
REVIEW
published: 13 August 2015

doi: 10.3389/fpls.2015.00629

Frontiers in Plant Science | www.frontiersin.org 1 August 2015 | Volume 6 | Article 629

Edited by:

Andrzej Miroslaw Pacak,

Adam Mickiewicz University, Poland

Reviewed by:

Chiou Tzyy-Jen,

Academia Sinica, Taiwan

Attila Molnar,

University of Edinburgh, UK

*Correspondence:

Surya Kant,

Biosciences Research, Department of

Economic Development, Grains

Innovation Park, 110 Natimuk Road,

Horsham, VIC 3400, Australia

surya.kant@ecodev.vic.gov.au

Specialty section:

This article was submitted to

Plant Nutrition,

a section of the journal

Frontiers in Plant Science

Received: 04 March 2015

Accepted: 30 July 2015

Published: 13 August 2015

Citation:

Nguyen GN, Rothstein SJ,

Spangenberg G and Kant S (2015)

Role of microRNAs involved in plant

response to nitrogen and

phosphorous limiting conditions.

Front. Plant Sci. 6:629.

doi: 10.3389/fpls.2015.00629

Role of microRNAs involved in plant
response to nitrogen and
phosphorous limiting conditions

Giao N. Nguyen 1, Steven J. Rothstein 2, German Spangenberg 3, 4 and Surya Kant 1*

1 Biosciences Research, Department of Economic Development, Horsham, VIC, Australia, 2Department of Molecular and

Cellular Biology, College of Biological Science, University of Guelph, Guelph, ON, Canada, 3 Biosciences Research,

Department of Economic Development, AgriBio, Centre for AgriBioscience, Bundoora, VIC, Australia, 4 School of Applied

Systems Biology, La Trobe University, Bundoora, VIC, Australia

Plant microRNAs (miRNAs) are a class of small non-coding RNAs which target

and regulate the expression of genes involved in several growth, development, and

metabolism processes. Recent researches have shown involvement of miRNAs in

the regulation of uptake and utilization of nitrogen (N) and phosphorus (P) and more

importantly for plant adaptation to N and P limitation conditions by modifications in

plant growth, phenology, and architecture and production of secondary metabolites.

Developing strategies that allow for the higher efficiency of using both N and P fertilizers

in crop production is important for economic and environmental benefits. Improved

crop varieties with better adaptation to N and P limiting conditions could be a key

approach to achieve this effectively. Furthermore, understanding on the interactions

between N and P uptake and use and their regulation is important for the maintenance of

nutrient homeostasis in plants. This review describes the possible functions of different

miRNAs and their cross-talk relevant to the plant adaptive responses to N and P limiting

conditions. In addition, a comprehensive understanding of these processes at molecular

level and importance of biological adaptation for improved N and P use efficiency is

discussed.
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Introduction

In the past half century, there has been a marked increase in food production allowing a significant
decline in food shortages worldwide although the world population has doubled during this time
(Godfray et al., 2010). However, in the next half century to achieve a similar expansion of food
production to meet the needs of the increased human population is quite challenging given that
with the confounding factors of narrowing arable land due to urbanization, a shortage of water for
irrigation, global climate change, changing human diet, and significant increase in the proportion
of food used for feeding animals and livestock or for producing biofuels (Rothstein, 2007). Cost
effective approaches to increase crop production include but are not limited to the usage of modern
high yielding crop varieties including genetically modified crops to increase productivity per unit of
cultivated land, and the application of advanced agricultural practices such as minimal soil tillage
and improvements in water and fertilizer use efficiency (Good et al., 2004). Improved fertilizer
use efficiency requires balanced fertilization with adequate macro-nutrients and micro-nutrients
(Baligar and Fageria, 2015).
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Among macro-nutrients, both nitrogen (N) and phosphorus
(P) are key elements for crop production and are major
constraints for plant growth, development, and yield since
intensive crop production relies heavily on a large input of these
fertilizers (Vance et al., 2003; Sinha et al., 2015). Annually it
requires approximately 85–90 million tons of N and 50 million
tons of P fertilizer for crop production, worldwide (Good et al.,
2004; López-Arredondo et al., 2014). However, crop plants are
only able to exploit up to 40% of the applied N and P fertilizers,
while the residual is lost to the environment through leaching,
surface runoff, hypertrophication, denitrification, volatilization,
andmicrobial consumption (Poirier and Bucher, 2002; Good and
Beatty, 2011). Under the current trend, there will be about 2.5
fold increased level of eutrophication caused by excessive use of
N and P fertilizer by 2050 (Poirier and Bucher, 2002). All these
factors lead to a greater production cost and very significant levels
of environmental pollution (Giles, 2005). However, it is pertinent
to note that about 70% of arable land worldwide are deficient
of Pi (Hinsinger, 2001; Kirkby and Johnston, 2008). Unlike
N fertilizer which can easily be produced from the unlimited
ambient N2, natural P resources such as phosphate rock,
apatite used to manufacture P fertilizers are non-renewable and
increasingly limited making it a major challenge for sustainable
crop production in the future (López-Arredondo et al., 2014).
It is estimated that an increase in nitrogen use efficiency by 1%
worldwide, would save approximately $1.1 billion annually (Kant
et al., 2011a). Therefore, it is of urgent importance to develop
crop varieties with higher fertilizer use efficiency.

Plant small RNAs are short non-coding RNAs, which can
be classified into two major groups based on their origin
and biogenesis (Axtell, 2013). Small RNAs that are generated
from perfect double-stranded RNA precursors are referred to
as small interfering RNAs (siRNAs), which can be further
divided into several subclasses such as heterochromatic siRNAs
(hc-siRNA) and trans-acting siRNAs (ta-siRNAs) (Fei et al.,
2013). Small RNAs that are processed from a partially double-
stranded region of single-stranded RNA precursors are known
as microRNAs (miRNAs) (Jones-Rhoades et al., 2006; Voinnet,
2009). Interestingly, miRNAs can trigger the production of
secondary siRNAs such as ta-siRNAs (Voinnet, 2009; Fei et al.,
2013). In this review, we focused on the involvement of miRNAs
in the regulation of plant adaptation responses to nutrient
deficiency. Readers who have interests on other classes of plant
regulatory small RNAs, their biogenesis and modes of action are
referred to other excellent reviews (Axtell, 2013; Fei et al., 2013;
Patil et al., 2014; Weiberg et al., 2014; Kamthan et al., 2015) and
the references cited therein.

