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The organisms of the phytomicrobiome use signal compounds to regulate aspects
of each other’s behavior. Legumes use signals (flavonoids) to regulate rhizobial nod
gene expression during establishment of the legume-rhizobia N2-fixation symbiosis.
Lipochitooligosaccharides (LCOs) produced by rhizobia act as return signals to the
host plant and are recognized by specific lysine motif receptor like kinases, which
triggers a signal cascade leading to nodulation of legume roots. LCOs also enhance
plant growth, particularly when plants are stressed. Chitooligosaccharides activate plant
immune responses, providing enhanced resistance against diseases. Co-inoculation of
rhizobia with other plant growth promoting rhizobacteria (PGPR) can improve nodulation
and crop growth. PGPR also alleviate plant stress by secreting signal compounds
including phytohormones and antibiotics. Thuricin 17, a small bacteriocin produced by
a phytomicrobiome member promotes plant growth. Lumichrome synthesized by soil
rhizobacteria function as stress-sensing cues. Inter-organismal signaling can be used to
manage/engineer the phytomicrobiome to enhance crop productivity, particularly in the
face of stress. Stressful conditions are likely to become more frequent and more severe
because of climate change.
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Background

The perspectives provided in this theme volume illustrate that members of the phytomicrobiome
utilize inter-organismal signal compounds to affect the behavior of the plants they associate with,
and signal compounds from the plants regulate the behavior of the phytomicrobiome. Presumably,
one organism alters the behavior of another for its own benefit, but often to the benefit of the other
organism as well, leading to mutualistic symbiosis. An example of this is improved stress tolerance
in a plant by a signal compound from an associated microbe, where the resulting enhanced plant
growth means expanded niche space and more reduced carbon for the specific phytomicrobiome
member.

Signaling in the Legume-rhizobia Symbiosis

Plants must allow beneficial microorganisms to colonize near them or in their tissues in order
to establish mutualistic relationships. This kind of close association (for example, the legume-
rhizobia symbiosis, where rhizobia reside inside the legume roots) necessitates a filtering system
in the plants, disallowing unsuitable microorganisms, perhaps pathogens that could harm their
tissues. On the other side, a microbe entering a disadvantageous plant would risk being recognized
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as unacceptable and killed. Signal/recognition compounds
facilitate communication between mutually beneficial organisms
and ensure continuum of their relationship until senescence.
Flavonoids (examples: luteolin, 7,4′ dihydroxyflavone, quercetin,
kaempferol, myricetin, genistin, etc.,) in the rhizosphere are
constituents of root exudates and well studied for their function
as legume-to-rhizobia signal compounds (Nelson and Sadowsky,
2015). Their structural diversity and substitutions in the carbon
skeleton determines their characteristic function (Weston and
Mathesius, 2013). The release of specific flavonoids (or mixtures)
from a legume host is only recognized by certain rhizobial species,
which partially determines the host-symbiont specificity. The
flavonoids diffuse through the rhizobial membrane and bind to
NodD proteins in rhizobia, which then activate transcription
of Nod genes involved in synthesis of nodulation factors (NF;
Hassan and Mathesius, 2012). Altered flavonoid profiles at
different symbiosis stages regulate Nod factor synthesis (Dakora
et al., 1993). Flavonoids also cause auxin accumulation in
root tissues that initiates nodule formation and differentiation
(Hassan and Mathesius, 2012). Flavonoids regulate development
of nodules and phytoalexin resistance in rhizobia (Cooper,
2004). Thus, these signal compounds regulate the behavior of
appropriate partner organisms down to the gene expression level.

A range of very diverse non-flavonoid compounds present
in the root exudates also induces Nod genes in some rhizobia
(Mabood et al., 2014): betaines (stachydrine and trigonelline;
Cooper, 2007), aldonic acids (erythronic and tetronic acids), and
jasmonates (jasmonate and methyl jasmonate; Mabood et al.,
2006). The jasmonates have been commercialized and products
are now available (http://agproducts.basf.us/products/vault-hp-
plus-integral-for-soybeans-inoculant.html).

