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Verticillium longisporum infection
induces organ-specific glucosinolate
degradation in Arabidopsis thaliana
Katja Witzel*†, Franziska S. Hanschen†, Rebecca Klopsch, Silke Ruppel,
Monika Schreiner and Rita Grosch

Leibniz Institute of Vegetable and Ornamental Crops, Grossbeeren, Germany

The species Verticillium represents a group of highly destructive fungal pathogens,
responsible for vascular wilt in a number of crops. The host response to infection by
Verticillium longisporum at the level of secondary plant metabolites has not been well
explored. Natural variation in the glucosinolate (GLS) composition of four Arabidopsis
thaliana accessions was characterized: the accessions Bur-0 and Hi-0 accumulated
alkenyl GLS, while 3-hydroxypropyl GLS predominated in Kn-0 and Ler-0. With
respect to GLS degradation products, Hi-0 and Kn-0 generated mainly isothiocyanates,
whereas Bur-0 released epithionitriles and Ler-0 nitriles. An analysis of the effect on the
composition of both GLS and its breakdown products in the leaf and root following the
plants’ exposure to V. longisporum revealed a number of organ- and accession-specific
alterations. In the less disease susceptible accessions Bur-0 and Ler-0, colonization
depressed the accumulation of GLS in the rosette leaves but accentuated it in the
roots. In contrast, in the root, the level of GLS breakdown products in three of the four
accessions fell, suggestive of their conjugation or binding to a fungal target molecule(s).
The plant-pathogen interaction influenced both the organ- and accession-specific
formation of GLS degradation products.

Keywords: glucosinolate breakdown products, natural variation, plant root, plant secondary metabolites, vascular
pathogen

Abbreviations: 3But-CN, 4-pentenenitrile; 3But-GLS, 3-butenyl GLS; 3But-ITC, 3-butenyl ITC; CETB, 1-
cyano-3,4-epithiobutane; CETP, 1-cyano-2,3-epithiopropane; CETPent, 1-cyano-4,5-epithiopentane; CHETB,
1-cyano-2-hydroxy-3,4-epithiobutane; CN, cyanide; GLS, glucosinolate; I3M-GLS, indole-3-ylmethyl GLS; IAN,
3-indoleacetonitrile; IST, internal standard; ITC, isothiocyanate; 4MO-IAN, 4-methoxy-3-indoleacetonitrile;
1MOI3M-GLS, 1-methoxyindole-3-ylmethyl GLS; 4MOI3M-GLS, 4-methoxyindole-3-ylmethyl GLS; 3MSOP-GLS,
3-(methylsulfinyl)propyl GLS; 4MSOB-GLS, 4-(methylsulfinyl)butyl GLS; 7MSOH-GLS, 7-(methylsulfinyl)heptyl
GLS; 5MSOP-ITC, 5-(methylsulfinyl)pentylITC; 8MSOO-CN, 9-(methylsulfinyl)nonylnitrile; 8MSOO-GLS, 8-
(methylsulfinyl)octyl GLS; 3MTP-CN, 4-(methylthio)butylnitrile; 3MTP-GLS, 3-(methylthio)propyl GLS; 4MTB-GLS,
4-(methylthio)butyl GLS; 4MTB-ITC, 4-(methylthio)butyl ITC; 6MTH-CN, 7-(methylthio)heptylnitrile; 7MTH-CN,
8-(methylthio)octylnitrile; 6MTH-ITC, 6-(methylthio)hexyl ITC; 7MTH-ITC, 7-(methylthio)heptyl ITC; 7MTH-GLS,
7-(methylthio)heptyl GLS; 8MTO-CN, 9-(methylthio)nonylnitrile; 8MTO-GLS, 8-(methylthio)octyl GLS; 8MTO-ITC,
8-(methylthio)octyl ITC; (R)2OH3But-GLS, (R)-2-OH-3-butenyl GLS; (S)2OH3But-GLS, (S)-2-OH-3-butenyl GLS;
4OHI3M-GLS, 4-hydroxyindole-3-ylmethyl GLS; 3OHP-GLS, 3-hydroxypropyl GLS; 4Pent-GLS, 4-pentenyl GLS;
4Pent-ITC, 4-pentenyl ITC; 2PE-CN, 3-phenylpropanenitrile; 2Prop-CN, 3-butenenitrile; 2Prop-GLS, 2-propenyl GLS;
2Prop-ITC, 2-propenyl ITC; 2OH3But-CN, 3-hydroxypentenenitrile; 3OHP-GLS, 3-hydroxypropyl GLS; 3OHP-CN,
4-hydroxybutylnitrile; 3OHP-ITC, 3-hydroxypropyl ITC; n.d., not detected. To facilitate understanding from which GLS the
breakdown products derived, nitriles were abbreviated using the cyanide (CN) name.
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Introduction