MiRNAs have been identified as potent regulators of plant
growth, development (Jung et al., 2009; Sun, 2012; Wu, 2013)
and stress-responses including biotic and abiotic stresses (Phillips
et al., 2007; Khraiwesh et al., 2012; Sunkar et al., 2012; Ferdous
et al., 2015). In the last decade, miRNAs have also been implicated
in nutrient uptake, transport and assimilation. Moreover,
miRNAs were also identified as signaling molecules between
cells, tissues, and organs (Chitwood and Timmermans, 2010;
Meng et al., 2010). MiRNAs are short (19–24 nucleotides), single-
stranded, non-coding RNAs and serve as post-transcriptional

regulators of gene expression in plants (Jones-Rhoades et al.,
2006). They are initially transcribed from MIR genes by RNA
polymerase II to form primary-microRNAs (pri-miRNAs) with
stem loop structures. A DICER-LIKE 1 protein (DCL1) processes
these long pri-miRNAs at stem loop regions to form pre-
miRNAs. RNA duplexes excised from pre-miRNAs are exported
from the nucleus into cytoplasm (Rogers and Chen, 2013).
Subsequently, one of the small RNA strands referred to asmiRNA
is stably incorporated into AGO1, the effector nuclease of the
RNA-induced silencing complexes (RISCs). The other strand,
known as miRNA∗ is rapidly degraded. MiRNAs can regulate
gene expression by guiding AGO1 to cleave target mRNAs
with complementary target sites or to interfere with protein
translation (Jones-Rhoades et al., 2006; Voinnet, 2009; Kamthan
et al., 2015).

There are a number of publications describing the expression
profiles of individual miRNAs in response to nutrient deficiency,
only a few attempts have been made to comprehensively cover
the molecular mechanisms where miRNAs are important for
the adaptive responses. This review shed light on (i) recent
progress in understanding themechanism of N and P acquisition,
assimilation and mobilization in plant; (ii) elaborate on how
plants respond to N and P deficiency and in what ways miRNAs
contribute to this physiological adaptation; and (iii) discuss the
involvement of plant miRNAs in the crosstalk between N and P
under limiting conditions.

Mechanisms for N and P Uptake and
Translocation

N is an essential element for plant development as it is a key
component of other cellular constituents such as nucleic acids,
proteins, chlorophyll, and phytohormones (Hawkesford et al.,
2012). Plants take up N mainly in the forms of nitrate (NO−

3 ),
ammonium (NH+

4 ) or urea from the soil, however, NO−

3 is
preferred form for most arable plants (Crawford and Forde,
2002). Synergistic association of legumes, actinorhizal plants and
several C4 grasses with symbiotic microorganisms can produce
NH+

4 that fix atmospheric N2 via bacterial enzyme nitrogenase
(Andrews et al., 2013). Two main phases of N uptake and
usage during life cycle of plants have been well described in the
literature. The first phase is during the vegetative stage where
N is taken up, stored and assimilated into amino acids or other
nitrogenous compounds. The second phase is the remobilization
of assimilated N at senescence, where these compounds will be
released and remobilized to reproductive organs to support the
developing seeds (Kant et al., 2011a).

The N uptake process from the soil can be conducted
either directly by roots or indirectly via mycorrhizal fungi
(Andrews et al., 2013). Two types of N uptake systems are well
defined in plants i.e., high affinity transport system (HATS)
and low affinity transport system (LATS), which functions
at low external N concentrations (1µm–1mM) and high
external N concentrations (>1mM), respectively (Kraiser et al.,
2011). Studies on the molecular mechanism of N uptake and
translocation revealed the involvement of a number of genes
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for these processes (Masclaux-Daubresse et al., 2010; Kant et al.,
2011a; Xu et al., 2012; Krapp et al., 2014). Four members
of nitrate transporter families involved in the NO−

3 uptake
process are described in Arabidopsis i.e., nitrate transporter
1/peptide (NPD), nitrate transporter 2 (NRT2), the chloride
channel (CLC), and slow anion channel associated homologs
(SLAC/SLAH) (Krapp et al., 2014). NPD is a recent nomenclature
of nitrate transporter 1 (NRT1) family recently proposed by
Léran et al. (2014) since NRT1 transporters has been reported
to transport NO−

3 and other substrates such as auxin, ABA, and
glucosinolates. However, here the original gene names as these
were initially named are referred. While NO−

3 entering plant cells
by facilitation of nitrate transporters, NH+

4 from external source
is taken up by ammonium transporters (AMT) (Crawford and
Forde, 2002). Upon entering plant cells, NO−

3 is converted to
nitrite then to NH+

4 and finally to amino acids through the action
of nitrate reductase, nitrite reductase, glutamine synthetase,
and glutamate synthase (Crawford and Forde, 2002). During
reproductive growth, there are three pathways to release the
nitrogenous compounds: the chloroplast degradation pathway;
the vacuolar and autophagic pathway; and the ubiquintin-26S
proteasome pathway (Liu et al., 2008). After degradation, the
released amino acids will be loaded into phloem and remobilized
to the developing seeds by facilitation of amino acid transporters
completing the plant N cycle (Kant et al., 2011a).

Similar to N, P is also an essential macro-nutrient for plant
growth and development. P plays a vital role as a key constituent
of nucleic acids, phospholipids and the high energetic phosphate
compounds ATP, ADP, or AMP (Marschner, 2012). Despite its
central role in cellular processes, P availability in soil for plant
uptake is very limited compared to other mineral elements
(Ramaekers et al., 2010; Shen et al., 2011). Plants take up
phosphate (Pi) in the form of PO−

4 and PO−2
4 . Unfortunately, a

majority of P existing in soil is insoluble due to its adsorption,
precipitation with other cations or conversion into organic forms
by microbes. Therefore, to maintain P homeostasis, plants have
evolved a number of adaptive responses including activation of
Pi transporters, modifications of root architecture, secretion of
phosphatases and organic acids and symbiosis with mycorrhizal
fungi (Raghothama, 1999; Poirier and Bucher, 2002; López-
Arredondo et al., 2014).

The initial transport of Pi from soil into roots requires a
mechanism allowing Pi movement against an extremely high
endogenous Pi concentration gradient in root cells, which is
usually 1000–10,000 times higher than external Pi concentration
in the soil (Bieleski, 1973). Plants have several Pi transporters
for acquisition of Pi when external Pi availability is low (Rausch
and Bucher, 2002; López-Arredondo et al., 2014). Pi transporter
genes have been identified and cloned in many crop species and
each of them plays a specific role to maintain P homeostasis (Lin
et al., 2009). Four Pi transporter families have been identified
in Arabidopsis; PHT1, PHT2, PHT3, and PHT4 (Poirier and
Bucher, 2002; Guo et al., 2008). Pi is taken up from soil
to root cells via mediation of members of the high affinity
PHT1 family, which employs an H+-gradient at the plasma
membrane to modulate H+/Pi symport activity (Shen et al.,
2011). PHT2 family transporters are located in chroloplast

and affects whole plant Pi allocation (Versaw and Harrison,
2002). PHT3 family members are located in mitochondrial
inner membrane (Poirier and Bucher, 2002) and PHT4 family
transporters are located in chloroplasts, non-photosynthetic
plastids, and the Golgi apparatus (Guo et al., 2008). In addition,
genetic screens also identified several key genes involved in
Pi acquisition and translocation in Arabidopsis. Among these
are PHOSPHATE1 (PHO1) involved in Pi loading in xylem
vessels in roots (Hamburger et al., 2002) and PHOSPHATE2
(PHO2) a negative regulator of Pi uptake (Aung et al., 2006; Bari
et al., 2006). These Pi transporters, PHO1 and PHO2 work in
coordination for the acquisition and translocation of Pi in plants.