Activated rhizobial Nod-genes secrete signals (Nod factors)
back to the plant: lipochitooligosaccharides (LCOs) and
exopolysaccharides (EPS). LCOs are conserved at the core but
are diverse due to degree of saturation and the substitutions
(glycosylation or sulfation) in the N-Acetyl chain at both
reducing ends and vary widely between different rhizobial
species, which are essential for host plant specificity (Oldroyd,
2013). Genes at the loci of Nod factors perception encode receptor
like kinases with N-Acetyl glucosamine binding lysine motifs
(LsyM RLK), which include Nod factor receptors (NFR1), NFR5,
LysM receptor kinase 3 (LYK3), Nod factor perception (NFP).
NFR/NFP binds to NF and are essential in determining NF
specificity of rhizobial symbionts and activation of nodulation
signaling (Oldroyd, 2013). Signaling from the receptor complex
generates calcium oscillations in the nucleus of cortical cells,
which activate a localized protein, calcium and calmodulin
(CaM) dependent serine/threonine protein kinase (CCamK),
and phosphorylates CYCLOPS, which is required for rhizobial
colonization and nodule development (Oldroyd, 2013). The
rhizobial specific gene expression is regulated by the Nodulation
signaling pathway (NSP1 and NSP2) and encodes GRAS domain
transcription factors involved in nodulation specific functions.
They are associated with promoters of Nodulation inception
genes (NIN) and early nodulation genes (ENOD) and ensure that
nodulation is stimulated under appropriate circumstances (Kalo
et al., 2005; Smit et al., 2005).

In some rhizobia-legume systems (for example,
Bradyrhizobium, and Glycine soja) application of correct
Nod factors (LCOs isolated from B. elkanii) trigger formation
of complete and anatomically precise, albeit, empty nodules
(Stokkermans and Peters, 1994). It is impressive that the
external application of a signal compound can lead to complete
organogenesis.

Although many parallels are observed in the signaling
mechanisms, plants exhibit subtle regulatory pathways to establish
mutualistic associations and protect from pathogenesis (Toth
and Stacey, 2015). During rhizobial infection, legume defense
responses are elicited in the early stages but suppressed soon after
(Libault et al., 2010). Increased activation of mitogen activated
protein kinase (MAPK) and production of reactive oxygen species
were observed in legumes when inoculated with rhizobia (Jamet
et al., 2007; Lopez-Gomez et al., 2012). Chitooligosaccharides,
chitosan, lipopolysaccharides, and peptidoglycan associated with
fungal and bacterial pathogens are recognized as microbe-
associated molecular patterns (MAMPs) by pattern recognition
receptors (PRRs) in the plant cell membrane (Dangl and Jones,
2001; Zipfel, 2014). Recognition of MAMPs is crucial for the
activation of MAMP triggered immunity (MTI) in plants, which
triggers expression of defense related genes, leading to structural
hardening (callose formation) of plant tissues, accumulation of
phytoalexins and antimicrobial peptides (Ahuja et al., 2012).
NF remain active even after nodulation, suggesting a role in
suppression of MTI (Liang et al., 2013). Exopolysaccharide of
rhizobia (example succinoglycan from Sinorhizobium meliloti)
is known to supress plant immunity (Aslam et al., 2008). LCO
recognition has been evolved from a pathogenic role to symbiosis.
Even though LCOs are structurally similar to chitin oligomers
(MAMPs) and their recognition is mediated by LysM RLK,
modifications in amino acid sequences of LysM RLK which
confer specificity to recognition of LCO or chitin oligosaccharides
(Nakagawa et al., 2011). For example, chimeric proteins in the
ectodomain of chitin elicitor receptor kinase (CERK1) for chitin
perception are replaced with ectodomain of NFR involved in NF
recognition (Zhang et al., 2007).