A characteristic feature of Brassicaceous plants is the presence
of glucosinolates (GLS), a group of sulfur-containing secondary
metabolites which contribute to the plant’s defense against a
range of biotic stresses (Agerbirk et al., 2009; Textor and
Gershenzon, 2009). While GLS content is typically up-regulated
by pathogen or pest attack, other forms of stress, notably UVB
radiation (Mewis et al., 2012b) and drought (Mewis et al.,
2012a) can also induce their accumulation. The 130 known
GLS variants have been classified, according to the nature of
the side chain present, into the aliphatic, aromatic and indole
GLS (Agerbirk and Olsen, 2012). GLS are found in the vacuole;
when the cell is disrupted, they interact with myrosinase to
form either ITCs or nitriles. If the epithiospecifier protein (ESP)
is present, the degradation process of alkenyl GLS generates
an epithionitrile. The ESP protein has been also identified to
favor the formation of nitriles from other (non-alkenyl) GLS
(Wittstock and Burow, 2010; Kissen et al., 2012). In Arabidopsis
thaliana, a number of other modifiers is known (Zhang et al.,
2006; Burow et al., 2009; Kissen and Bones, 2009). Isothiocyanates
(ITCs) act as an effective deterrent against many pathogens,
including fungi, bacteria and even insects (Shofran et al.,
1998; van Ommen Kloeke et al., 2012; Witzel et al., 2013).
Nitriles and epithionitriles are generally less bioactive (Shofran
et al., 1998; Matusheski and Jeffery, 2001; Wittstock et al.,
2003).

A number of fungi belonging to the species Verticillium
induce plants to wilt when they invade the vascular system.
They can be responsible for significant losses in both crop
yield and quality. The species complex has a broad host
range, infecting lettuce, olive, cotton, eggplant and tomato,
among others (Daayf et al., 1995; Tsror et al., 2001; Dervis
et al., 2009; Atallah et al., 2011; Jimenez-Diaz et al., 2012).
These hemibiotrophic species colonize the plant root surface
in response to the presence of specific root exudates, and after
penetrating the cortex and endodermis, spread systemically
via the xylem in the form of conidia (Fradin and Thomma,
2006; Zhou et al., 2006). Heavy colonization of the xylem can
obstruct the transpiration stream, forcing the plant to form new
xylem tissue (Reusche et al., 2012). One of the known host
responses to Verticillium infection is an adjustment in the level
and identity of secondary metabolites (Floerl et al., 2012; Iven
et al., 2012; Obermeier et al., 2013; König et al., 2014). Linking
diversity in secondary metabolite profiles (especially GLS) to
the host/pathogen interaction is a science still in its infancy
(Moore et al., 2014). In particular, little effort has been made
to factor in crosstalk between the above and below ground
parts of the plant in the context of defense against soil-borne
pathogens.

A previous screen characterized GLS profiles of 19 A. thaliana
accessions and related the growth-suppressive effect of volatile
GLS breakdown products on Verticillium longisporum growth
to the abundance of 2-propenyl ITC (2Prop-ITC) in a
biofumigation assay (Witzel et al., 2013). Here, we extend
this study to investigate the in planta influence of fungal
colonization on GLS and their bioactive breakdown products.

The effect on these traits of colonization by V. longisporum
has been investigated, by comparing the performance of four
accessions chosen to contrast not just with respect to their
GLS (alkenyl GLS: Bur-0, Hi-0; hydroxyalkenyl GLS: Kn-
0, Ler-0) and GLS breakdown product profiles, but also in
the extent of their susceptibility to V. longisporum infection.
We hypothesize that metabolic fingerprinting of a group of
important defense compounds in A. thaliana accessions with
quantitative variation in fungal tolerance provides new clues
to understand tissue-specific GLS partitioning in response to
pathogens.