Plant miRNAs Involvement under N
Deficient Responses

Under N limiting conditions, miRNAs can be up- or down-
regulated. Expression profiles of different miRNA families have
been observed in various crop species such as maize (Xu et al.,
2011; Trevisan et al., 2012; Zhao et al., 2013), rice (Cai et al., 2012;
Yan et al., 2014), soybean (Wang et al., 2013), and Arabidopsis
(Pant et al., 2009; Liang et al., 2012). Alteration in the expression
pattern of these miRNAs results in plant adaptive responses
to N limitation in the soil via mediation of the expression of
their target genes (Zeng et al., 2014). Involvement of different
miRNAs under a N limitation response is summarized inTable 1.
Changes of the expression patterns of miRNAs have been
shown to play crucial roles in modulating adaptive responses.
These adaptations include enhanced N uptake and transport,
changes in plant architecture, production of metabolites and
radical scavengers, reduced growth and early flowering and
modulation of metabolism (Fischer et al., 2013; Zeng et al.,
2014; Sinha et al., 2015), as discussed in the following sub-
sections.

Changes in Root Growth and Development
Several miRNAs have been reported to play vital roles in root
growth and development under N deficiency (Xu et al., 2011;
Liang et al., 2012). N deficiency modifies root architecture and
morphology to improve the plant’s ability to acquire nutrients
from the soil more efficiently (Hermans et al., 2006). Recent
studies have demonstrated the regulatory roles of miRNAs on
root architecture and growth under N deficient conditions (Khan
et al., 2011; Liang et al., 2012; Zhao et al., 2012;Wang et al., 2013).
In Arabidopsis, two Auxin Response Factors (ARF transcription
factors), ARF6 and ARF8, regulate development of reproductive
organs and are targets of miR167 (Wu et al., 2006). Further it
was shown that ARF8 is the regulator of lateral roots, where its
expression was induced in pericycle and lateral root cap cells
under N limiting conditions (Gifford et al., 2008). ARF proteins
bind to auxin responsive cis-acting promoter elements and can
induce or suppress gene expression in response to the plant
phytohormone auxin (Hagen and Guilfoyle, 2002; Liscum and
Reed, 2002). MiR167 also reportedly targets IAA-Ala Resistant3
(IAR3), whose protein hydrolyses the inactive auxin derivative
indole-3-acetic acid alanine and releases bioactive auxin, for
root development during high osmotic stress (Kinoshita et al.,
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TABLE 1 | Different miRNAs involved in N and P limitation with their target genes, functions, and tissue specific effects.

MiRNA Target gene Description of function Involvement under low N Involvement under low Pi

family or protein
Plant Plant species Plant Plant species

tissuea (referenceb) tissue (reference)

156 SQUAMOSA PROMOTER

BINDING PROTEIN-LIKE

(SPL) transcription factors

Shoot development

Delayed vegetative phase

change

R (+) Maize (1) R (+) Arabidopsis (2)

R (+) Arabidopsis (3) R (+), L (−) White Lupin (4)

157 SQUAMOSA PROMOTER

BINDING PROTEIN-LIKE

(SPL) transcription factors

N (+) Common bean (5)

159 MYB, TCP transcription

factors

Plant development R (+) Maize (1) R (+), SM (−), L (−) White Lupin (4)

R (+) Soybean (6)

160 Auxin response factors Reduce auxin responsive

activities and the vegetative

growth

R (+) Maize (7) R (+), L (−) White Lupin (4)

Lateral and adventitious root

development, signal

transduction

R (+) Arabidopsis (3)

162 Dicer like proteins Flower development R (+) Maize (1)

164 NAC transcription factors Accelerate senescence, N

remobilization

L (+), R (−), S (−) Maize (1, 7) R (+), SM (−), L (−) White Lupin (4)

166 HD-ZIP transcription

factors

Shoot development R (−) Maize (8) R (+), SM (−), L (−) White Lupin (4)

167 Auxin response factors Enhance auxin responsive

activity; lateral root outgrowth

Reduced fertility, impaired

reproductive organ

development

R (−) Maize (7) R (+), L (−) White Lupin (4)

R (+), S (+) Maize (1)

R (−) Arabidopsis (3)

168 ARGONAUTE1 Homeostasis and feedback

regulation on miRNAs

R (−) Maize (7) R (+), L (+) White Lupin (4)

169 HAP2 transcription factors

CAAT binding factor/NFYA

Nitrogen homeostasis, stress

response

Nitrogen homeostasis, N

uptake

Antioxidant

R (−), S (−), L (−) Maize (1, 7–9) SD (−), R (−), S (−) Arabidopsis (2, 10, 11)

R (−), SD (−) Arabidopsis (3, 10) R (−), S (−) Arabidopsis (2)

R (−), S (−) Arabidopsis (12)

R (−), S (−) Soybean (13)

171 SCARECROW-like

transcription factors

Root development R (+) Arabidopsis (3) SM (+), L (+) White Lupin (4)

R (+), S (+) Maize (1)

R (−), S (−) Soybean (13)

172 AP2 like transcription

factors

Ethylene-responsive pathway,

N remobilization

Flower development

L (+), S (+) Maize (1, 7) L (−) Tomato (14)

R (−) Arabidopsis (3)

(Continued)
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TABLE 1 | Continued

MiRNA Target gene Description of function Involvement under low N Involvement under low Pi

family or protein
Plant Plant species Plant Plant species

tissuea (referenceb) tissue (reference)

319 TCP transcription factors Reduce vegetative growth R (−) Maize (7) R (+), SM (−) White Lupin (4)

R (−), S (−) Soybean (13) R (+), L (−) Tomato (14)

R (−) Soybean (6)

393 Auxin receptors Root development, defense

response

R (+) Maize (1)

394 F-box protein Shoot development S (+) Maize (1)

R (−), S (−) Soybean (13)

395 ATP sulfurylase; sulfate

transporters

Sulfate homeostasis R (−) Arabidopsis (3) R (−), S (−) Arabidopsis (2)

R (−) Maize (1, 7) R (−), SM (+), L (+) White Lupin (4)

396 Growth Regulating Factor

(GRF)

Leaf development R (−) Maize (1) R (+), L (−) White Lupin (4)

R (+/−), S (+/−) Soybean (13)

397 Laccases Reduce root growth

Copper homeostasis

L (−), S (−), R (−) Maize (1, 7) L (−) White Lupin (4)

R (−) Arabidopsis (3) L (−) Common bean (5)

R (−); S (−) Soybean (13)