Effector proteins secreted by pathogens trigger effector
mediated immunity (ETI) in plants due to activation of resistance
(R) genes encoding nucleotide-binding site—leucine rich repeat
proteins (Jones and Dangl, 2006). Leucine rich repeats receptor
like kinases (LRR—RLK) are involved in NF perception and
nodule formation (Endre et al., 2002). Effectors are transported
and injected into the host cytoplasm through type III (T3SS) and
type IV (T4SS) secretion systems. Effector proteins of rhizobia
(NopM of S. fredii NGR234, NopL from S. fredii USDA247)
have been shown to facilitate colonization of rhizobia in roots,
prevent MAPK signaling, supress the plant immune system,
affect formation of nitrogen-fixing nodules, timing of nodule
establishment and final number of nodules formed (Zhang et al.,
2011). Interestingly, rhizobial NF, T3SS and T4SS depend on
a common regulator activated by legume secreted flavonoids
(Gourion et al., 2015).

Bacteroid differentiation inside the nodule is regulated by
antimicrobial peptides (nodule cysteine rich peptides), which
functions similar to plant defensins (de Velde et al., 2010).
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The bacteroids are separated from the host by a symbiosome
membrane and immune activity is modulated inside the nodules
and the expression of defense related genes is relatively low
(Limpens et al., 2013). The plant controls the duration of
symbiosis and regulates the senescence of nodules and the
suppression of plant immunity reverses during nodule senescence
(Puppo et al., 2005). The number of nodules is controlled by
the legumes through a process called autoregulation of nodules
(AON; Mortier et al., 2012). Shoot derived signals involve
production of cytokinins and downstream signaling to the roots
regulates AON (Sasaki et al., 2014).

Rhizobia signaling and associations can be affected by other
members of the phytomicrobiome, this is because they function
together as a consortia exerting synergism, playing a vital role
in plant growth, nutrient uptake, alleviation of abiotic stress,
and protecting from disease. The more frequently studied co-
inoculation partners of rhizobia are Bacillus species. Inoculation
of Rhizobium with Bacillus strains improved root structure and
nodule formation in bean, pigeon pea and soybean (Halverson
and Handelsman, 1991; Petersen et al., 1996; Srinivasan et al.,
1997; Rajendran et al., 2008). Inoculation of pea with Bacillus
simplex 30N-5 and Rhizobium leguminosarum bv. viciae 128C53
increased root nodulation and plant growth (Schwartz et al.,
2013). When pea plants carrying DR5::GUS promoter are co-
inoculated with B. simplex 30N-5 and R. leguminosarum bv.
viciae expression of GUS was higher in nodule meristems
and young vascular bundles of developing nodules (Schwartz
et al., 2013). Azospirillum brasilense co-inoculated with R. tropici
on bean relieved negative effects of salt stress on nod genes
transcription (Dardanelli et al., 2008). Co-inoculation of rhizobia
and arbuscular mycorrhizal fungi (AMF) promoted growth
of soybean under low phosphorous and nitrogen conditions,
indicated by increase in shoot dry weight (Wang et al., 2011).

The legume-rhizobia symbiotic relationship tends to be
less specific in tropical agriculture, involving much wider sets
of rhizobial partners, while it is often quite specific in the
temperate zones (Dakora, 2000).Awider rangeof rhizobia forming
relationshipswithanygiven legume,andthemorediversesignaling
involved, may alter the effect of environmental conditions on the
nitrogen-fixing symbiosis for that particular legume species.
Exploitation of the rhizobia-legume symbiosis has occurred
for over a century yet, there is considerable scope for improved
understanding of this complex relationship in tropical zones.

Other Phytomicrobiome Signaling Systems

While the legume-Rhizobium symbiosis is well understood of
signaling interactions, given its significance of biological nitrogen
fixation, extensive research in other phytomicrobiome signaling
systems has been conducted. Mycorrhizal symbiosis uses a
signaling system similar to that of the legume-rhizobia symbiosis
(Harrison, 2005; Oldroyd, 2013) and it plays a critical role in
solubilisation of minerals and plant protection. In this association
plants emit strigolactones, triggering production of Myc factors
including LCOs by the fungus and stimulate hyphal branching
(Bonfante and Requena, 2011). AMF have a broad host range
and hence they produce diverse array of LCOs for recognition by

the host plants. LysM RLK are also associated with mycorrhizal
colonization (Young et al., 2011). It would be interesting to study
themechanisms employed by the plants to differentially recognize
mycorrhizal and rhizobial LCOs.