Materials and Methods

Chemicals
2Prop-ITC, (≥99%), benzonitrile (≥99.9%), 3-butenenitrile
(2Prop-CN, ≥98%), 4-pentenenitrile (3But-CN, ≥97%), 3-
phenylpropanenitrile (2PE-CN, ≥99%) and sucrose-sodium
nitrate media were purchased from Sigma-Aldrich Chemie
GmbH, Steinheim, Germany; IAN, (≥98%) from Acros Organics
(Fischer Scientific GmbH, Schwerte, Germany); 3-butenyl ITC
(3But-ITC, ≥95%) and 4-pentenyl ITC (4Pent-ITC, ≥95%)
were purchased from TCI Deutschland GmbH, Eschborn,
Germany; 3-hydroxypropionitrile was purchased from Thermo
Fischer Scientific, Erembodegem, Belgium; 4-(methylthio)butyl
ITC (4MTB-ITC, ≥98%) was purchased from Santa Cruz
Biotechnology, Heidelberg, Germany; 5-(methylsulfinyl)pentyl
ITC (5MSOP-ITC) was purchased from Enzo Life Sciences
GmbH, Lörrach, Germany; 1-cyano-2,3-epithiopropane (CETP),
(≥95%) was purchased from Taros Chemicals GmbH Co.
KG, Dortmund, Germany; 4-hydroxybenzyl GLS (≥97%),
methylene chloride (GC Ultra Grade), Tris, EDTA, NaCl,
CTAB, chloroform/isoamylalcohol (24:1), β-mercaptoethanol
and phenol/chloroform/isoamylalcohol (25:24:1) from Carl
Roth GmbH, Karlsruhe, Germany; acetonitrile (Ultra Gradient
HPLC grade) was purchased from J.T. Baker, Deventer,
The Netherlands and NaSO4 (≥99%) and methanol (>99.9)
were purchased from VWR International GmbH, Darmstadt,
Germany. Potato dextrose agar was purchased from Merck,
Darmstadt, Germany. All solvents were of LC or GC-MS
grade.

Plants, Growing Conditions, and Fungal
Inoculation
Seed of the A. thaliana accessions Bur-0, Hi-0, Kn-0 and
Ler-0 (kindly provided by L. Westphal, Leibniz Institute of
Plant Biochemistry, Germany), selected on the basis of their
contrasting GLS profiles (Witzel et al., 2013), were germinated
in soil and transplanted into quartz sand after 2 weeks. The
plants were fed with a liquid nutrient formulation (Gibeaut
et al., 1997) and exposed to an 8 h photoperiod provided by
300 μmol m−2 s−1 light at 20◦C (light period)/18◦C (dark
period).

V. longisporum isolate 43-3 (Zeise and von Tiedemann, 2002,
kindly provided by A. von Tiedemann, Georg-August-University,
Germany) was maintained on potato dextrose agar plates, and
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mycelial suspensions were prepared as described by Witzel
et al. (2013). Briefly, a flask containing 100 mL SSN medium
was inoculated with six 5 mm diameter agar disks cut from
the margin of an actively growing V. longisporum culture and
incubated for 1 week. A further 200 mL SSN medium was
added, and the culture maintained for two additional weeks.
After mechanical blending, the fragmented mycelial suspensions
were centrifuged and the pellets rinsed twice by resuspension in
sterile tap water. Conidia were counted in a Thoma chamber to
allow the concentration to be adjusted to 106 mL−1. A 10 mL
aliquot (or 10 mL water for mock inoculations) of the conidial
suspension was poured over the surface of a pot containing
the 2 weeks-old A. thaliana seedlings, which were then grown
on for a further 4 weeks. Rosette leaves and roots were
harvested, snap-frozen and ground to a powder, which was stored
at −80◦C until required for the extraction of DNA, proteins and
metabolites.

Plant growth measurements were taken of the fresh weight
of root and rosette of 20 plants of all four A. thaliana
accessions, grown under control conditions or inoculated with
V. longisporum, in three independent experiments. The relative
growth rate was determined from the ratio between growth of
control and inoculated plants. Analysis for statistical significance
was done using Student’s t-test implemented in SigmaPlot 12.3
software (SPSS Inc., Chicago, IL, USA).

DNA Isolation and Quantitative Real-Time PCR
(qPCR)
Genomic DNA was isolated using the CTAB extraction method
(Doyle and Doyle, 1990; Tinker et al., 1993). Aliquots of 200 mg
powdered root material were homogenized in 500 μL CTAB
[100 mM Tris-HCl pH 8, 1.4 M NaCl, 20 mM EDTA, 2%
(w/v) CTAB, 0.2% (v/v) β-mercaptoethanol], then extracted by
the addition of 200 μL chloroform/isoamylalcohol (24:1), After
centrifugation, the DNA pellet was dissolved in 200 μL nuclease-
free water and treated with RNase A (15 μL of 50 μg mL−1

RNase). Following a phenol/chloroform/isoamylalcohol (25:24:1)
extraction, the DNA was precipitated in acidic ethanol (Gebhardt
et al., 1989) and dissolved in 10 mM Tris-HCl/1 mM EDTA (pH
8). DNA concentration was derived via a Nano Drop ND-1000
spectrophotometer (Peqlab, Erlangen, Germany). The abundance
of fungal DNA present in the DNA sample was estimated by
a qPCR assay based on the primer pair VDS1/2 (5′-CAC ATT
CAGTTCAGGAGACGGA/5′-CCTTCTACTGGAGTATTT
CGG) which amplifies a 521 nt stretch of V. longisporum DNA
(Li et al., 1999). Detection of V. longisporum was performed as
described in Witzel et al. (2013).