398 COX5b-1; CCS1

COX

Copper homeostasis,

oxidative stress

Enhanced to produce ATP

under stress

R (−), SD (−) Arabidopsis (3, 10) SD (−), R (−), S (−) Arabidopsis (2, 10)

L (−); S (−) Maize (1, 7) L (+) Tomato (14)

R (−), S (−) Soybean (13) R (−) Soybean (6)

L (−) Common bean (5)

399 Ubiquitin conjugase

E2/UBC24

Phosphate homeostasis,

uptake and translocation

L (−), R (−) Maize (1, 7) SD (+), R (+), S (+) Arabidopsis (2, 10, 11,

15, 16)

R (−) Arabidopsis (3) R (+), L (+) Medicago truncatula

(17)

R (+), L (+) Common bean (18, 19)

L (+) White Lupin (4)

R (+), L (+) Tomato (14, 16)

R (+), S (+) Rice (15, 16, 20)

S (+) Barley (21)

408 PLANTACYANIN

Laccases

Enhance electron carrier

activity

Copper homeostasis

L (−), R (−) Maize (1, 7, 8)

R (−) Arabidopsis (3)

R (−); S (−) Soybean (13)

444 MADS-box Root development R (+) Rice (24) R (+) Rice (24)

528 POD, SOD Enhance to scavenge free

radical and active oxygen

species under -N

L (−), R (−), S (−) Maize (1, 7, 8)

778 SET domain containing

protein

SD (+), R (+), S (+) Arabidopsis (2, 10)

(Continued)
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TABLE 1 | Continued

MiRNA Target gene Description of function Involvement under low N Involvement under low Pi

family or protein
Plant Plant species Plant Plant species

tissuea (referenceb) tissue (reference)

780 Na+/H+ antiporter Sodium ion export R (+) Arabidopsis (3)

826 Alkenyl hydroxalkyl

producing 2

Glucosinolate synthesis R (+) Arabidopsis (3)

827 Ubiquitin E3 ligase with

RING and SPX

Nitrogen/phosphorus

metabolism

Accelerate leaf senescence, P

homeostasis, P uptake

R (−) Arabidopsis (3) SD (+), R (+), S (+) Arabidopsis (2, 10, 11,

22, 23)

L (−), R (−) Maize (1, 7) R (+), S (+) Rice (22)

S (+) Barley (21)

828 TAS4 Anthocyanin biosynthesis S (+) Arabidopsis (2)

857 Laccases Copper homeostasis R (−) Arabidopsis (3)

2111 F box protein SD (+), R (+), S (+) Arabidopsis (2, 10)

a Plant tissue: R, root; L, leaf; S, shoot; N, nodule; SM, stem; SD, seedling; (+), up; (−), down.
b References are listed as follows: 1, (Zhao et al., 2012); 2, (Hsieh et al., 2009); 3, (Liang et al., 2012); 4, (Zhu et al., 2010); 5, (Valdés-López et al., 2010); 6, (Zeng et al., 2010); 7, (Xu

et al., 2011); 8, (Trevisan et al., 2012); 9, (Zhao et al., 2013); 10, (Pant et al., 2009); 11, (Lundmark et al., 2010); 12, (Zhao et al., 2011); 13, (Wang et al., 2013); 14, (Gu et al., 2010);

15, (Bari et al., 2006); 16, (Chiou et al., 2006); 17, (Branscheid et al., 2010); 18, (Liu et al., 2010); 19, (Valdés-López et al., 2008); 20, (Zhou et al., 2008); 21, (Hackenberg et al., 2013);

22, (Lin et al., 2010); 23, (Kant et al., 2011b); 24, (Yan et al., 2014).

2012). Over-expression ofmiR167 resulted in plantmorphologies
similar to arf6 and arf8 mutant phenotypes (Wu et al., 2006).
Therefore, lower expression of miR167 under N deficiency might
lift its inhibition on auxin transcription factors which could in
turn induce lateral root growth (Liang et al., 2012). In contrary,
miR160 was induced while ARF16 and ARF17 were down-
regulated under N limitation (Liang et al., 2012). In Arabidopsis,
ARF16 modulates root cap cell formation while ARF17 serves
as a regulator of GH3-like early auxin response genes (Mallory
et al., 2005; Wang et al., 2005). Studies showed that miR160 over-
expressed transgenic plants had more developed lateral roots
implying that induced expression of miR160 might promote
lateral root growth via mediation of ARF16 and ARF17 under
N deficiency (Liang et al., 2012). Further study demonstrated
that modulation of the root system under N starvation was
actually coordinated by a spatial regulatory complex of three
miRNAs: miR160, miR167, and miR171 (Liang et al., 2012).
Under N deficiency, root growth was increased by enhanced
expression of miR160 and miR171 and reduced expression of
miR167.

The NAC gene family encode transcription factors that play
multiple roles in developmental processes in plants. NACs
consist of three gene families; NAM (No Apical Meristem),
ATAF (Arabidopsis Transcription Activation Factor), CUC
(CUp shaped Cotyledon) (Olsen et al., 2005). MiR164 was
reported to target five NAC domain containing genes, including
NAC1 which is involved in auxin signal transduction for
the growth and development of lateral roots (Guo et al.,
2005) and CUC1 which is required for normal embryonic,
vegetative, and floral development (Mallory et al., 2004).

Down-regulation of miR164 concomitant with the up-regulation
of NAC1 produced more lateral roots (Guo et al., 2005).
A NAC locus has been reported to accelerate senescence
and increase nutrient remobilization from leaves to the
developing grains in wheat (Uauy et al., 2006). MiR164
is up-regulated in maize leaf under N limiting conditions
(Xu et al., 2011). This might imply the role of miR164 in
modulating both root and shoot development under N limitation
adaptation.

N Uptake
MiRNA, miR169a is the only candidate reported so far,
regulating the expression of key target N transporters under
N limiting conditions. The MiR169 family in Arabidopsis
consists of 14 members, among these miR169a is the main
contributor to the total miR169 level (Zhao et al., 2011).
In Arabidopsis, miR169 targets NFY (Nuclear Factor Y) a
ubiquitous transcription factor consisting of 3 subunits A,
B, and C, some of which bind to promoter regions and
regulate expression of the nitrate transporters AtNRT2.1 and
AtNRT1.1 (Zhao et al., 2011). Up-regulation of NFYA5, a
target of miR169, reportedly enhanced drought tolerance
by stimulating expression of several antioxidant genes (Li
et al., 2008). Under N deficiency, miR169 was strongly
down-regulated and its target NFYA family members were
strongly induced in root and shoot tissues (Zhao et al., 2011).
Furthermore, over-expression of MIR169a repressed expression
of NFYA transcripts. These over-expresser transgenic plants
were especially hypersensitive to N starvation, accumulating
less N which resulted in leaf yellowing compared to the wild
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type (WT) plants (Zhao et al., 2011). The hypersensitivity
of MIR169a over-expresser plants was associated with down-
regulation of nitrate transporter genes AtNRT2.1 and AtNRT1.1
(CHL1) suggesting the regulatory role of miR169 in N uptake
and remobilization. The chl1 mutant plants showed a reduced
expression of AtNRT1.1 and its phenotype mimicked over-
expressed MIR169a transgenic plants. These indicate that lower
expression of miR169 is an adaptive response of plants under N
limiting conditions.

