be noted that L. marginale is a short-lived perennial host
(approximately 5 years) and while pathogen can have substantial
fitness effects on the host, disease epidemics do not predictably
occur in all years or populations. As for the spatial evolutionary
scenarios discussed above, ecological and evolutionary patterns
are strongly dependent on the scale of inquiry as well as host and
pathogen life-history, and in this case, it is possible that patterns
may only become evident for comparisons that encompass
longer time periods. Furthermore, these results should also be
interpreted in light of the high levels of partial resistance that
we found in 5 of the 6 temporal networks, in that selection
pressures may be more diffuse in these situations given the lower
levels of resistance specificity maintained (Antonovics et al.,
2011).

Mechanisms Determining Nestedness
Considering the variation in sampling scale, the repeated finding
of nested patterns of specialization across networks suggests
this is a universal pattern for L. marginale-M. lini interaction
networks. Because utilization of network approaches in studies
of patterns of infectivity and resistance within host-pathogen
interactions is still in its infancy, it is difficult to speculate on
the comparative significance of these results. However, in one
of the few other large scale studies of network structure in
host-pathogen interactions, Flores et al. (2011) report consistent,
significant patterns of nestedness across 38 bacteria-phage
networks, suggesting that nestedness may be a common property
of antagonistic interaction networks. However, the processes
generating nested structures in our system (or the phage
networks) are not obvious and may be attributable to several
non-exclusive mechanisms.

One parsimonious explanation is that the underlying genetic
architecture of the interaction may constrain networks to a
nested shape (Flores et al., 2012; Moury et al., 2014). In GFG
systems such as the L. marginale-M. lini interaction, qualitative
patterns of resistance such as those reported in this study are
dependent upon plants producing a specific resistance gene
product that recognizes specific pathogen elicitors. Assuming
that loss of the elicitor does not enable activation of another
R gene or otherwise compromise infectivity, pathogens that do
not produce a recognized elicitor are able to infect. Assuming
additive variation in the number of genes or alleles conferring
additional resistance or infectivity specificities, cross-infectivity,
where a pathogen with a given genotype is able to infect
hosts with different genotypes, should be common (Thrall and
Burdon, 2002). Hence GFG systems generate strong potential for
variation in partner specificity, andmay naturally generate nested
interaction networks (Moury et al., 2014). A related and non-
exclusive mechanism involves fitness trade-offs. In particular,
pleiotropic costs of maintaining multiple R genes, or alleles
that confer multiple specificities, may also be important in
explaining the consistent maintenance of variation in resistance
breadth (Barrett andHeil, 2012). Costs of resistance (e.g., Karasov

et al., 2014) and infectivity (e.g., Barrett et al., 2011) have been
demonstrated in several plant-pathogen interactions, including
for M. lini, where trade-offs between pathogen host-range and
spore production have been demonstrated (Thrall and Burdon,
2003). Certainly trade-offs provide a general explanation for
the maintenance of specialist resistance types in the face of
pathogen induced morbidity and mortality. Finally, it has also
been proposed that nestedness may be a reflection of ongoing and
dynamic evolutionary processes that typify antagonistic species
interactions, such that hosts generally adapt to new infectivity
genes or alleles without losing their specificity for older forms of
infectivity (Flores et al., 2011). However, while nested patterns
may potentially emerge over long-term time scales, results from
our temporal networks (as discussed above) are not consistent
with such dynamics generating these patterns on shorter time
scales.

Mechanisms Determining Modularity
While our results for the BH network are consistent with
the idea that spatial evolutionary dynamics can drive the
emergence of modularity (as discussed above), results from the
LA and K (temporal) networks demonstrate that modularity
can transcend spatial (and temporal) structure. One likely
common determinant of modularity within host-pathogen
interaction networks is genetic divergence among groups of
individuals comprising one or both nodes in the network
(Flores et al., 2011; Weitz et al., 2013). This also serves as a
potentially general explanation for our findings of modularity
across the LA, BH, and K networks. Certainly, in the bog-
hill populations, ecotypic structure also reflects strong patterns
of genetic divergence between hosts (Thrall et al., 2001) and
pathogens (Laine et al., 2014; LG Barrett unpublished data). In
addition, previous population genetic work demonstrates the
maintenance of multiple clonal lineages of M. lini throughout
the region where sampling for all of these studies was conducted
(Barrett et al., 2008). Importantly, although there was some
signature of population-level differentiation, different lineages
were not confined to individual populations (Barrett et al.,
2008). Therefore, it is possible that modularity in the LA and
K networks may also reflect underlying genetic heterogeneities
within and among the pathogen populations (and potentially
hosts) from which the individuals comprising these networks
were sampled. We suggest that for future studies, the generation
of complementary population genetic data when examining
resistance and infection networks could likely help reveal the
proximate source of modular resistance structure.