Analysis of GLS and their Breakdown Products
The GLS composition of the A. thaliana leaf and root samples
was determined as desulfo-GLS, using a slightly modified form
of the Wiesner et al. (2013b) method. The modifications were
as follows: the extraction was based on 10 mg of lyophilized
plant material, and the internal standard was a 0.05 μmol
aliquot of 4-hydroxybenzyl GLS. The various desulfo-GLS were
separated by a UHPLC-DAD device (UHPLC Agilent 1290
Infinity System, Agilent Technologies, Böblingen, Germany)

equipped with a Poroshell 120 EC-C18 column of dimension
100 mm × 2.1 mm containing particles of size 2.7 μm (Agilent
Technologies). The solvent gradient was formed by water (A)
and 40% acetonitrile (B), starting at 0.5% B for 2 min, rising
to 49.5% B over the next 10 min, then held for a further
2 min, increased to 99.5% B over the course of 1 min and
finally held for a final 2 min. The flow rate was 0.4 mL min−1

and the injection volume 5 μL. Desulfo-GLS were identified
by comparing retention times and UV absorption spectra with
those of known standards. Quantification was done at 229 nm
via the internal standard (IST) 4-hydroxybenzyl GLS using the
response factor (RF) of the GLS relative to 4-hydroxybenzyl
GLS.

The quantification of GLS breakdown products was based on
a GC-MS analysis, as described (Witzel et al., 2013; Piekarska
et al., 2014), using an Agilent 7890A Series GC System
(Agilent Technologies) equipped with an Agilent 7683 Series
Autosampler, an Agilent 7683B Series Injector and an Agilent
5975C inert XL MSD. Analytes were separated using a SGE
BP5MS column 30m× 0.25mm× 0.25μM (VWR International
GmbH, Darmstadt, Germany). The chosen instrument settings
differed only slightly from those given by Piekarska et al. (2014):
the temperature was set to 35◦C for the initial 3 min, then
raised to 100◦C at 9◦C min−1, where it was held for 3 min;
the rest of the protocol was identical to that given by Piekarska
et al. (2014). Molecular species were identified by their mass
spectrum and retention time in comparison with those of
authenticated standards and with literature data (Kjaer, 1963;
Spencer and Daxenbichler, 1980). Analyte content was calculated
using benzonitrile as IST and the RFs of CETP (RF = 1.66),
2Prop-ITC (RF = 1.71), 2Prop-CN (RF = 3.71), 3But-ITC
(RF = 1.28), 3But-CN (RF = 2.61), 3-hydroxypropionitrile
(RF = 7.12), 4MTB-ITC (RF = 0.53), 5MSOP-ITC (RF = 0.98),
3-hydroxypropionitrile (RF = 7.12), 2PE-CN (RF = 0.54), and
IAN (RF = 0.35) relative to benzonitrile. For the commercially
unavailable compounds, a response factor equal to that of the
chemically most similar compound was assumed. Thus, other
epithionitriles than CEPT itself were quantified at hand of the
RF of CEPT; that of 3-hydroxypentene nitrile (2OH3But-CN)
was based on that of 3But-CN (1.28), those of the breakdown
products of the methylsulfinyl-alkyl GLS on that of 5MSOP-ITC
(0.98), those derived from methylthioakyl GLS on that of 4MTB-
ITC (0.53), the degradation products of 3-hydroxypropyl GLS on
that of 3-hydroxypropionitrile (7.12), and that of 4-methoxy-3-
indoleacetonitrile (4MO-IAN) on that of IAN (0.35). The limit
of detection ranged between 0.2 μM (2PE-CN) and 10 μM
(3-hydroxypropionitrile).

Because of the extent of the inter-experiment variation
for metabolite concentrations, quantitative changes in GLS
and their breakdown products induced by fungal colonization
were analyzed separately for each of the three experiments.
Relative fold changes between the inoculated and the non-
inoculated plants were determined for each compound and the
Student’s t-test was applied to identify statistically significant
differences in mean compound content, applying a threshold of
p < 0.05 (Figures 3 and 4). Absolute amounts of GLS and their
respective breakdown products are presented in Supplementary
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Tables S1 and S2 as a mean of three independent experiments
and the standard error.

Hierarchical clustering of profiles of GLS and GLS breakdown
products was performed using MultiexperimentViewer MeV
v4.7.4, based on Pearson correlation and average linkage
clustering, on log2 transformed ratios between control and
inoculated plants (Saeed et al., 2003).