Production of Secondary Metabolites and
Radical Scavengers
The role of miRNAs involved in the production of antioxidants
and anthocyanins has been reported (Kandlbinder et al., 2004;
Shin et al., 2005; Liang et al., 2012). These are secondary
metabolites protecting plants from photo-inhibition damage
under abiotic stresses including N limitation. In Arabidopsis,
the AOP2 gene which encodes 2-oxoglutarate-dependent
dioxygenase and associates with glucosinolate biosynthesis is the
target of miR826 (Liang et al., 2012). A recent study reported
that under N limiting conditions miR826 was strongly induced
while AOP2 transcripts were significantly repressed (He et al.,
2014). In addition, expression of the nitrate transporter (NRT2.1)
and ammonium transporter (AMT1.5) genes were also induced
(He et al., 2014). MiR826 over-expresser Arabidopsis transgenic
plants showed enhanced tolerance under N limiting conditions,
and had higher biomass, more primary and lateral roots,
increased chlorophyll and less glucosinolate and anthocyanin
contents (He et al., 2014). It can be hypothesized that these
transgenic lines were able to withstand N limiting conditions
better than WT plants and had less need to accumulate stress
induced secondary metabolites such as glucosinolates and
anthocyanin.

N deficiency was reported to repress expression of miR398
in plants (Pant et al., 2009; Liang et al., 2012). MiR398 is a
conserved miRNA in Arabidopsis, rice, Lotus, and Medicago
(Sunkar and Zhu, 2004). This miRNA targets transcripts of
multiple genes: cytosolic CSD1, chloroplastic CSD2, COX5b-
1, and CCS1. CSD1 and CSD2 encode a Cu/Zn superoxide
dismutase (SOD) an important radical scavenger that protects
plants from oxidative stress damage (Sunkar et al., 2006;
Jagadeeswaran et al., 2009). COX5b-1 encodes a subunit of
the mitochondrial cytochrome c oxidase and CCS1 encodes
the copper chaperone for SOD (Beauclair et al., 2010; Zhu
et al., 2011). Over-expression of CSD2 was reported to confer
tolerance to oxidative stress induced by high light (Sunkar
et al., 2006). This suggests that down-regulation of miR398
might reduce its control on these target antioxidant genes
and thus indirectly provided protection to the photosynthetic
machinery from reactive oxygen species (ROS) generated
from N deficiency (Kandlbinder et al., 2004; Shin et al.,
2005).

In plants, miR156 targets transcripts of the Squamosa
Promoter Binding Protein Like (SPL) family of transcription
factors whose expressions were synergistically associated with
anthocyanin biosynthesis (Gou et al., 2011). Over-expression of
miR156 repressed the expression of SLP, concomitantly with

an increased production of anthocyanin in Arabidopsis. The
accumulation of anthocyanin and reduction of photosynthesis
are adaptive responses of plants to N limiting condition, which
protect them from photo-inhibition damage (Diaz et al., 2006;
Peng et al., 2008). Thus, increased expression of miR156
might have resulted in higher levels of anthocyanin production
conferring better protection of plants during N starvation (Liang
et al., 2012).

Modifications of Flowering Time
MicroRNAs have been long known for controlling flowering time
in plants (Yamaguchi and Abe, 2012; Spanudakis and Jackson,
2014). MiR156 was shown to regulate flowering, vegetative phase
changes, fertility, and leaf formation via mediation of the SPL
genes (Wu and Poethig, 2006; Wang et al., 2008, 2009; Wu
et al., 2009; Xing et al., 2010). Transgenic plants over-expressing
miR156 resulted in a prolonged juvenile phase, stunted growth,
altered biomass production, and delayed flowering (Wu and
Poethig, 2006; Xie et al., 2006; Chuck et al., 2007a; Zhang
et al., 2011b; Fu et al., 2012; Shikata et al., 2012). MiR172
targets the AP2-like family of transcription factors including
TOE1 and TOE2 and controls flowering time and floral organ
identity in maize and Arabidopsis (Aukerman and Sakai, 2003;
Chen, 2004; Chuck et al., 2007b; Zhao et al., 2007). In contrast
to miR156, miR172 over-expressers were shown to promote
flowering in Arabidopsis (Aukerman and Sakai, 2003; Chen,
2004; Jung et al., 2011). Further research revealed that miR156
regulates expression of miR172 via mediation of the transcription
factors SPL9 and SPL10 (Wu et al., 2009). Over-expressed
35S::miR156a transgenic plants had only half of the normal
transcript level of miR172, whereas 35S::MIM156 transgenic
plants had more than double the miR172 level (Wu et al.,
2009). Since N starvation is known to induce early flowering
in plants (Vidal et al., 2014), the changes in the expression
pattern of miR156 and miR172 under N deficiency (Liang
et al., 2012) will likely result in modification of flowering
time.

Plant miRNAs Involvement in Pi Deficient
Responses

Differential expression patterns of miRNAs under Pi limitation
have been observed in several plant species for example
Arabidopsis (Hsieh et al., 2009; Lundmark et al., 2010), common
bean (Valdés-López et al., 2010), soybean (Zeng et al., 2010),
rice (Zhou et al., 2008; Lin et al., 2010; Yan et al., 2014),
barley (Hackenberg et al., 2013), white Lupin (Zhu et al., 2010),
tomato (Gu et al., 2010), and Medicago truncatula (Branscheid
et al., 2010). Similar to their behavior in N limiting condition,
changes in the level of miRNAs mediated the expression of target
genes resulting in physiological and morphological changes
of plants under low Pi conditions. These changes include
modifications of root architecture, production of metabolites and
biosynthesis of anthocyanin and oxidative radical scavengers.
Involvement of different miRNAs under Pi deficiency is shown
in Table 1.
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Root Architecture Changes
MiRNAs are known to regulate root architecture (Guo et al.,
2005; Mallory et al., 2005). Their differential expression patterns
under Pi limiting conditions (Zhu et al., 2010) suggest their
regulatory role in modulating root growth. Pi starvation induces
changes in plant root system architecture as adaptive responses
such as minimizing development of primary roots, increasing
root branching, and stimulating elongation of lateral roots (Péret
et al., 2014). Expression of miR160, miR164, and miR167 were
up-regulated specifically in roots and were down-regulated in
stem and leaves under Pi starvation in white Lupin (Zhu
et al., 2010). Studies on Pi deficient white lupin reported that
plants produced more lateral roots (Johnson et al., 1996), which
enable the plant to secrete more organic acids and thus to
facilitate liberation of precipitated Pi from the soil (Massonneau
et al., 2001). Since miR160, miR164, and miR167 modulate
root growth via mediation of NAC and auxin transcription
factors (Guo et al., 2005; Mallory et al., 2005) it is arguable
that their induced expression locally in the roots might be
associated with lateral root development in response to Pi
deficiency.