Nitrogen fixing symbiotic association occurs between Frankia
and actinorhizal plants. Frankia sp. colonizes roots of actinorhizal
plants and induces root hair curling and nodule formation
similar to those observed in legumes suggesting common
symbiotic mechanisms but with important structural differences,
particularly the signaling compounds produced by Frankia differ
from rhizobia (Pawlowski and Bisseling, 1996; Gherbi et al., 2008).

Many plant growth promoting rhizobacteria (PGPR; example,
Bacillus, Pseudomonas, Serratia, Azospirillum, Acetobacter,
etc.,) secrete phytohormones, such as cytokinins, gibberellins,
auxin, and ACC deaminase and influence plant growth and
functions (Vessey, 2003). They are also capable of alleviating
drought stress by promoting root growth and hampering
stomatal conductance (Vessey, 2003; Gray and Smith, 2005).
The phytomicrobiome also improves the uptake of nutrients
by forming siderophores or solubilizing phosphates and other
minerals (Vessey, 2003). Phytomicrobiome members synthesize
and excrete a range of inter-organismal signal compounds that
defend their host plant against pathogens and abiotic stresses:
broad-spectrum antibiotics, lytic enzymes, organic acids and
other metabolites, proteinaceous exotoxins and antimicrobial
peptides (bacteriocins).

Several products of PGPR have been commercialized as
biofertilizers and biocontrol agents owing to their diverse
modes of action. There is considerable scope for application of
phytomicrobiome signals in agriculture. For instance, Bacillus
thuringiensis NEB17 produces the bacteriocin thuricin 17.
Intriguingly, this peptide is also a bacteria-to-plant signal that
stimulates the growth ofmany plants (Lee et al., 2009). Thuricin 17
(10−9 to 10−11 M) changes the hormone levels of Arabidopsis and
soybean (increased IAA and SA) and causes profound alterations
in the proteome (major increases in energy related proteins;
Subramanian, 2014). Thuricin 17 almost completely overcomes
the negative plant growth effects of salt stress (250 mM NaCl).
For the producer bacterium B. thuringiensis NEB 17, thuricin
17 is a dual function peptide, acting both as a bacteriocin that
reduces competition from closely related bacteria, and to enlarge
the available niche space by promoting plant growth. Bacillus
subtilis OKB105 contains genes (yecA, speB, ACO1) involved in
synthesis of spermidine, a plant growth stimulating polyamine
(Xie et al., 2014).

Bacterially produced lumichrome (breakdown product
of riboflavin) accelerates leaf production, onset of stem
elongation, and leaf area development (at a concentration
of 5 × 10−9 M), leading to greater production of biomass in
many plants (maize, sorghum, tomato, lotus), related to enhanced
starch and ethylene metabolism. Adversely, 10-fold greater
concentrations can retard plant growth and development (Matiru
and Dakora, 2005; Gouws et al., 2012). Similar effects were
observed in legumes (soybean, cowpea) in response to the signal
compounds (lipopolysaccharides and lumichrome), suggesting
their role in the nitrogen-fixing symbiosis. Lumichrome
promotes nodulation and mycorrhizal establishment in legumes
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(Dakora and Phillips, 2002). Lumichrome also helps plants deal
with drought and salinity stress (Kanu and Dakora, 2009).

Quorum sensing signals including those of beneficial bacterial
such as rhizobia (Zarkani et al., 2013) can elicit immune
responses (Schenk et al., 2012; Hartmann et al., 2014), and
change hormone profiles in plants, inducing those regulating
growth responses and disease resistance (Hartmann and Schikora,
2012). Quorum sensing regulates mobility, virulence and biofilm
formation in bacteria. Biofilm formation (bacteria embedded
in a thick matrix of EPS, proteins and water) enables bacteria
to adhere to host tissues. Biofilm improves plant growth, root
proliferation (Azospirillum inwheat) and function in as biocontrol
(B. subtilis, Farrar et al., 2014). In the case of N-acyl-homoserine
lactones (AHL), the length of the lipid side chain dictates
characteristics of the signal compound’s activity (Schikora et al.,
2011). Quorum sensing in the phytomicrobiome will be the
subject of an upcoming Frontiers in Plant Science theme volume
(Plant responses to bacterial quorum sensing signal molecules,
topic editors Schikora A and Hartmann A).