To estimate the relation of total GLS breakdown products
to the total amount of GLS, all values were converted to fresh
weight basis. The recovery rate was determined as ratio between
amount of total GLS breakdown products and amount of total
GLS multiplied with 100% in three independent experiments.
Analysis for statistical significance was done using Student’s t-test
implemented in SigmaPlot 12.3 software (SPSS Inc., Chicago, IL,
USA).

Western Blotting
Proteins were extracted from the leaf and immunoblotted (based
on 1 μg protein) as described by Amme et al. (2005). The blots
were probed with an antibody recognizing the A. thaliana ESP,
an enzyme responsible for diverting GLS hydrolysis from the
generation of ITCs to that of epithionitriles or nitriles (Kissen
et al., 2012, kindly provided by Ralph Kissen). Signal intensity
was quantified using Phoretix 1D v11.4 gel analysis software
(TotalLab, Newcastle upon Tyne, UK).

Results

Variation among the Four A. thaliana
Accessions for Disease Susceptibility
The impact of the V. longisporum inoculation was stronger
on the roots than on the leaf (Figure 1). All four accessions
experienced a decline in root biomass, with Hi-0 and Kn-0 being
the most severely affected. Leaf biomass was also reduced in
both Hi-0 and Kn-0, while leaf biomass accumulation in Bur-
0 and Ler-0 was relatively unaffected by the fungus. The only

visible above-ground disease symptom observed at the time of
harvest was the reduced growth of Hi-0 and Kn-0, but no wilting.
Based on the biomass response to inoculation, Hi-0 and Kn-0
were classified as susceptible, and Bur-0 and Ler-0 as tolerant
to V. longisporum. When the quantity of fungal DNA present
in the root DNA preparation was tested by qPCR, the extent
of the fungal colonization in the Ler-0 and Hi-0 roots was
shown to be greater than in those of both Bur-0 and Kn-0
(Figure 2).

The Effect of Fungal Colonization on GLS
Profile
In all, 17 distinct GLS compounds were detected in the leaf
material and 16 in the root of plants not infected with

FIGURE 2 | The relative abundance of V. longisporum DNA in the roots
of the four A. thaliana accessions, estimated via a qPCR assay carried
out 28 days after inoculation. Each data point represents the mean of three
technical replicates and one representative experiment is shown. The error
bars denote the SE associated with the mean.

FIGURE 1 | The effect of Verticillium longisporum colonization on growth
of Arabidopsis thaliana accessions Bur-0, Hi-0, Kn-0, and Ler-0. Each
data point represents the mean of three independent experiments. Relative
growth rates were calculated by comparing inoculated with non-inoculated

plants of each accession in turn on a fresh weight basis. The error bars denote
the SE associated with the mean. Significant differences (p < 0.05) between
inoculated and non-inoculated plants of the same accession are indicated by an
asterisk.
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FIGURE 3 | Changes in the GLS profile induced by colonization
with V. longisporum. Each column represents a single accession
and each row the fold change (inoculated/non-inoculated), calculated
from three independent experiments and log2 transformed. Cells

colored gray indicate the absence of the specific compound.
Significant differences (p < 0.05) between inoculated and
non-inoculated plants are indicated by an asterisk. Abbreviations are
explained in the list of abbreviations.

V. longisporum. While the overall GLS contents of the two
organ types were rather different, their composition was quite
similar, and in accordance with earlier data (Witzel et al., 2013).
A full tabulation of the various GLS compounds identified
is presented as Supplementary Table S1; this includes those
compounds which were inconsistently present and therefore
not analyzed further. Overall, there were 15 compounds
reliably present in Bur-0, nine in Hi-0, eleven in Kn-0 and
ten in Ler-0. The predominant GLS in the Hi-0 and Bur-0
leaf were the alkenyls 2Prop-GLS and 3-butenyl GLS (3But-
GLS) in Hi-0 and Bur-0, respectively, while the commonest
GLS in the leaf of Kn-0 and Ler-0 was 3-hydroxypropyl
GLS (3OHP-GLS). The roots of Bur-0 contained substantial
quantities of both 8-(methylsulfinyl)octyl GLS (8MSOO-GLS)
and 1-methoxyindole-3-ylmethyl GLS (1MOI3M-GLS), while
Hi-0 roots in addition featured 2Prop-GLS. In contrast, the
GLS content of the Kn-0 and Ler-0 roots was dominated
by 3OHP-GLS.