Pi Uptake, Relocation, and Remobilization
Enhancement
A number of miRNAs, their target genes and involvement
in Pi uptake, relocation, and remobilization has been well
characterized. As discussed in the earlier section, reduced
expression of miR169 facilitated N uptake, and increased
expression of the nitrate transporter genes AtNRT2.1 and
AtNRT1.1 via mediation of NFYA transcription factors. A recent
study showed that increased supply of NO−

3 also stimulated root
formation thus enhancing Pi uptake in the shrub legume (Maistry
et al., 2014). It seems likely that the down-regulation of miR169
under a low Pi condition (Hsieh et al., 2009; Pant et al., 2009) was
an adaptive response to facilitate N uptake and remobilization,
which in turn indirectly stimulates Pi uptake.

The role of miR399 in regulation of P homeostasis via Pi
acquisition and translocation is well characterized (Chiou, 2007;
Liu et al., 2014). MiR399 targets PHO2 (or UBC24) gene which
encodes a ubiquitin conjugating E2 enzyme (Aung et al., 2006;
Bari et al., 2006). PHO2 plays a role to negatively regulate the level
of Pi uptake, translocation, and remobilization when Pi supply
is sufficient. pho2 mutant plants accumulate excessive amounts
of Pi in shoots and thus exhibit Pi induced toxic symptoms in
Arabidopsis (Delhaize and Randall, 1995; Aung et al., 2006). In
agreement, miR399 over-expresser plants enhance Pi uptake and
translocation in shoots and under Pi sufficient conditions causing
Pi toxicity in plants (Fujii et al., 2005; Aung et al., 2006; Bari et al.,
2006; Chiou et al., 2006). MiR399 was up-regulated and PHO2
was down-regulated under low Pi conditions (Chiou et al., 2006)
suggesting the role of miR399 in maintaining Pi homeostasis
in plants. Recent findings showed that PHO2 is located in the
endomembrane system and mediates the degradation of PHT1
family members and PHO1 (Liu et al., 2012; Huang et al., 2013).
As remobilization of Pi from old to young leaves was inhibited
under Pi starvation (Chiou et al., 2006), induced miR399
expression helped maintain Pi homeostasis via enhancing Pi

uptake, transport, and remobilization from root to shoot by
down-regulating its target gene PHO2 (Kuo and Chiou, 2011).
Other studies on plants such as common bean (Valdés-López
et al., 2008; Liu et al., 2010) and rice (Hu et al., 2011) also reported
similar interactions between miR399 and PHO2 homologs in
modulating Pi homeostasis, suggesting the regulatory roles of
miR399 are conserved in angiosperms.

Similar to miR399, miR827 also plays a crucial role in
maintaining Pi homeostasis in plants (Kant et al., 2011b; Lin
et al., 2013; Liu et al., 2014; Park et al., 2014). MiR827 target
the 5′-untranslated region of the NITROGEN LIMITATION
ADAPTATION (NLA) transcripts (Kant et al., 2011b), which
encode a RING type ubiquitin E3 ligase (Peng et al., 2007).
The expression of miR827 is induced under a low Pi condition,
where the transcript level of NLA was repressed (Kant et al.,
2011b). Initially,NLAwas reported to be involved in the adaptive
response to N deficiency, where nlamutant plants showed earlier
onset of senescence compared to WT plants under N limiting
conditions and an inability to accumulate anthocyanins (Peng
et al., 2007). However, later studies showed that a mutation in
either PHOSPHATE TRANSPORTER TRAFFIC FACILITATOR1
(PHF1) or PHOSPHATE TRANSPORTER1:1 (PHT1:1) genes
rescued the early senescence phenotype in nlamutant in response
to N starvation. The early senescence phenotype of the nla
mutant indeed was caused by excessive Pi accumulation similar
to pho2mutant plants (Kant et al., 2011b). Pi over-accumulation
was much more pronounced under low NO−

3 conditions in both
nla and pho2mutant plants suggesting the important role ofNLA
and PHO2 in maintaining Pi homeostasis in a NO−

3 dependent
manner (Kant et al., 2011b). Further research showed that NLA
is predominantly expressed in the plasmamembrane. NLA; an E3
ubiquitin ligase interacts with PHO2; an E2 ubiquitin conjugase
to degrade Pi transporter PHT1:4 by ubiquitination (Park et al.,
2014). Up-regulation of miR399 and miR827 which are negative
regulators of PHO2 and NLA, respectively, would therefore
enhance Pi uptake in plants under Pi limiting conditions (Kant
et al., 2011b).

Biosynthesis of Anthocyanins and Antioxidants
Pi deficiency induce accumulation of anthocyanins in plants
and several miRNAs are known to target genes involved in
the anthocyanin biosynthesis pathway. MiR828 is up-regulated
under Pi deficiency and its target is Trans-Acting SiRNA gene
4 (TAS4) non-coding RNA transcript, which results in the
production of tasi-RNAs (Hsieh et al., 2009). TAS4-siR81 (−)
one of the dominant TAS4 siRNAs, targets a set of MYB
transcription factors PAP1/MYB75, PAP2/MYB90, andMYB113,
which regulate genes in the anthocyanin biosynthesis pathway
and leaf senescence (Rajagopalan et al., 2006). MiR828 also target
MYB113, suggesting an inter-relationship between these MYB
genes, miR828 and TAS4. Since anthocyanin biosynthesis is also
induced under Pi starvation (Misson et al., 2005), it is assumed
that there is a mechanistic cross-talk between miR828, TAS4-
siR81 (−) and its target genes, which modulates anthocyanin
accumulation. Pi starvation might activate expression of these
MYB transcription factors leading to enhanced biosynthesis
of anthocyanins. In addition, increased levels of PAP1/MYB75
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trigger the production of TAS4-siR81 (−) via the activation of
miR828 or TAS4, which in turn suppressed the expression of
MYB transcription factors (Hsieh et al., 2009).