Partial Resistance
One of the novel results emerging from this study was the
finding that broad resistance specificities were more likely to
be conferred via partial resistance. Importantly, the expression
of partial resistance was still dependent on host-pathogen
genotype interactions (i.e., partial resistance is race-specific),
consistent with previous studies suggesting that partial resistance
is under GFG control (Burdon, 1994). This result has interesting
implications for our understanding of the factors that drive
the evolution of specificity and resistance strategies and can
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perhaps most obviously be explained via a trade-off between
host range and the strength of resistance. Negative genetic
correlations among resistance strategies have been demonstrated
in some previous studies (e.g., between induced and constitutive
resistance), suggesting that pleiotropy or the otherwise costly
expression of linked resistance traits may be common (Agrawal
et al., 2010; Rasmann et al., 2015). However, a mechanistic
understanding of how such trade-offs arise is generally lacking.
While we do not have any data that speaks directly to the
mechanisms that may underlie a trade-off between specificity and
the strength of the resistance response, a recent study using the
interaction between Melampsora lini and Linum usitatissimum
shows that the recognition of pathogen elicitors and the strength
of the subsequent response are intimately related at themolecular
level (Bernoux et al., submitted). This work suggests the potential
existence of relatively simple (in a genetic sense) functional
constraints associated with the breadth of pathogen elicitors that
are recognized by resistance proteins.

Conclusions

We conclude that network approaches offer great utility as a
tool for probing the ecological and evolutionary genetics of host-
pathogen interactions. Prior analyses of the datasets used in
this study did not attempt to estimate nor dissect the network
characteristics examined here, and the network meta-analysis
has revealed several novel results that complement and extend
findings revealed in previous studies.

First, we found that host resistance (and by extension
pathogen infectivity) strategies are consistently variable within
and among networks, corresponding to a spectrum of specialists
and generalists being maintained within all networks. While
the maintenance of diversity for resistance and infectivity is
well known in this system, the network approaches we have
utilized reveal novel information regarding the distribution and
statistical structure of these specificities. Relationships between
patterns of specialization and partial resistance further suggest
evolutionary trade-offs between specialization and the strength of
resistance. Second, we found that all networks were significantly
nested. While we hypothesized that temporal evolutionary
dynamics might be important for the development of nestedness

in host-pathogen infection networks, there was little evidence
to suggest that this was so. Rather, the common patterns
observed in terms of nestedness suggest the existence of general
determinants across networks (e.g., trade-offs or underlying
genetics). Third, we found that resistance networks were
significantly modular in two spatial networks, clearly reflecting
spatial and ecological dynamics within one of the networks,
and perhaps reflecting genetic structure within networks more
generally. Together, these results demonstrate that analysis
of the topology of bipartite interaction networks has the
potential to provide important information regarding the genetic
interactions that underpin disease outcomes and coevolutionary
dynamics within host-pathogen associations. In particular, our
results demonstrate that network approaches have potential to
complement more commonly used approaches for analysing
population and temporal-based sampling by placing a more

explicit focus on individual variation in patterns of specificity,
and revealing structure (i.e., nestedness and modularity) in the
data that are independent of common a priori hypotheses (e.g.,
local adaption).

Finally, in terms of new directions, we suggest that network
approaches may offer great utility for dissecting the genetic
nature of host-pathogen interactions from population level data,
perhaps in combination with other approaches (Heath and
Nuismer, 2014). In particular, we suggest that in systems where
performing classical genetics is problematic, network structure
has potential to reveal the genetic architecture underlying
antagonistic host-pathogen interactions (e.g., GFG, MA). In
particular, these genetic models are predicted to generate
contrasting patterns in terms of modularity (high for MA) and
nestedness (high for GFG) (Moury et al., 2014). We suggest that
a useful goal for future theoretical studies is to examine the
role of life-history (e.g., dispersal) and contrasting genetics in
driving patterns of nestedness and modularity in host-pathogen
networks.
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