In V. longisporum infected plants, the global GLS level was
significantly higher than in the non-inoculated plants, especially
in the root (Figure 3, Supplementary Table S1). For Bur-0, the
root GLS content rose by 57%, while that of the leaf fell by 7%.
Similarly, the root of Hi-0 accumulated 55% more GLS than
the non-infected root, while its leaf GLS content rose by 7%.
The effect of V. longisporum infection in Kn-0 was an 11% rise

in root GLS content and a 20% rise in leaf GLS content. Ler-0
was the accession least affected by the presence of the fungus:
its root GLS content was enhanced by 3% while its leaf GLS
content dropped by 6%. With respect to GLS profile, in Bur-
0 roots, all of the GLS species were more abundant than in
the non-infected roots, while in its leaf, the representation of
ten GLS species was reduced, suggestive of GLS translocation
toward the site of infection. The behavior of Ler-0 was similar,
featuring an increase in the presence of the indoles indole-3-
ylmethyl GLS (I3M-GLS) and 4-hydroxyindole-3-ylmethyl GLS
(4OHI3M-GLS) and the sulfinylalkyls 8MSOO-GLS and 7-
(methylsulfinyl)heptyl GLS (7MSOH-GLS) in the infected root
and a decrease in the leaf. In both Hi-0 and Kn-0, the abundance
of most of the GLS compounds rose in both the root and
the leaf. The attempt to compare the GLS profiles of Bur-0
and Ler-0 with those of Hi-0 and Kn-0 to identify which GLS
species acted as a signature for V. longisporum tolerance was
unsuccessful.

The Effect of Fungal Colonization on the GLS
Breakdown Product Profile
The four A. thaliana accessions differed from one another not
only with respect to their GLS profile, but also with respect to the
spectrum of GLS breakdown products generated (Supplementary
Table S2). Unsurprisingly, given that Bur-0 contained the greatest
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FIGURE 4 | Changes in the GLS breakdown product profile induced by
colonization with V. longisporum. Each column represents a single
accession and each row the fold change (inoculated/non-inoculated)
calculated from three independent experiments and log2 transformed. Cells

colored gray indicate the absence of the specific compound. Significant
differences (p < 0.05) between inoculated and non-inoculated plants are
indicated by an asterisk. Abbreviations are explained in the list of
abbreviations.

diversity of GLS species, its degradation product spectrum was
also the most diverse, comprising 22 products; the number for
Hi-0 was 14, for Kn-0 eleven and for Ler-0 ten. The dominant
species in the Bur-0 leaf were the epithionitriles 1-cyano-3,4-
epithiobutane (CETB), derived from 3But-GLS, and 1-cyano-2,3-
epithiopropane (CETP), derived from 2Prop GLS due to high ESP
protein abundance (Supplementary Figure S1). In the Ler-0 leaf,
the most abundant products were 4-hydroxybutylnitrile (3OHP-
CN) and the corresponding 3-hydroxypropyl ITC (3OHP-ITC).
The Hi-0 leaf contained mainly 2Prop-ITC and lacked CEPT,
while 90% of degradation products from 3OHP-GLS was the
corresponding ITC in leaves of Kn-0. No ESP was detected
in the root of both Bur-0 and Ler-0 (data not shown), and
as result, the root GLS degradation profiles were rich in
ITCs.

Infection with V. longisporum altered the spectrum of GLS
degradation products in an accession-specific manner (Figure 4).

The Ler-0 leaf accumulated fewer nitriles, in accordance with
its reduction in ESP abundance (Supplementary Figure S1).
Although the abundance of ESP was reduced in the Bur-0 leaf,
the formation of ITCs was less favored, while that of nitriles was
enhanced. In both Kn-0 and Hi-0, the representation of both
nitriles and ITCs increased. The quantity of GLS breakdown
products in the leaf was enhanced by the fungal colonization
in Bur-0, Hi-0 and Kn-0, but decreased in Ler-0. Three of the
accessions (the exception was Hi-0) responded to infection by
accumulating fewer detectable degradation products in their root.
In the case of Hi-0, both ITC and nitrile levels were raised.
Bur-0 and Ler-0 generated a reduced quantity of nitriles and of
certain ITCs, while the Kn-0 profile involved an enhancement
in ITC and a reduction in nitrile content. In Bur-0 and Ler-0,
both the global GLS degradation product levels in the leaf and
root were reduced upon inoculation: the reduction in the leaf was
7% in Bur-0 and 37% in Ler-0, while in the root the respective
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decreases were 17 and 30%. However, in Kn-0, the leaf global GLS
degradation product content was increased by 16%, while that of
the root fell by 21%. Finally in Hi-0, both the leaf and root content
rose by, respectively, 11 and 53%, as a result of V. longisporum
spread. Relative to that of GLS, the concentration of breakdown
products derived from GLS lay between 21% in the leaf of
Ler-0 plants inoculated with V. longisporum and 104% (non-
inoculated Bur-0 roots; Figure 5). In response to V. longisporum
inoculation, a significant change in the relative concentration was
only noted in the roots of Bur-0, where a decrease of 50% was
estimated.