Oxidative stress conditions are a common phenomenon
in plants under nutrient deficiency in general and under Pi
limitation in particular (Kandlbinder et al., 2004; Shin et al.,
2005). To cope with deleterious oxidative stress conditions, plants
usually develop a protective mechanism by activating production
of oxidant scavengers in order to maintain redox homeostasis.
Under Pi starvation, two miRNAs, miR169 and miR398, were
reportedly down-regulated (Hsieh et al., 2009; Pant et al.,
2009) suggesting that their reduced expression might involve
plant tolerance to oxidative stress conditions. Up-regulation
of NFYA5, a target of miR169, reportedly enhanced drought
tolerance where NFYA5 over-expresser transgenic Arabidopsis
had increased expression of several antioxidant enzymes such
as glutathione S-transferase and peroxidases (Li et al., 2008).
Most likely, down-regulation of miR169 allows for coping with
the oxidative condition generated from Pi limiting conditions.
In Arabidopsis miR398 targets two genes CSD1 and CSD2,
which encode Cu/Zn SOD antioxidant scavengers (Sunkar et al.,
2006). Down-regulation of miR398 by oxidative stresses was
reported to promote post-transcriptionalmRNA accumulation of
CSD1 and CSD2 and enhanced oxidative stress tolerance (Sunkar
et al., 2006). Thus, down-regulation of miR398 could potentially
increase expression of the antioxidant genes CSD1 and CSD2
enhancing plant tolerance to oxidative stress conditions caused
by Pi starvation.

Plant microRNAs Involvement in Crosstalk
between Deficient N and P

Amongst miRNAs identified so far, perhaps miR399 and miR827
are best characterized with their crucial roles in maintaining Pi
homeostasis in plants (Liu et al., 2014). However, differential
expression patterns of these miRNAs under N (Xu et al., 2011;
Liang et al., 2012; Zhao et al., 2012) and P (Hsieh et al., 2009; Pant
et al., 2009; Lundmark et al., 2010) limiting conditions suggest
that their regulatory roles also depend upon the interaction
between N and P. An adequate and balanced supply of nutrients
is important to meet plant nutritional requirement, and efforts
have been made to identify interactions amongst the response to
different nutrients in general and between N and P in particular.
It is clear that N and P uptake and assimilation in plants are
not independent processes, but they interact with each other,
in which the supply of one affects the other (Fageria, 2001).
Increasing Pi supply was reported to increase nodulation and
N fixation of subterranean clover by mediation of host plant
growth (Robson et al., 1981). A recent study also shows that
increasing N supply stimulates root formation thereby enhancing
Pi acquisition in shrub legume (Maistry et al., 2014).

The form of N present can also have an effect on the type
of interaction between N and Pi. For example, a competing
interaction for uptake has been reported between NO−

3 and
Pi, both forms being anionic, while no antagonism for uptake
was found between NH+

4 and Pi (Kant et al., 2011b). Further,

the suppression by high levels of NO−

3 on Pi uptake was
higher compared to the suppression by high levels of Pi on
NO−

3 (Kant et al., 2011b). The differential suppression by these
ions could be due to their altered mobility in soil, since NO−

3
diffusion is 3–4 times faster than that seen for Pi (Tinker and
Nye, 2000). Higher NH+

4 supply was reported to increase Pi
uptake in some crop species (Riley and Barber, 1971; Gahoonia
et al., 1992), while higher application of NO−

3 was found to
suppress Pi uptake (Kant et al., 2011b). The synergistic effects
of NH+

4 toward Pi uptake could be attributed to its ability to
create changes in rhizosphere pH and alter root development,
where supply of NH+

4 reduces pH in rhizosphere therefore
enabling the availability of externally soluble Pi; whereas supply
of NO−

3 increases pH in the surrounding areas of the roots
affecting Pi uptake (Hinsinger, 2001; Jin et al., 2014). Rice plants
supplemented withNH+

4 were shown to have higher Pi content in
both roots and shoots than those supplied with NO−

3 (Zeng et al.,
2012). Furthermore, Pi uptake in plants requires involvement
of H+-ATPase proton pump and co-transporters (Raghothama,
1999; Poirier and Bucher, 2002). Involvement of root plasma
membrane H+-ATPase in the adaptation of plants in response to
Pi deficiency has been reported (Yan et al., 2002; Shen et al., 2006).
Transgenic Arabidopsis plants overexpressing plasmamembrane
H+-ATPase absorbedmore Pi under low Pi conditions compared
to the WT plants (Shen et al., 2006). It was hypothesized that
Pi deficiency contributed to the enhanced activity of plasma
membrane H+-ATPase andH+ pump leading to acidification the
rhizosphere (Zhang et al., 2011a) which in turn makes external
Pi available for plants. Recent studies on effects of N on Pi
acquisition reported that there is an association of involvement
of plasma membrane H+-ATPase in stimulating Pi uptake by
addition of NH+

4 fertilizer.
Plants share common adaptation responses under N or

Pi limiting conditions such as activation of high affinity
transporters, development of lateral roots to facilitate uptake
process, remobilization of nutrients from older leaves to young
leaves and reproductive parts, retardation of growth and
photosynthesis and production of antioxidant scavengers (Fang
et al., 2009; Kant et al., 2011a). Under Pi limitation, NO−

3 uptake
and translocation from roots to shoots was reduced in different
plant species such as tobacco (Nicotinana tabacum L.) (Rufty
et al., 1990), barley (Hordeum vulgare L.) (Rufty et al., 1991),
and soybean (Glycine max L.) (Rufty et al., 1993). Pi starvation
also reduced the uptake of NH+

4 (Taylor et al., 2010). It was
proposed that the decrease in NO−

3 uptake was resulted from the
decrease of ATP pool (Rufty et al., 1993) and the feedback control
mechanisms where uptake of a respective nutrient element
not only depends on its presence but also on the availability
of all other nutrients in rhizosphere (Amtmann and Blatt,
2009). Furthermore, Pi deficiency resulted in reduced activity
of nitrate reductase in the roots of bean (Phaseolus vulgaris L.)
(Gniazdowska and Rychter, 2000), an important enzyme of N
assimilation pathway, which in turn inhibited N uptake from
external source. Moreover, de Groot et al. (2003) suggested
that reduced N uptake in tomato (Lycopersicon esculentum
Mill.) under Pi limitation could probably be mediated by leaf
cytokinin concentrations since low cytokinin levels might cause
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decrease in nitrate reductase activity. Transcriptional profiling
of Arabiopsis and maize shed more light on this aspect. Low
Pi supply was shown to reduce expression of nitrate reductase
genes in Arabidopsis (Wu et al., 2003) and in maize (Schlüter
et al., 2013). Therefore, it is reasonable to mention that genes
in N and P metabolisms have orchestrated to maintain the
nutrient balance under Pi limiting condition. As discussed in
previous section miR399 and miR827 play important roles in
maintaining Pi homeostasis in plants. Under Pi limitation, these
miRNAs are up-regulated to release their inhibition on PHO2
and NLA. As a result, induced expression of PHT1 transporters
will increase the uptake and translocation of Pi from roots to
shoots (Liu et al., 2014). In contrast, under low NO−

3 supply
Pi accumulation was higher in Arabidopsis plants (Kant et al.,
2011b; Krapp et al., 2011) and maize leaves (Schlüter et al.,
2012), which might be resulted from feedback control responses
(Amtmann and Blatt, 2009). It is well documented that under Pi
deprivation remobilization of soluble carbohydrates from leaves
to roots increased to facilitate transporter activity and Pi uptake
(Hermans et al., 2006; Karthikeyan et al., 2007). It is likely that
increased root growth and high level of soluble carbohydrate
accumulation in the roots under N limitation stimulate Pi
accumulation in plants (Paul and Stitt, 1993). Furthermore, low
NO−

3 supply down-regulates many Pi starvation responsive genes
(Schlüter et al., 2012, 2013). Probably down-regulation of Pi
starvation responsive genes in these conditions is to alleviate
unnecessary Pi uptake and accumulation in plants. Nevertheless,
this mechanism requires further research. Under N limitation,
expression of miR399 and miR827 are significantly down-
regulated to stimulate expression of PHO2 and NLA, which are
negatively correlated with PHT1 activity and Pi uptake. Since
low NO−

3 supply causes Pi accumulation in different plants (Kant
et al., 2011b; Krapp et al., 2011; Schlüter et al., 2012), down-
regulation of miR399 and miR827 under such conditions is
possibly a counter measure to control the over-accumulation of
Pi to the toxic level.