Engineering the Phytomicrobiome

Given our intense reliance on higher plants for food and other
resources, our expanding understanding of the phytomicrobiome
associated with these plants, advances in genetic engineering
and synthetic biology, it seems reasonable to consider
“engineering” the phytomicrobiome to improve crop productivity,
including enhancement of photosynthesis and growth, nutrient
assimilation, disease and insect resistance and improved ability
to resist increases in abiotic stresses likely to be associated with
environmental disturbances, or even mitigating the impact of
climate change through CO2 sequestration. The host plant with
its phytomicrobiome constitutes a holobiont (Hartmann et al.,
2014), a collective community with broader genomic, proteomic,
metabolomics and physiologic capacity, making it better able
to adjust to environmental (biotic and abiotic) challenges. The
potential to alter the composition of the microbial consortia
residing near, on or in plant tissues has been explored through
inoculation processes to some extent. The inoculation strategy
to manipulate the microbiome focuses on co-inoculation of
several strains of PGPR, arbuscular mycorrhizal fungi and other
endosymbionts. Increase in the abundance of beneficial microbes
in the rhizosphere (for example biofertilizers) has resulted in less
disease incidence and high levels of microbial activity (Bunemann
et al., 2006).

Understanding plant microbe interactions requires a holistic
approach to analyze this complex and dynamic system.

However, the difficulty to readily culture many members of
phytomicrobiome (for example, obligate endosymbionts) in the
laboratory can be overcome by culture independent techniques
such as metagenomics, metaproteomics, and metabolomics
and usage of next generation sequencing tools to understand
the complexity of the phytomicrobiome (Bulgarelli et al.,
2012; Quiza et al., 2015). Our ability to implement large-
scale manipulations of the microbial populations is currently
limited. Plant microbiome engineering facilitates modulation
of nutrient cycling, synthesis of phytohormones, production
of antibiotics (biocontrol agents), leading to improved plant
growth and resistance to disease, insects, drought, salinity stress,
etc. (Quiza et al., 2015). Introducing recombinant strains in
the rhizosphere could improve the persistence of endogenous
microbial population by horizontal gene transfer (Taghavi et al.,
2005) and community level microbiome engineering could result
in higher resilience across disruptive environments (Loreau et al.,
2001). The ability to engineer the phytomicrobiome will be
pivotal in furthering long-term sustainability of agricultural crop
production and affecting related issues such as climate change,
human health and global food security (Quiza et al., 2015).
While we are progressing in our understanding of mechanisms
involved in the interspecies interactions, nature of the complex
relationships within the phytomicrobiome, role of the host plants
and its microbiome as a holobiont (Lakshmanan et al., 2014),
engineering the whole metaorganism is a promising strategy that
finds application in nitrogen fixation, disease control, nutrient
cycling and phytoremediation (Bakker et al., 2013; Bell et al.,
2014).

It is clear that members of the phytomicrobiome exchange
signal compounds that are effective at hormonal concentrations,
so that inter-organismal, indeed, inter-kingdom exohormones
are now understood to play a crucial role in controlling the
growth, composition and development of plants, including the
crop plants that we depend on as food sources. The commercial
deployment of LCOs in non-legume crop plants (Souleimanov
and Prithiviraj, 2002; Prithiviraj et al., 2003) indicates that there
is enormous scope for application of these compounds, to help
crop plants be more productive, and to remain productive under
themore challenging environmental conditions of climate change.
Indeed, many of the positive effects of phytomicrobiome signals
on plant growth seem to involve activation of stress response
systems. Understanding the mechanisms and consequences of
signal interactions occurring between the phytomicrobiome and
host plants and development of methods to manipulate these
interactions for increased plant growth, is an important challenge
for this century.
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