Discussion

The interaction between Verticillium and A. thaliana has been
characterized at the level of host/pathogen signaling (Johansson
et al., 2006; Pantelides et al., 2010; Tischner et al., 2010; Roos
et al., 2014) and the genetic basis of host tolerance has been
investigated (Veronese et al., 2003; Häffner et al., 2010, 2014).
However, the influence of the plant’s secondary metabolites on
this interaction has not as yet been thoroughly investigated. The
abundance of phenylpropanoids in the A. thaliana leaf tissue is
enhanced when the plant is challenged by V. longisporum (König
et al., 2014). A time-course study on the effect of the pathogen on
tryptophan-derived secondary metabolites revealed an increase
in root camalexin concentration and knock-out of biosynthetic
genes increased susceptibility to V. longisporum (Iven et al.,
2012). According to Witzel et al. (2013), certain GLS breakdown
products are capable of inhibiting the growth of V. longisporum.
The four selected A. thaliana accessions were chosen on the basis
of their diversity in GLS and GLS breakdown product profiles,
and were shown to vary with respect to their susceptibility to
colonization by the pathogen (Figure 1). Although both Bur-0

FIGURE 5 | The recovery rate of GLS in the form of breakdown
products. Each data point represents the mean of three independent
experiments. The recovery rate was calculated from the ratio between the total
GLS content and total GLS breakdown product content for each experiment,
accession and treatment separately. The error bars denote the SE associated
with the mean. Significant differences (p < 0.05) between inoculated and
non-inoculated plants of the same accession are indicated by an asterisk.

and Ler-0 emerged as the more tolerant of the four, Häffner et al.
(2010, 2014) considered Ler-0 as a sensitive genotype, despite
using the same isolate as was employed here. This discrepancy
is assumed to have arisen due to the difference in the inoculation
method: in Häffner et al.’s (2010, 2014) experiments, plants were
uprooted, the roots were trimmed and then exposed to a conidial
suspension; whereas the present experiments were based on
pouring a conidial suspension on the soil surface, then relying on
the natural mode of fungal colonization of the host. Nevertheless,
even though Ler-0 was considered here as tolerant on the basis of
its biomass accumulation capacity in the face of fungal infection,
the abundance of the pathogen within the root of this accession
was higher than in the other three accessions, confirming the
observation of Häffner et al. (2010) that colonization rate does
not correlate with disease severity.

Verticillium Colonization Leads to the
Accumulation of GLS in the Roots of Infected
Plants
GLS form a part of the plant’s defense against biotic stress (Clay
et al., 2009; Aires et al., 2011; Mewis et al., 2012a; Rohr et al.,
2012), but few evidential data as yet support a role of GLS in
the defense against soil-borne pathogens such as V. longisporum.
Furthermore, interaction between above and below ground plant
tissues in deterring soil-borne pathogens is scarcely investigated.
Such systemic examinations should add to a better understanding
of the biological basis for GLS variation between shoots and roots,
as well as their role in restraining fungal pathogens. Colonization
of the host by V. longisporum resulted in an increase in the root
GLS content in all four accessions, while the GLS response in the
leaf was inconsistent. The observed decrease in the case of Bur-
0 and Ler-0 may reflect the transport of GLS from the shoot to
the root (Madsen et al., 2014) or induced biosynthesis in roots. In
Ler-0, the content of 4OHI3M-GLSwas significantly downgraded
in the leaf, while it accumulated in the root, and the same applied
to 7MTH-GLS in Bur-0. It seems possible therefore that the
translocation of GLS to the primary infection site contributes to
the defense response of these accessions. Further testing of fungal
colonization in A. thaliana genotypes that are either not able to
accumulate GLS in their roots (Andersen et al., 2013) or that are
deficient in specific GLS groups (Beekwilder et al., 2008) improve
the understanding of the role of GLS in antagonize soil-borne
pathogens.