A hypothetical model for the crosstalk between N and P
with emphasis on the role of miR399 and miR827 and their
target genes PHO2 and NLA is presented in Figure 1, which
is based on the report of Kant et al. (2011b). They studied a
range of combinations of N and P applications and has described
under which combinations pho2 and nla mutants were showing
Pi toxicity. There was a strong effect of interaction between N
and P supply on both pho2 and nla phenotypes. When supply
of N and Pi is sufficient, both WT and pho2 and nla mutant
plants show a normal phenotype (Figure 1A_Sufficient N and
Pi). Pi toxicity effect was not observed in pho2 and nla mutant
plants although Pi concentration was two-fold higher in these
plants. Probably Pi level might not reached the critical toxic
point (Figure 1B_Sufficient N and Pi) (Delhaize and Randall,
1995; Kant et al., 2011b). Under low Pi supply, miR399 and
miR827 expressions are induced with concomitant repression of
PHO2 and NLA genes though these genes are still functional in
WT plants imposing some repression on Pi uptake. Lower Pi
supply and uptake result in anthocyanin accumulation in WT
plants, a known phenomenon (Figure 1A_Low Pi) (Jiang et al.,
2007; Kant et al., 2011b). Interestingly, in pho2 or nla mutant

plants PHO2 and NLA genes are non-functional thereby letting
more Pi uptake compared to WT plants resulting in normal
growth of these plants (Figure 1B_Low Pi). Under low N supply,
WT plants accumulate anthocyanin; a known phenomenon
(Figure 1A_Low N) (Peng et al., 2007, 2008; Kant et al., 2011b).
Expressions of miR399 and miR827 was reduced with enhanced
expression of PHO2 and NLA genes regulating the controlled Pi
uptake (Figure 1A_LowN). Since these genes are non-functional
in pho2 or nlamutant plants, Pi uptake is not regulated resulting
in excessive accumulation of Pi causing Pi toxicity in nla or pho2

FIGURE 1 | Hypothetical model for the role of miR399 and miR827 to

maintain Pi homeostasis in plants. (A) In WT plants, PHO2 and NLA act as

repressors for Pi uptake and these genes are targets of miR399 and miR827,

respectively. Under sufficient N and Pi supply plants grow normal and under

low N or Pi supply plants accumulate anthocyanin. (B) In pho2 or nla mutants,

the PHO2 or NLA gene are not functional and these plants have higher Pi

uptake in general compared to WT plants. Under sufficient N and Pi supply,

mutant plants grow normal like WT. Under sufficient N and low Pi supply, since

PHO2 or NLA gene are non-functional thereby letting more Pi uptake resulting

in normal plant growth of these plants. Low N and sufficient Pi conditions

accelerate excessive Pi accumulation causing Pi toxicity in these mutants.

Purple leaves show N or Pi deficiency leading to anthocyanin accumulation,

orange leaves indicate Pi toxicity. Dotted lines indicate less suppression. The

size of the letterM or N correlates with expression level. The size and number

of the solid green and red circles correlates with N and Pi concentration,

respectively. M, miR399 or miR827; N, PHO2 or NLA (adapted from Kant

et al., 2011b).
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mutant plants (Figure 1B_Low N) (Delhaize and Randall, 1995;
Kant et al., 2011b).

Conclusions and Future Perspectives

It is important for both economic and environmental reasons
to improve N and P use efficiency in plants. Improving N
and P uptake under their limiting supply would be a viable
approach to utilize these nutrient elements more efficiently.
The strategies for such improvement could include optimizing
agricultural practices, molecular marker assisted breeding, and
genetic engineering of genes involved in N and Pi uptake and
metabolism (Ramaekers et al., 2010; McAllister et al., 2012;
Guevara et al., 2014; López-Arredondo et al., 2014; Dass et al.,
2015). A genetic engineering approach by manipulation of
miRNA expression to improve N use efficiency was proposed
(Fischer et al., 2013; Sinha et al., 2015), a similar approach
is quite reasonable to propose for the improvement of P use
efficiency.

Since the cloning of first plant miRNA in 2002 (Reinhart
et al., 2002), a number of miRNAs have been identified. In
the past five years, the number of newly cloned plant miRNAs
has increased from 10,898 to 15,041 and target transcripts have
been extended to 178,138 in 46 species (Yi et al., 2015). Several
genetically engineered plants using differentmiRNAs have shown
improved resistance against biotic and abiotic stresses (Kamthan
et al., 2015). Still the understanding of the functionality of several
miRNAs is unclear or their target genes have unknown function.
Only a few of the miRNAs and their target genes have been
completely characterized and experimentally validated especially
those involved in adaptive response to N and Pi limitation
conditions. Further research and studies are required and would

be much helpful to decipher the regulatory roles of known
miRNAs and their target gene functions involved in plant growth
and development in general and improving efficient utilization of
key macro-nutrient elements in particular.

To understand the role of miRNAs and involvement in
crosstalk between N and P in plant is quite important. However,
this interactive mechanism remains elusive and requires further
investigations. The uptake and utilization processes of N
and P in plants are complex and cannot be considered in
isolation. Instead these processes are synergistic and depend
on the nutritional requirements of the plants in a particular
environment. Furthermore, levels of N and P cause affect not
only the root and associated transport systems in plants but
also the ion balance of other macro- (K, Ca, Mg, and S) and
micro-nutrients (Mn, Fe, Zn, and Cu, etc.) (Schlüter et al., 2013).

Current knowledge of the involvement of various miRNAs for
the regulation of N and P uptake, assimilation and utilization
and plant adaptation to both N and P limitation conditions
has been reviewed here along with how these processes affects
the modifications in shoot and root growth, development, and
architecture, effects on vegetative and reproductive phase and
production of secondary metabolites. Nevertheless, a holistic
approach to study the interaction of N and P along with other
macro- and micro-nutrient elements and the involvement of
miRNAs would be of much benefit and would thus require
further research.
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