The Content of GLS Breakdown Products is
Reduced by Verticillium Colonization
The contribution of GLS to the host defense response has to
date focused on the effect of intact GLS compounds (Beekwilder
et al., 2008; Markovich et al., 2013), although it is well known that
much of the bioactivity of GLS is associated with their breakdown
products (reviewed by Hanschen et al., 2014). Analyses of
the GLS breakdown product content in the tissues of stressed
plants are scarce (Brader et al., 2006; Stotz et al., 2011). The
enzymatic degradation of GLS generates a variety of molecules,
the bioactivity of most of which still remains obscure. Some
breakdown products, in particular the ITCs, have been shown
to possess anti-bacterial and/or anti-fungal and/or anti-herbivore
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properties. The anti-carcinogenic effect of the ITCs is largely
due to their ability to covalently bind to nucleophiles such
as cysteine residues in tubulin, which inhibits, for example,
tubulin polymerization, thus leading to cell growth inhibition
and apoptosis induction (Mi et al., 2008). Treatment with a low
concentration of ITCs can induce the expression of glutathione
S-transferases, while at higher concentrations, the hydrogen
peroxide generated leads to leaf bleaching (Hara et al., 2010).
ITCs have also been implicated in the production of reactive
oxygen species and the induction of stomatal closure (Khokon
et al., 2011; Hossain et al., 2013), as well as the expression of
heat-shock protein genes and an enhanced tolerance to high
temperatures stress (Hara et al., 2013); these observations have
suggested that ITCs do make a positive contribution to the
plant’s abiotic stress tolerance (Martinez-Ballesta et al., 2013).
Treatment of A. thaliana leaves with 4-(methylsulfinyl)butyl ITC
restricts the size of glutathione pool and induces a hypersensitive
response (Andersson et al., 2015). Previously, 2Prop-ITC was
found growth-inhibiting to V. longisporum in a plate assay using
freeze-dried A. thaliana plant material (Witzel et al., 2013).
However, GLS breakdown products differ between lyophilized
and fresh plant material due to altered activity of modifying
enzymes. In comparison to the earlier findings, formation of
2Prop-ITC was confirmed for Hi-0 but declined for Bur-0.
Main degradation product of 2Prop-GLS in leaves was the ITC
(Hi-0) or epithionitrile (Bur-0), while CNs were formed in
roots (Supplementary Table S2). As V. longisporum colonizes
the plant via roots, 2Prop-CN levels could be more relevant
in deterring fungal spread than 2Prop-ITC, indicating that
earlier findings might not account for the in planta interaction
between host and pathogen. While ITCs predominate among
the GLS degradation products, nitriles and epithionitriles are
also formed, provided that the necessary enzymes are available.
Epithionitriles have been shown to toxic to rat and cattle
(Nishie and Daxenbichler, 1980; Collett et al., 2014) and
CETB to rats (VanSteenhouse et al., 1999); however, to date
the in planta role of nitriles and epithionitriles has been
restricted to either herbivore/plant (Lambrix et al., 2001; Mumm
et al., 2008) or fungus/plant interactions (Pedras and Hossain,
2011).

Here, the accessions which responded to V. longisporum
colonization by a reduction in their leaf GLS content (Bur-
0 and Ler-0) also experienced a fall in their GLS breakdown
product content (and vice versa for Hi-0 and Kn-0, Figure 4).
The decrease in the leaf nitrile and epithionitrile content noted
in Bur-0 and Ler-0 was consistent with the low level of ESP
present in these accessions. The behavior of the roots was
somewhat unexpected. Except for Hi-0, the content of most of
the GLS breakdown products fell in response to the pathogen’s
colonization. In the two accessions classed as tolerant (Bur-0 and
Ler-0), the production of both nitriles and ITCs was reduced,
and in Bur-0, the recovery rate of GLS breakdown products
dropped by 50% compared to the rate encountered in the non-
infected root. GLS breakdown products have been shown to be
antagonistic to the growth of Verticillium (Olivier et al., 1999;
Down et al., 2004; Njoroge et al., 2011; Witzel et al., 2013), but
the biochemical nature of this toxicity remains unclear. In the

necrotrophic fungus Alternaria brassicicola, exposure to 2Prop-
ITC results in the induction of a number of genes associated
with the oxidative burst and with cell cycle regulation (Sellam
et al., 2007). When V. longisporum was presented with xylem sap
obtained from oilseed rape, genes encoding both a number of
heat-shock proteins and catalase peroxidase were up-regulated;
knock-out mutants of these genes resulted in a H2O2 sensitive
phenotype (Singh et al., 2012). Since xylem sap also contains GLS
(Andersen et al., 2013) and myrosinase (Floerl et al., 2012), this
induction may well be driven by the presence of GLS breakdown
products. A working hypothesis for the reduced abundance of
GLS breakdown products in infected A. thaliana roots is that
these compounds interact with fungal targets such as glutathione
or tubulin, thereby inhibiting the process of colonization. The
product of the V. longisporum β-tubulin paralog could represent
the relevant target (Inderbitzin et al., 2011). The tolerance of Bur-
0, which experienced the most notable decrease in content of
GLS breakdown products in the root, may be ascribable to this
process.

Conclusion

Colonization of A. thaliana with V. longisporum influenced the
tissue- and accession-specific accumulation of GLS and their
respective breakdown products. Tolerant accessions might be
more efficient in accumulating GLS at the infection site in the
root. While our study did not identify a particular GLS or
breakdown product associated with pathogen tolerance, further
examinations should be extended to plants subjected to specific
elicitors to accumulate specific GLS prior fungal inoculation
(Wiesner et al., 2013a).
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